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1. Introduction

Consider the following nonlinear systems of equalities and inequalities

ci(x) = 0, i ∈ E (1a)
ci(x) ≤ 0, i ∈ I (1b)

where ci(x): Rn → R, i ∈ E
∪
I, E

∩
I = ∅. Systems of nonlinear equalities and inequalities appear in a wide

variety of problems. These systems play a central role in the model formulation design and analysis of numerical
techniques employed in solving problems arising in optimization, complementarity, and variational inequalities
[12, 15, 18, 19, 20, 28, 30]. For example, nonlinear complementarity problem is a special case of (1).

Many researchers considered the problem, especially for the numerical methods such as Dennis, El-Alem
and Williamson [4], Macconi, Morini and Porcelli [14], Yang, Chen and Tong [31], Zhang and Huang [34].
But none of them used filter idea. Filter methods were presented by Fletcher and Leyffer [6] for nonlinear
programming, offering an alternative to merit functions, as a tool to guarantee global convergence of algorithms
for nonlinear optimization. Filter methods were successfully applied to solve various optimization problems
[2, 6, 7, 8, 9, 10, 11, 13, 21, 23, 24, 25, 29].

In this paper, we present a new non-monotone filter trust region algorithm which is different from [22, 26, 27].
The new algorithm is based on non-monotone line search technique presented by Zhang and Hager [33]. We
transform the problem (1) into an equality constrained optimization problem solved by the new algorithm. The
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230 COMBINING FILTER AND NON-MONOTONE TRUST REGION ALGORITHM

second order correction step is used to overcome Maratos effect so that superlinearly local convergence is achieved.
The paper is outlined as follows. In Section 2, we propose the new non-monotone filter trust region algorithm.
Section 3 is devoted to the global convergence theory for the new algorithm. In Section 4, we study the local
convergence. Finally, we report some numerical experiments in Section 5.

Notation. ∥ · ∥ is the ordinary Euclidean norm in the paper. Let ∇Φ(x) denote the gradient of the function Φ(x),
∇c(x) denote the Jacobian of the constraint c(x).

2. A new non-monotone filter trust region algorithm

Let the vector functions CE(x) be the vector functions whose components are ci(x) for i ∈ E and CI(x) be the
vector functions whose components are ci(x) for i ∈ I. Given a 0-1 diagonal indicator matrixW (x) ∈ Rp×p whose
diagonal entries are

wi(x) =

{
1, i ∈ I and ci(x) ≥ 0,

0, i ∈ I and ci(x) < 0.
(2)

Now, we define the function

Φ(x) =
1

2
∥W (x)CI(x)∥2, (3)

and problem (1) can be written as

min
1

2
∥W (x)CI(x)∥2 (4a)

subject to CE(x) = 0. (4b)

In [4], the gradient of the function Φ(x) can be written as

∇Φ(x) = ∇CI(x)
TW (x)CI(x). (5)

Following from Byrd [1], Omojokun [17], Dennis, El Alem and Maciel [5], we obtain the trial step sk = stk + snk
at the current iterate xk by computing a quasi-normal step snk and a tangential step stk. The purpose of the quasi-
normal step snk is to improve feasibility. It is obtained as approximate solution of the trust-region subproblem

min ∥CE(xk) +∇CE(xk)
T sn∥2, s.t. ∥sn∥ ≤ ∆k, (6)

where the ∆k > 0 denotes the trust region radius. The requirements on the step snk are that there exist constants
K1, K2 > 0, such that snk admits the upper bound

∥snk∥ ≤ min{K1∥CE(xk)∥,∆k}, (7)

and satisfies the decrease condition

∥CE(xk)∥2 − ∥CE(xk) +∇CE(xk)
T snk∥2 ≥ K2∥CE(xk)∥min{∥CE(xk)∥,∆k}. (8)

We define a quadratic model

qk(s) = ∇ΦTk s+
1

2
sTHks = ∇CI(xk)

TW (xk)CI(xk)s+
1

2
sTHks (9)

of Φ(x) about the current point xk, where, Hk is a symmetric approximation of the Hessian of Lagrangian function

ℓ(x, λ) = Φ(x) + λTCE(x) =
1

2
∥W (x)CI(x)∥2 + λTCE(x), (10)
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where λk is the multiplier corresponding to equality. Based on the model, the tangential step stk is computed as
approximate solution of the trust region subproblem

min qk(s
n
k + st), s.t. ∇CE(xk)

T st = 0, ∥st∥ ≤ ∆k, (11)

satisfying the decrease condition

qk(s
n
k )− qk(snk + stk) ≥ K3∥ZTk ∇qk(snk )∥min{∥ZTk ∇qk(snk )∥,∆k} (12)

with a constant K3 > 0, where Z(x) denotes a matrix whose columns form a basis of the null space of ∇CE(x)
T .

Set D0 = f(x0), Q0 = 1. To evaluate the descent properties of the step for the objective function, we use the
predicted reduction of Φ(x)

predk = qk(0)− qk(sk)

and the non-monotone reduction of Φ(x)

aredk = Dk − Φ(xk + sk),

where ηk ∈ [ηmin, ηmax], 0 ≤ ηmin ≤ ηmax ≤ 1, Qk+1 = ηkQk + 1, Dk+1 = (ηkQkDk + f(xk))/Qk+1. Observe
thatDk+1 is a convex combination ofDk and f(xk). SinceD0 = f(x0), it follows thatDk is a convex combination
of the function values f(x0), f(x1), · · · , f(xk). The choice of ηk controls the degree of nonmonotonicity. If ηk = 0
for each k, the algorithm actual is a monotone filter trust region algorithm. If ηk = 1 for each k, we have that
Dk = Ak, where Ak =

∑k
i=0 f(xi)

k+1 .
The first order necessary optimality conditions at a local solution x∗ of (4) can be written as

CE(x
∗) = 0, Z(x∗)T∇Φ(x∗) = 0.

Define the constraint violation θ(x) = ∥CE(x)∥1. Set E0 = θ(x0). A trial point xk + sk is acceptable if

θ(xk + sk) ≤ (1− γθ)Ek (13a)

or

Φ(xk + sk) ≤ Dk − γΦθ(xk) (13b)

holds for γθ, γΦ ∈ (0, 1), where
Ek+1 = (ηkQkEk + θ(xk))/Qk+1.

When the condition
predk ≥ κθθψk (14)

holds, where κθ > 0 and ψ ∈ (0, 12 ), the trial point xk + sk has to satisfy the condition

ρk =
aredk
predk

≥ η, (15)

where 0 < η < 1.
For the sake of a simplified notation we define the filter in this paper not as a list but as a set Fk containing

all (θ,Φ) that are prohibited in iteration k. We say that a trial point xk + sk is acceptable to the filter if
(θ(xk + sk),Φ(xk + sk)) /∈ Fk. At the beginning of the proposed algorithm, the filter is initialized to F0 =
{(θ,Φ) ∈ R2 : θ ≥ 104, ∅}. If the accepted trial step size does not satisfy the condition (14), the filter is augmented
for a new iteration using the non-monotone update formula

Fk+1 = Fk ∪
{
(θ,Φ) ∈ R2 : θ ≥ (1− γθ)Ek, Φ ≥ Dk − γΦθ(xk)

}
. (16)
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232 COMBINING FILTER AND NON-MONOTONE TRUST REGION ALGORITHM

We do not augment the filter if (14) and (15) hold for the accepted step.
The algorithm is described as follows.
Algorithm 1
Given: Starting point x0; D0 = f(x0); E0 = θ(x0); Q0 = 1; initial trust region radius ∆0; symmetric matrix H0;
F0 = {(θ,Φ) ∈ R2 : (104, ∅)}; γθ, γΦ ∈ (0, 1); κθ > 0; ψ ∈ (0, 12 ); 0 < γ0 < γ1 ≤ 1 ≤ γ2; 0 ≤ ηmin ≤ ηmax ≤ 1;
0 < η < 1; ∆min > 0; ϵ > 0.

1. Compute Φ(xk), ∇Φ(xk), CE(xk), θ(xk). If ∥Z(xk)T∇Φ(xk)∥+ θ(xk) ≤ ϵ, stop.
2. Compute a step. Compute snk and stk, set sk = snk + stk.
3. Tests to accept the trial step.

3.1. Check acceptability to the filter. If (θ(xk + sk),Φ(xk + sk)) ∈ Fk, reject the trial step, go to Step 3.3.
3.2. Check sufficient decrease with respect to current iterate.

3.2.1. Case 1. (14) holds: If (15) holds, go to Step 4. Otherwise, go to Step 3.3.
3.2.2. Case 2. (14) is not satisfied: If (13) holds, go to Step 4. Otherwise, go to Step 3.3.

3.3. Choose ∆k ∈ [γ0∆k, γ1∆k]. If ∆k < ∆min, go to Step 7, otherwise go to Step 3.1.

4. Accept trial point. Set xk+1 = xk + sk and choose ∆k+1 such that ∆k+1 ∈ [∆k, γ2∆k] if ρk ≥ η holds.
5. Augment filter. If (14) is not satisfied, augment the filter using (16). Otherwise set Fk+1 = Fk.
6. Continue with next iteration. Choose η ∈ [ηmin, ηmax], and set

Qk+1 = ηkQk + 1,

Dk+1 = (ηkQkDk + f(xk))/Qk+1,

Ek+1 = (ηkQkEk + θ(xk))/Qk+1,

k ← k + 1, and go back to Step 1.
7. Feasibility restoration phase. Compute a new iterate xk+1 by decreasing the infeasibility measure θ so that
xk+1 satisfies the sufficient decrease conditions (13) and is acceptable to filter. Go to Step 6.

Feasibility restoration phase
Consider the problem

min θ(x) = ∥CE(x)∥1.
There exist some methods which can be successfully applied to solve it. For details, see Nie [16] and Yuan [32].

3. Global convergence

Assumptions G. In the following, we denote the set of indices of those iterations in which the filter has been
augmented by A.

(G1) CE(x) and CI(x) are continuously differentiable and bounded on Rn.
(G2) The iterate {xk} remains in compact subset S ⊂ Rn.
(G3) ∇CE(xk), ∇CI(xk), (Z(xk)TZ(xk))−1 and Hk are bounded for all k.

Lemma 1. Suppose Assumptions G hold. Then

min{θ : (θ,Φ) ∈ Fk} > 0. (17)

Proof
The proof of (17) is by induction. Since F0 = {(θ,Φ) ∈ R2 : (104, ∅)}, the claim is valid for k = 0.

Suppose that the claim is true for k. If θ(xk) > 0 and the filter is augmented in iteration k, then min{θ : (θ,Φ) ∈
Fk+1} > 0 from the update rule (16) and Ek ≥ θ(xk). If, on the other hand, θ(xk) = 0, we have ∥snk∥ = 0 from
(7). It follows from (12) that predk = qk(0)− qk(sk) = qk(s

n
k )− qk(snk + stk) ≥ κθθ

ψ
k . So (15) must be satisfied

when ∆k is sufficiently small, i.e., Fk+1 = Fk.
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Lemma 2. Suppose Assumptions G hold. Then algorithm 1 is well defined.

Proof
The proof is by contradiction. Suppose that the inner loop does not terminate in a finite number of iterations. In
this case the current filter or reduction condition will always rejected trial point that leads to ∆k → 0. There are
two cases.

If θ(xk) = 0, similar to the proof of lemma 1, predk ≥ κθθψk and ∥snk∥ = 0 hold. Then the trial point will be
accepted by (15) when ∆k is sufficiently small. From θ(xk) = 0, ∥snk∥ = 0, ∥∇CE(xk)

T stk∥ = 0 and the Taylor
expansion of CE(x) we get

θ(xk + sk) ≤ ξ1∥sk∥2 ≤ 4ξ1∆
2
k,

where ξ1 is a positive constant. When ∆k ≤
√

min{θ:(θ,Φ)∈Fk}
4ξ1

, the trial size is acceptable to the filter which is a
contradiction.

If θ(xk) > 0, then the algorithm go to the feasibility restoration phase when ∆k < ∆min. Because min{θ :
(θ,Φ) ∈ Fk} > 0, the algorithm of feasibility restoration phase can find a new iterate xk+1 acceptable to the current
filter and (13) which is a contradiction.

Theorem 1. Suppose that Assumptions G hold and the filter is augmented infinitely, i.e., |A| =∞. Then there
exists a subsequence {ki} ⊆ A such that

lim
i→∞

∥Z(xki)T∇Φ(xki)∥+ ∥CE(xki)∥1 = 0. (18)

Proof
Similar to the proof of Lemma 4 in [10], we get

lim
i→∞

∥CE(xki)∥1 = 0, ki ∈ A.

By Assumption G2 and |A| =∞, there exists an accumulation point x̄, i.e., lim
i→∞

xki = x̄, ki ∈ A. If

lim
i→∞

∥Z(xki)T∇Φ(xki)∥ = 0, then x̄ is a KKT point. Otherwise, there exist a subsequence {xkij } of {xki} and
a constant ϵ > 0 so that for all kij

∥Z(xkij )
T∇Φ(xkij )∥ ≥ ϵ.

By the choice of {xkij }, we have

kij ∈ A for all kij , (19)

and

∥ZTkij∇qkij (s
n
kij

)∥ = ∥ZTkij (∇Φ(xkij ) +Hkij
snkij

)∥

≥ ∥ZTkij∇Φ(xkij )∥ − ∥Z
T
kij
Hkij

snkij
∥

≥ ϵ− v1∥snkij ∥ ≥ ϵ− ṽ1∥CE(xkij )∥,

where v1 and ṽ1 are positive constants. Since lim
j→∞

∥CE(xkij )∥ = 0, there exists K4 ∈ N such that for j ≥ K4

∥ZTkij∇qkij (s
n
kij

)∥ ≥ ϵ

2
. (20)
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By (9), (12) and (20), we obtain

predkij − κθθ
ψ
kij

= qkij (0)− qkij (skij )− κθθ
ψ
kij

= qkij (0)− qkij (s
n
kij

) + qkij (s
n
kij

)− qkij (skij )− κθθ
ψ
kij

≥ ∇ΦTkij s
n
kij

+
1

2
(snkij

)THkij
snkij

+K3∥ZTkij∇qkij (s
n
kij

)∥min{∥ZTkij∇qkij (s
n
kij

)∥,∆kij
}

−κθθψkij
≥ ϵ

2
K3 min{ ϵ

2
,∆min} − v2∥snkij ∥ − κθθ

ψ
kij
,

where v2 is a positive constant. When j is sufficiently large, ∥snkij ∥ → 0 and θkij → 0 hold, therefore the condition
(14) is satisfied for sufficiently large j. The reason for accepting the step sk must have been that (15) is satisfied.
Consequently, the filter is not augmented in iteration kij which contradicts to (19).

Theorem 2. Suppose that Assumptions G hold and the filter is augmented finitely, i.e., |A| <∞. Then

lim
k→∞

∥Z(xk)T∇Φ(xk)∥+ ∥CE(xk)∥1 = 0.

Proof
First, we will show

lim
k→∞

θ(xk) = 0. (21)

From assumptions there exists K ∈ N so that for all iterations k ≥ K the filter is not augmented, i.e., k /∈ A for all
k ≥ K. We then have that for all k ≥ K condition (15) is satisfied, i.e.,

Φ(xk+1) ≤ Dk − ηpredk.

With above results we have

Dk+1 =
ηkQkDk +Φ(xk+1)

Qk+1

≤ ηkQkDk +Dk − ηpredk
Qk+1

= Dk −
ηpredk
Qk+1

≤ Dk −
ηpredk
1− ηmax

. (22)

It is similar to Lemma 1.1 in [33] that if predk > 0, we have Φk ≤ Dk. Since {Φk} is bounded below and Φk ≤ Dk

as k →∞, we get that Dk is bounded below. It follows from (22) that

k∑
r=K

predr <∞.

It follows from predk ≥ κθθψk that (21) holds, i.e.,

lim
k→∞

∥CE(xk)∥1 = 0. (23)

Now let x̄ be any limit point of {xk}. If lim
i→∞

∥Z(xk)T∇Φ(xk)∥ = 0, then x̄ is a KKT point. Otherwise, there exist

a subsequence {xki} of {xk} and a constant ϵ > 0 so that for all ki

∥Z(xki)T∇Φ(xki)∥ ≥ ϵ.
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As in the proof of Theorem 1, we obtain that

∥ZTki∇qki(s
n
ki)∥ ≥

ϵ

2
. (24)

Notice that
predki = qki(0)− qki(ski) = qki(0)− qki(snki) + qki(s

n
ki)− qki(ski).

Moreover, predki → 0, ∥snki∥ → 0 and

|qki(0)− qki(snki)| ≤ v3∥s
n
ki∥+ v4∥snki∥

2,

which in turn yields that
lim
i→∞

∥qki(snki)− qki(ski)∥ = 0, (25)

where v3 and v4 are positive constants. We also deduce from (12) and (24) that

qki(s
n
ki)− qki(ski) ≥

ϵ

2
K3 min{ ϵ

2
,∆ki}. (26)

From (25) and (26), it is easy to see that lim
i→∞

∆ki = 0. Thus, there exists K5 ∈ N such that ∆ki < ∆min is satisfied
for i ≥ K5, then the algorithm go to the feasibility restoration phase, i.e., ki ∈ A, which contradicts to the choice
of ki.

4. Local convergence

Fletcher and Leyffer comment that filter method, similar to penalty function method, can suffer from Maratos
effect. This results in poor local convergence behavior. In order to overcome the Maratos effect, we modify the
non-monotone filter trust region algorithm by introducing second order correction step, which is denoted by ssock .
Similar to Chin, Rashid and Nor [2], we calculate the second order correction step ssock by solving a modified QP
subproblem

min ∇Φ(xk)T (sk + ssock ) +
1

2
(sk + ssock )THk(sk + ssock ) (27a)

subject to ci(xk + sk) +∇ci(xk)T ssock = −∥sk∥v, i ∈ E . (27b)

where v ∈ (2, 3). Chin et al. prove that ∥ssock ∥ = O(∥sk∥2). A second order correction step is tried whenever the
full SQP step xk + sk has not been accepted.

We now state the new non-monotone trust region algorithm with second order correction step.
Algorithm 2
Given: Starting point x0; D0 = f(x0); E0 = θ(x0); Q0 = 1; initial trust region radius ∆0; symmetric matrix H0;
F0 = {(θ,Φ) ∈ R2 : (104, ∅)}; γθ, γΦ ∈ (0, 1); κθ > 0; ψ ∈ (0, 12 ); 0 < γ0 < γ1 ≤ 1 ≤ γ2; 0 ≤ ηmin ≤ ηmax ≤ 1;
0 < η < 1; ∆min > 0; ϵ > 0.

1. Compute Φ(xk), ∇Φ(xk), CE(xk), θk. If ∥Z(xk)T∇Φ(xk)∥+ θ(xk) ≤ ϵ, stop.
2. Compute a step. Compute snk and stk, set sk = snk + stk.
3. Tests to accept the trial step.

3.1. Check acceptability to the filter. If xk + sk ∈ Fk, reject the trial step, go to Step 3.3.
3.2. Check sufficient decrease with respect to current iterate.

3.2.1. Case 1. (14) holds: If (15) holds, set xk+1 = xk + sk and go to Step 4. Otherwise, go to Step 3.3.
3.2.2. Case 2. (14) is not satisfied: If (13) holds, set xk+1 = xk + sk and go to Step 4. Otherwise, go to

Step 3.3.
3.3. Compute second order correction step ssock and x̂k+1 = xk + sk + ssock .
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236 COMBINING FILTER AND NON-MONOTONE TRUST REGION ALGORITHM

3.4. Check acceptability to the filter. If x̂k+1 ∈ Fk, reject ssock , go to Step 3.6.
3.5. Check sufficient decrease with respect to current iterate.

3.5.1. Case 1. (14) holds: If
Dk − Φ(x̂k+1) ≥ η1predk (28)

holds, set xk+1 = x̂k+1 and go to Step 4.
3.5.2. Case 2. (14) is not satisfied: If

θ(x̂k+1) ≤ (1− γθ)Ek

or

Φ(x̂k+1) ≤ Dk − γΦθk

holds, set xk+1 = x̂k+1 and go to Step 4.
3.6. Choose ∆k ∈ [γ0∆k, γ1∆k]. If ∆k < ∆min, go to Step 7, otherwise go to Step 3.1.

4. Choose ∆k+1 such that ∆k+1 ∈ [∆k, γ2∆k] if ρk ≥ η and (14) holds.
5. Augment filter. If (14) is not satisfied, augment the filter using (16). Otherwise set Fk+1 = Fk.
6. Continue with next iteration. Choose η ∈ [ηmin, ηmax], and set

Qk+1 = ηkQk + 1,

Dk+1 = (ηkQkDk + f(xk))/Qk+1,

Ek+1 = (ηkQkEk + θ(xk))/Qk+1,

k ← k + 1, and go back to Step 1.
7. Feasibility restoration phase. Compute a new iterate xk+1 by decreasing the infeasibility measure θ so that
xk+1 satisfies the sufficient decrease conditions (13) and is acceptable to filter. Go to Step 6.

The second order correction step does not affect the global convergence properties [2, 29]. In order to analyze
the local convergence rate of the proposed algorithm, more assumptions are needed.

Assumptions H

(H1) x∗ is a KKT point of problem (4), i.e.,

CE(x∗) = 0 and Z(x∗)
T∇Φ(x∗) = 0.

(H2) There exists a constant τ̃ > 0 such that

pT (ZT∗ ∇2
xxL(x∗, λ∗)Z∗)p ≥ τ̃∥p∥2, ∀p ∈ Rt

i.e., the second order sufficient condition holds at (x∗, λ∗).
(H3) xk → x∗.
(H4) (Vk −Hk)dk = O(∥dk∥2), where Vk = ∇2

xxL(x∗, λ∗).

We start convergence analysis by the penalty function

ϕρ(x) = Φ(x) + ρ∥CE(x)∥1, (30)

and the following model of the penalty function ϕρ(x):

hρ(xk, d) = Φ(xk) +∇Φ(xk)T s+
1

2
sTHks+ ρ∥∇CE(x)

T s+ CE(xk)∥1. (31)

Note that we employ the exact penalty function only as a technical device, but the algorithm never refers to it.

Stat., Optim. Inf. Comput. Vol. 3, September 2015



C. GU AND H. WANG 237

Lemma 3. Suppose Assumptions H hold. Then whenever condition (14) holds, the condition (28) is satisfied for
sufficiently large k.

Proof
Since (14) holds and ψ ∈ (0, 12 ), we have

θk
(14)
< κ

− 1
ψ

θ (predk)
1
ψ = κ

− 1
ψ

θ (qk(0)− qk(sk))
1
ψ = κ

− 1
ψ

θ (∇ΦTk sk +
1

2
sTkHksk)

1
ψ = o(∥sk∥2). (32)

Before continuing, we recall the step decomposition from the paper [29].

sk = qk + pk, (33)
qk = Ykq̄k, and pk = Zkp̄k, (34)
q̄k = −[∇CE(xk)

TYk]
−1CE(xk), (35)

p̄k = −[ZTk HkZk]
−1ZTk (∇Φk +Hkqk). (36)

It follows from the orthonormality of [ Yk Zk ] and (32) that

∥qk∥ = o(∥p̄k∥2) and ∥sk∥ = O(∥p̄k∥). (37)

Similar to the proof of Lemma 4.4 in [29] we can get the following result with (32). Suppose Assumptions H hold,
then for sufficiently large k

Φ(xk)− Φ(xk + sk + ssock ) ≥ −
(
1

2
+ ηΦ

)(
∇Φ(xk)T sk +

1

2
sTkHksk

)
+ o(∥sk∥2) (38)

holds with ρ > ∥λ+k ∥D and ηΦ ∈ (0, 12 ), where ∥ · ∥D is the dual norm to ∥ · ∥. From Assumption H2, we have for
sufficiently large k

p̄Tk (Z
T
k HkZk)p̄k ≥

τ̃

2
∥p̄k∥2.

Therefore

Dk − Φ(xk + sk + ssock )− ηpredk
≥ Φk − Φ(xk + sk + ssock )− ηpredk

(37),(38)
≥ −

(
1

2
+ ηΦ + η

)
(∇Φ(xk)T sk +

1

2
sTkHksk) + o(∥p̄k∥2)

(33),(34)
= −

(
1

2
+ ηΦ + η

)
∇Φ(xk)TZkp̄k −

1

2

(
1

2
+ ηΦ + η

)
p̄Tk Z

T
k HkZkp̄k + o(∥p̄k∥2)

(36)
=

1

2
(
1

2
+ ηΦ + η)p̄Tk Z

T
k HkZkp̄k + o(∥p̄k∥2),

≥ 1

4
(
1

2
+ ηΦ + η)τ̃∥p̄k∥2 + o(∥p̄k∥2). (39)

Since 1
4 (

1
2 + ηΦ + η)τ̃ > 0 and ∥p̄k∥ → 0 as k →∞, (28) holds for sufficiently large k.

Lemma 4. Suppose Assumptions H hold. Let ϕρ(x) be the exact penalty function with ρ > ∥λ∗∥D, where ∥ · ∥D is
the dual norm to ∥ · ∥. Then

lim
k→∞

ϕρ(xk)− ϕρ(xk + sk + ssock )

hρ(xk, 0)− hρ(xk, sk)
= 1. (40)

Proof
The result follows from Theorem 15.3.7 in [3].
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Theorem 3. Suppose Assumptions H hold. Then the full SQP step xk+1 = xk + sk or xk+1 = xk + sk + ssock is
acceptable to Algorithm 2 for sufficiently large k.

Proof
Suppose that xk is acceptable to the filter and the full step xk+1 = xk + sk is rejected by the filter. We will show
that for sufficient large k, xk+1 = xk + sk + ssock is acceptable to the filter. The initialization of the filter and the
update rule imply that for all k the filter has the following property

(Φ̃, h̃) /∈ Fk ⇒ (Φ, h) /∈ Fk if Φ ≤ Φ̃ and h ≤ h̃. (41)

Therefore, we only need to show that Φ(xk + sk + ssock ) ≤ Φ(xk) and h(xk + sk + ssock ) ≤ h(xk). By the
construction of Algorithm we have h(xk)→ 0. So we will show that Φ(xk + sk + ssock ) ≤ Φ(xk)− γΦθ(xk). From
(27b) we have

ci(xk + sk + ssock ) = ci(xk + sk) +∇ci(xk)T ssock +
1

2
sTk∇2ci(wi)s

soc
k

+
1

2
(ssock )T∇2ci(zi)s

soc
k

= −∥sk∥v +O(∥sk∥3) = o(∥sk∥2),

where wi is between xk and xk + sk, zi is between xk + sk and xk + sk + ssock , v ∈ (2, 3). Thus, θ(xk + sk +
ssock ) = o(∥sk∥2). It follows from Lemma 4, (30), (31), (33)-(36) that for sufficiently large k

Dk − Φ(xk + sk + ssock )− γΦθ(xk)
≥ Φ(xk)− Φ(xk + sk + ssock )− γΦθ(xk)
= ϕρ(xk)− ϕρ(xk + sk + ssock )− ρ(θ(xk + sk + ssock )− θ(xk))− γΦθ(xk)

≥ (
1

2
+ ηΦ)(hρ(xk, 0)− hρ(xk, sk)) + (ρ− γ)∥CE(xk)∥1 + o(∥sk∥2)

=

(
1

2
+ ηΦ

)
(ρ∥CE(xk)∥1 −∇Φ(xk)T sk −

1

2
sTkHksk) + (ρ− γ)∥CE(xk)∥1 + o(∥sk∥2)

=
1

2

(
1

2
+ ηΦ

)
p̄Tk Z

T
k HkZkp̄k +

((
3

2
+ ηΦ

)
ρ− γ

)
∥CE(xk)∥1 + o(∥p̄k∥2) + o(∥CE(xk)∥1)

≥ 1

4

(
1

2
+ ηΦ

)
τ̃∥p̄k∥2 + ζ∥CE(xk)∥1 + o(∥p̄k∥2) + o(∥CE(xk)∥1)

≥ 0, (42)

where ζ > 0, ηΦ ∈ (0, 12 ). Thus, the trial point xk + sk + ssock is acceptable to the filter Fk and (13). This means
that the full SQP step xk+1 = xk + sk or xk+1 = xk + sk + ssock is acceptable to Algorithm 2 for sufficiently large
k. Therefore the sequence xk converges to x∗ superlinearly [3].

5. Numerical experiments

In this section we present the numerical results of Algorithm 1 on HP i5 personal computer with 4G
memory. The selected parameter values are: γθ = 0.5, γΦ = 0.5; κθ = 10−4; ψ = 0.3; γ0 = 0.1; γ1 = 0.5; γ2 = 2;
ηmin = 1

4 ; ηmax = 3
4 ; η = 0.9; ∆min = 10−3; ϵ = 10−6. The computation terminates when stopping criterion

∥Z(xk)T∇Φ(xk)∥+ θ(xk) ≤ ϵ is satisfied. The test problems are selected from [34].
NIT, NΦ and NG stand for the numbers of iteration, function evaluations and gradient evaluations, respectively.

Let Error=Φ(xk) + θk. The results of the experiments are shown in Table 1. The preliminary numerical results
demonstrate that the new algorithm discussed in this paper is effective for solving this class of problems.
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Table 1: Numerical results

Algorithm 1
Ex. x0 NIT NΦ NG Error Approximate solution x∗

1

 0
5
0

 6 6 6 8.9990e-007

 3.6838e− 005
1.1866e+ 000
−4.0797e− 001


2

 0
0
1

 4 4 4 2.2584e-010

 −5.1065e− 001
−1.0267e− 003
4.8875e− 001


3

 2
2
2

 4 4 4 2.2457e-008

 2.9053e+ 000
1.5687e+ 000
−2.3413e− 001



4


0.5
2
1
0
0

 3 3 3 2.0653e-007


5.0040e− 001
2.0535e+ 000
9.9980e− 001
3.8152e− 002
1.0085e− 003


5

 −1
−1
1

 5 5 5 1.5642e-007

 −7.7668e− 001
−1.6889e+ 000
1.3461e+ 000


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