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Abstract The proximal point method (PPM) for solving maximal monotone operator inclusion problem is a highly
powerful tool for algorithm design, analysis and interpretation. To accelerate convergence of the PPM, inertial PPM (iPPM)
was proposed in the literature. In this note, we show that some of the attractive properties of the PPM, e.g., the generated
sequence is contractive with the set of solutions, do not hold in general for iPPM. To partially inherit the advantages of the
PPM and meanwhile incorporate inertial extrapolation steps, we propose an iPPM with alternating inertial steps. Our analyses
show that the even subsequence generated by the proposed iPPM is contractive with the set of solutions. Moreover, we
establish global convergence result under much relaxed conditions on the inertial extrapolation stepsizes, e.g., monotonicity
is no longer needed and the stepsizes are significantly enlarged compared to existing methods. Furthermore, we establish
certain nonasymptotic O(1/k) and asymptotic o(1/k) convergence rate results, where k denotes the iteration counter. These
features are new to inertial type PPMs.
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1. Introduction

Let T : ℜn ⇒ ℜn be a set-valued maximal monotone operator. In this paper, we consider the following operator
inclusion problem

find x∗ ∈ ℜn such that 0 ∈ T (x∗). (1)

It is well known that (1) serves as a unified model for many problems of fundamental importance, including the
fixed point problem, the variational inequality problem, the minimization of closed proper convex functions, and
their variants and extensions. Therefore, its efficient solution is of practical interests in many situations.

The proximal point method (PPM, [25, 24, 31]) converts (1) to a fixed point problem of a firmly nonexpansive
resolvent operator. Let λ > 0 be a constant. The resolvent operator of T is defined by JλT := (I + λT )−1, i.e., for
any x ∈ ℜn, JλT (x) is the unique solution of 0 ∈ x+ λT (x). Initialized at any x0 ∈ ℜn, the PPM iterates for k ≥ 0
as

xk+1 = JλT (x
k). (2)
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242 A NOTE ON THE INERTIAL PROXIMAL POINT METHOD

It turns out that the PPM is a very powerful algorithmic tool and contains many well known algorithms as special
cases, including the classical augmented Lagrangian method [20, 29], the Douglas-Rachford splitting method [15]
and the alternating direction method of multipliers [18, 17]. Interested readers are referred to the classical references
[31, 30, 16, 19] for analysis and generalizations of the PPM. An equivalent representation of the PPM (2) is given
by

0 ∈ xk+1 − xk

λ
+ T (xk+1),

which can be viewed as an implicit discretization of the evolution differential inclusion problem

0 ∈ dx

dt
+ T (x(t)). (3)

It is known that the solution trajectory of (3) converges to a solution of (1) provided that T satisfies certain
conditions, see e.g., [10]. To speed up convergence, the following second order evolution differential inclusion
problem was studied in the literature:

0 ∈ d2x

dt2
+ γ

dx

dt
+ T (x(t)), (4)

where γ > 0 is a friction parameter. For the special case n = 2 and T = ∇f , where f : ℜ2 → ℜ is a differentiable
convex function with attainable minimum, the system (4) characterizes roughly the motion of a heavy ball which
rolls under its own inertia over the graph of f until friction stops it at a stationary point of f . In this case, the three
terms in (4) denote, respectively, inertial force, friction force and gravity force. Therefore, the system (4) is usually
referred as the heavy-ball with friction (HBF) system. In theory the convergence of the solution trajectories of the
HBF system to a solution of (1) can be faster than those of the first-order system (3), while in practice the second
order inertial term d2x/dt2 can be exploited to design faster algorithms [1, 5]. Motivated by the properties of (4),
an implicit discretization method was proposed in [2, 4]. Specifically, given xk−1 and xk, the next point xk+1 is
determined via

0 ∈ xk+1 − 2xk + xk−1

h2
+ γ

xk+1 − xk

h
+ T (xk+1),

which results to an iterative algorithm of the form

xk+1 = JλT (x
k + α(xk − xk−1)), (5)

where λ = h2/(1 + γh) and α = 1/(1 + γh). Note that (5) is no more than a proximal point step applied to the
extrapolated point xk + α(xk − xk−1), rather than xk itself as in the classical PPM. Thus the resulting iterative
scheme (5) is a two-step method and is usually referred as inertial PPM (iPPM). Convergence properties of (5) were
studied in [2, 4] under some assumptions on the parameters α and λ. Subsequently, inexact and hybrid type iPPMs
were studied in [26, 3, 23, 22]. Recently, there are increasing interests in studying inertial type algorithms, see, e.g.,
inertial forward-backward splitting methods [28, 27, 6], inertial Douglas-Rachford splitting method [9], inertial
ADMM [7], and inertial forward-backward-forward method [8]. See also the latest references [11, 21, 14, 12, 13],
which analyzed the convergence properties of inertial type algorithms for maximal monotone inclusion problem,
variational inequality and structured convex optimization, and demonstrated their performance numerically on
some imaging and data analysis problems.

In this note, we first give examples to illustrate that some of the attractive properties of the PPM do not hold
anymore for iPPM. We then propose an iPPM with alternating inertial steps, which inherits the contractive property
of the PPM to some extent. Our analyses show that, under much relaxed conditions, global convergence of the
proposed iPPM can be guaranteed. In particular, the inertial extrapolation stepsizes do not need to be monotonically
nondecreasing and can be significantly enlarged compared to existing methods. Furthermore, we establish certain
nonasymptotic O(1/k) and asymptotic o(1/k) convergence rate results on a subsequence generated by the proposed
iPPM. To the best of our knowledge, these features are new to the variants of PPM with inertial steps.
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2. Features of PPM and iPPM

In practice, the proximal parameter λ in PPM usually varies step by step, i.e., given a sequence of positive
parameters {λk}, the PPM appears as

xk+1 = JλkT (x
k). (6)

Similarly, the iPPM takes the form

xk+1 = JλkT (x
k + αk(x

k − xk−1)), (7)

where {αk} is a sequence of nonnegative inertial extrapolation stepsizes. Classical requirements on the parameters
to ensure the global convergence of iPPM are (i) λk ≥ λ for some λ > 0, and (ii) 0 ≤ αk ≤ αk+1 ≤ α < 1/3 for
all k ≥ 0, see [4]. In the rest of this paper, we denote the set of solutions of (1) by T−1(0). The following lemma is
very useful in our analysis, and its proof is elementary and is thus omitted.

Lemma 1 (Contractive property of PPM)
Let T : ℜn ⇒ ℜn be any set-valued maximal monotone operator and λ > 0. Suppose that x and x+ satisfy
x+ = JλT (x). Then, for any x∗ ∈ T−1(0), it holds that (x+ − x∗)T (x+ − x) ≤ 0. As a consequence, it holds that
∥x+ − x∗∥2 ≤ ∥x− x∗∥2 − ∥x+ − x∥2.

Let {xk} be the sequence generated by the PPM (6) and x∗ ∈ T−1(0). Lemma 1 implies that the PPM is
contractive with T−1(0). In particular, there holds

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − ∥xk+1 − xk∥2. (8)

A direct consequence of (8) is that if xk ∈ T−1(0) for some k then all subsequent points will be freezed at xk. In
fact, by setting x∗ = xk ∈ T−1(0) in (8) we obtain the implication “xk ∈ T−1(0) =⇒ xk+1 = xk”. The converse
is also true, i.e., if two consecutive points generated by the PPM are identical, then a solution is already reached.
In short, the following property holds for PPM:

xk+1 = xk if and only if xk ∈ T−1(0). (9)

Due to (9), it is natural to terminate PPM in practice by ∥xk+1 − xk∥ ≤ ϵ for some tolerance ϵ > 0. We next give
very simple examples to show that the sequence generated by iPPM violates the attractive properties (8) and (9).

Example 1 (violates (8) and the “if” direction in (9))
Suppose that we are minimizing f(x) = x2/2 by iPPM (7), where λk is fixed at a positive constant λ. Given
x−1 = x0 ̸= 0 and a nonnegative sequence {αk}, for k ≥ 0 iterates as follows

xk+1 = argmin
x

f(x) +
1

2λ
∥x− x̄k∥2,

where x̄k = xk + αk(x
k − xk−1). The update appears as xk+1 = x̄k/(1 + λ). We let αk ≡ α = 1/λ. Then simple

calculations show that

x̄0 = x0, x1 =
x0

1 + λ
, x̄1 =

(1− αλ)x0

1 + λ
, x2 =

(1− αλ)x0

(1 + λ)2
= 0.

Clearly, x2 is already the unique solution. However, further calculations show that

x̄2 =
−αx0

1 + λ
, x3 =

−αx0

(1 + λ)2
̸= 0.

This violates (9) since xk ∈ T−1(0) does not imply xk+1 = xk. This also implies that for iPPM xk+1 can be farther
away to the set of solutions than xk since in this example |x3 − x∗| > |x2 − x∗| = 0.
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The following example shows that xk+1 = xk does not imply xk ∈ T−1(0) for iPPM.

Example 2 (violates the “only if” direction in (9))
Again suppose that we are minimizing f(x) = x2/2 by iPPM (7) with λk ≡ λ = 4. Let x−1 = x0 = −1. The
update appears as xk+1 = x̄k/(1 + λ) with x̄k = xk + αk(x

k − xk−1). Set α1 = 3/10 and α2 = 2/13. Then simple
calculation shows x0 = −1, x1 = −1/5 and x2 = x3 = 1/125. However, 1/125 is not the minimizer of f . Thus,
in general xk+1 = xk does not imply xk ∈ T−1(0) for iPPM.

We give the following additional remarks on iPPM.

(i) It is worth pointing out that in Examples 1 and 2 the extrapolation parameters {αk} are less than 1/3 (simply
set λ > 3 in Example 1), as required by [4]. Though the monotonicity condition αk ≤ αk+1 is violated in
Example 2, we should note that this monotonically nondecreasing requirement is rather unreasonable since
the iPPM reduces to the original PPM if αk ≡ 0.

(ii) For iPPM, if xk+1 = xk /∈ T−1(0) then the next point xk+2 will be closer than xk+1 to the set of solutions
T−1(0), because in this case conforms to a normal PPM step since xk+2 = Jλk+1T (x̄

k+1) = Jλk+1T (x
k+1).

(iii) For iPPM, if xk+1 = xk ∈ T−1(0), then all subsequent points will be equal to xk+1 ∈ T−1(0) because
∥xk+2 − x∗∥ ≤ ∥xk+1 − x∗∥ holds for any x∗ ∈ T−1(0). This follows from setting x∗ = xk+1.

3. An iPPM with alternating inertial steps

Given the unsatisfactory properties of iPPM presented in Section 2, in this section we propose an iPPM with
alternating inertial steps. This new iPPM has the advantage that the produced even subsequence is contractive with
T−1(0). Furthermore, the inertial extrapolation stepsizes do not need to be monotonically nondecreasing and can
vary freely in [0, 1]. These requirements are much less restrictive than those in [4], i.e., 0 ≤ αk ≤ αk+1 ≤ α < 1/3
for all k ≥ 0.

For simplicity, in the following we assume that λk ≡ λ for some λ > 0, and our algorithm and analyses can be
simply generalized to the case with varying {λk} as long as it is bounded below by some positive constant. Given
x0 ∈ ℜn, λ > 0 and a sequence of nonnegative parameters {αk}. For k ≥ 0, the proposed alternating inertial PPM
iterates as

xk+1 = JλT (x̄
k), (10)

where x̄k is defined as

x̄k :=

{
xk, if k is even;
xk + αk(x

k − xk−1), if k is odd. (11)

We first give a lemma before the main convergence results.

Lemma 2 (Monotonicity property of two consecutive PPM iterations)
Let {xk} be the sequence generated by algorithm (10)-(11) from any initial point x0 ∈ ℜn. Then, it holds for all
k ≥ 0 that ∥x2k+3 − x2k+2∥ ≤ ∥x2k+2 − x̄2k+1∥.

Proof
Let k ≥ 0. It follows from x2k+2 − x2k+3 ∈ λT (x2k+3), x̄2k+1 − x2k+2 ∈ λT (x2k+2) and the monotonicity of T
that

⟨x2k+3 − x2k+2, (x2k+2 − x2k+3)− (x̄2k+1 − x2k+2)⟩ ≥ 0. (12)

Note that for any vectors a, b ∈ ℜn it holds that ∥a∥2 − ∥b∥2 ≥ 2⟨b, a− b⟩. Thus,

∥x2k+2 − x̄2k+1∥2 − ∥x2k+3 − x2k+2∥2

≥ 2⟨x2k+3 − x2k+2, (x2k+2 − x2k+3)− (x̄2k+1 − x2k+2)⟩. (13)

Then, the conclusion follows directly from (12) and (13).
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Now, we are ready to present our main convergence results.

Theorem 1 (Global convergence and convergence rate)
Suppose that 0 ≤ αk ≤ 1 for all k ≥ 0 and λ > 0. Let {xk} be the sequence generated by algorithm (10)-(11) from
any initial point x0 ∈ ℜn. Then, the following results hold.

(i) For any x∗ ∈ T−1(0) and k ≥ 0, there hold

∥x2k+2 − x∗∥2 ≤ ∥x2k − x∗∥2 − ∥x2k+2 − x̄2k+1∥2, (14)
∥x2k+3 − x∗∥2 ≤ ∥x2k − x∗∥2 − ∥x2k+2 − x̄2k+1∥2. (15)

(ii) limk→∞ xk exists and belongs to T−1(0).
(iii) For any k ≥ 1 and x∗ ∈ T−1(0), it holds that

min
0≤i≤k−1

∥x2i+2 − x̄2i+1∥2 ≤ ∥x0 − x∗∥2

k
. (16)

Moreover, as k → ∞ we have

min
0≤i≤k−1

∥x2i+2 − x̄2i+1∥2 = o

(
1

k

)
. (17)

Proof
(i) Let x∗ ∈ T−1(0) and k ≥ 0. It follows from (10)-(11) and Lemma 1 that

∥x2k+1 − x∗∥2 ≤ ∥x2k − x∗∥2 − ∥x2k+1 − x2k∥2, (18)
∥x2k+2 − x∗∥2 ≤ ∥x̄2k+1 − x∗∥2 − ∥x2k+2 − x̄2k+1∥2. (19)

Plug the identity x̄2k+1 = x2k+1 + α2k+1(x
2k+1 − x2k) into the right-hand-side of (19), expand, and note that

α2k+1 ≥ 0 and (x2k+1 − x∗)T (x2k+1 − x2k) ≤ 0, we obtain

∥x2k+2 − x∗∥2 ≤ ∥x2k+1 − x∗∥2 − ∥x2k+2 − x2k+1∥2

+ 2α2k+1(x
2k+2 − x2k+1)T (x2k+1 − x2k). (20)

The addition of (18) and (20) yields

∥x2k+2 − x∗∥2 − ∥x2k − x∗∥2 + ∥x2k+2 − x2k+1∥2

≤ −∥x2k+1 − x2k∥2 + 2α2k+1(x
2k+2 − x2k+1)T (x2k+1 − x2k)

≤ −α2
2k+1∥x2k+1 − x2k∥2 + 2α2k+1(x

2k+2 − x2k+1)T (x2k+1 − x2k)

= −∥x2k+2 − x̄2k+1∥2 + ∥x2k+2 − x2k+1∥2, (21)

where the second “≤” is due to 0 ≤ α2k+1 ≤ 1. This gives the relation (14). On the other hand, by using again (18)
with k := k + 1 and (21), we obtain (15):

∥x2k+3 − x∗∥2 ≤ ∥x2k+2 − x∗∥2 ≤ ∥x2k − x∗∥2 − ∥x2k+2 − x̄2k+1∥2.

(ii) Now we prove that limk→∞ xk exists and belongs to T−1(0). The following results are easy to derive based
on (21).

(a) The sequence {x2k} is bounded and thus must have a limit point;
(b) The sequence {∥x2k − x∗∥2} is monotonically decreasing, unless x2k+2 = x̄2k+1, in which case x2k+2 ∈

T−1(0) since x2k+2 = x̄2k+1 = JλT (x̄
2k+1);

Stat., Optim. Inf. Comput. Vol. 3, September 2015



246 A NOTE ON THE INERTIAL PROXIMAL POINT METHOD

(c) Let n ≥ 1. The sum of (21) over k = 1, . . . , n− 1 gives
n−1∑
k=0

∥x2k+2 − x̄2k+1∥2 ≤ ∥x0 − x∗∥2. (22)

By taking the limit n → ∞ in (22), we obtain
∞∑
k=0

∥x2k+2 − x̄2k+1∥2 ≤ ∥x0 − x∗∥2, (23)

which implies that limk→∞(x2k+2 − x̄2k+1) = 0.

Assume that the subsequence {x2kj}∞j=0 converges to x⋆ as j → ∞. By taking the limit kj → ∞ in 0 ∈ λT (x2kj ) +

x2kj − x̄2kj−1 and noting that x2kj − x̄2kj−1 → 0 and T is closed, we obtain 0 ∈ T (x⋆), i.e., x⋆ ∈ T−1(0). Since
x∗ is arbitrarily chosen in T−1(0), we can replace x∗ by x⋆ in (21), which yields

∥x2k+2 − x⋆∥ ≤ ∥x2k − x⋆∥.

Therefore, we have limk→∞ x2k = x⋆. Furthermore, by setting k := k − 1 and x∗ = x⋆ in (15) we obtain
∥x2k+1 − x⋆∥ ≤ ∥x2k − x⋆∥. As a result, limk→∞ x2k+1 = x⋆. In summary, we have limk→∞ xk = x⋆ ∈ T−1(0).

(iii) Now we prove the convergence rate results (16) and (17). Clearly, (16) follows immediately from (22).
Moreover, by considering (23) and using the Cauchy principle, we obtain as k → ∞ that

k − 1

2
min

0≤i≤k−1
∥x2i+2 − x̄2i+1∥2 ≤

k−1∑
i=⌊ k−1

2 ⌋

∥x2i+2 − x̄2i+1∥2 → 0, (24)

where ⌊k−1
2 ⌋ denotes the greatest integer no greater than k−1

2 . Thus, the relation (17) holds.

It follows from (14) that the sequence {x2k} is contractive with the set of solutions. Furthermore, we have the
following corollaries.

Corollary 1 (Convergence rate)
Suppose that 0 ≤ αk ≤ 1 for all k ≥ 0 and λ > 0. Let {xk} be the sequence generated by algorithm (10)-(11) from
any initial point x0 ∈ ℜn. Then, for any k ≥ 1 and x∗ ∈ T−1(0), it holds that

min
1≤i≤2k

∥xi+1 − x̄i∥2 ≤ ∥x0 − x∗∥2

k
. (25)

Moreover, as k → ∞ we have

min
1≤i≤2k

∥xi+1 − x̄i∥2 = o

(
1

k

)
. (26)

Proof
It is obvious from the definition of x̄i in (11) and Lemma 2 that

min
1≤i≤2k

∥xi+1 − x̄i∥2 ≤ min
0≤i≤k−1

∥x2i+3 − x2i+2∥2 ≤ min
0≤i≤k−1

∥x2i+2 − x̄2i+1∥2.

Then the conclusion of this corollary follows directly from (iii) of Theorem 1.

Since, for any k ≥ 0, xk+1 = x̄k would imply that xk+1 ∈ T−1(0), the results given in Corollary 1 can be viewed
as convergence rate results on the optimality residue min1≤i≤2k ∥xi+1 − x̄i∥2. As such, this can be used in practice
to terminate the algorithm. We also note that, different from the complexity results given in [14, 12, 13], the
results given in Theorem 1 and Corollary 1 do not depend on the upper bound of {αk}. Also, the results presented
here are measured by the Euclidean ℓ2-norm, rather than certain weighted norm as given in [14, 12, 13]. More
importantly, our convergence results do not depend on monotonicity of {αk} and are established under the much
relaxed condition 0 ≤ αk ≤ 1 for all k. These features were previously not known for inertial type PPMs.
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4. Concluding remarks

In this short note we have shown via providing concrete examples that some of the attractive properties of
the classical PPM do not maintain in iPPM. To partially inherit the advantages of the PPM and meanwhile
incorporate inertial extrapolation steps in the algorithm, we proposed an iPPM with alternating inertial steps. Our
analyses have shown that the proposed algorithm generates a sequence whose even subsequence is contractive
with the set of solutions. Our global convergence results and convergence rate results are established under much
relaxed conditions compared to those required in the literature. In particular, we have removed the monotonicity
requirement on the inertial extrapolation stepsizes and enlarged them from [0, 1/3) to [0, 1]. Till far our discussion is
only focused on the theoretical aspects, and a practically more important question is how to select the extrapolation
stepsizes adaptively in computation so that the overall performance of inertial type PPMs can be significantly faster
than the corresponding conventional PPMs. This topic is interesting for future investigation.
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