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1. Introduction

Theory of estimation of the unknown values of stationary stochastic processes based on a set of observations
of the processes plays an important role in many practical applications. The development of the theory started
from the classical works of Kolmogorov [24] and Wiener [77], in which they presented methods of solution of
the extrapolation and interpolation problems for stationary processes. The interpolation problem considered by
Kolmogorov means estimation of the missed values of stochastic sequences. The prediction problem consists in
estimation the future values of the process based on observations of the process in the past. The third classical
problem is filtering of stochastic processes which consists in estimation the original values of the signal process
from observations of the process with noise. All these problems for stationary sequences and processes are clearly
described in books by Gikhman and Skorokhod [12], Hannan [17], Rozanov [73], Yaglom [80, 81].

One of the fields of practical applications of the stationary and related stochastic sequences is economical
modelling and financial time series. Most simple examples of stationary linear models are moving average (MA)
sequences, autoregressive (AR) and autoregressive-moving average (ARMA) sequences, state space models, all
of which refer to stationary sequences with rational spectral function without unit AR-roots. The main results
concerning the model description, parameter estimation, forecasting and further investigations are described in the
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classical book by Box, Jenkins and Reinsel [2]. Most of results which have appeared since that time were based on
the assumption that the spectral structure of the stationary sequence is known.

Traditional methods of solution of linear extrapolation, interpolation and filtering problems for stationary
stochastic sequences may be employed under the condition that spectral densities of the sequences are known
exactly (see, for example, selected works of Kolmogorov [24], survey article by Kailath [21], books by Rozanov
[73], Wiener [77], Yaglom [80, 81]). In practice, however, complete information on the spectral densities is
impossible in most cases. To solve the problem the parametric or nonparametric estimates of the unknown spectral
densities are found or these densities are selected by other reasoning. Then the classical estimation method is
applied provided that the estimated or selected densities are the true one. This procedure can result in a significant
increasing of the value of the error as Vastola and Poor [76] have demonstrated with the help of some examples.
This is a reason to search estimates which are optimal for all densities from a certain class of the admissible
spectral densities. These estimates are called minimax since they minimize the maximal value of the error. Many
investigators have been interested in minimax extrapolation, interpolation and filtering problems for stationary
stochastic sequences. See, for example, the papers by Hosoya [19] and Taniguchi [75]. A survey of results in
minimax (robust) methods of data processing can be found in the paper by Kassam and Poor [23]. The paper
by Grenander [15] should be marked as the first one where the minimax approach to extrapolation problem for
stationary processes was proposed. Franke [9, 10], Franke and Poor [11] investigated the minimax extrapolation
and filtering problems for stationary sequences with the help of convex optimization methods. This approach makes
it possible to find equations that determine the least favourable spectral densities for various classes of admissible
densities.

In the works by Moklyachuk [35] – [58] problems of extrapolation, interpolation and filtering for stationary
processes and sequences were studied. The corresponding problems for vector-valued stationary sequences and
processes were investigated by Moklyachuk and Masyutka [59] – [64]. In the articles by Dubovets’ka and
Moklyachuk [3] - [7] and in the book by Golichenko and Moklyachuk [13] the minimax estimation problems were
investigated for another generalization of stationary processes – periodically correlated stochastic sequences and
processes. Luz and Moklyachuk [26] – [32], [34] investigated the classical and minimax extrapolation, interpolation
and filtering problems for sequences and processes with nth stationary increments.

In the proposed paper we deal with the problem of estimation of the functional Aξ =
∑∞

k=0 a(k)ξ(k) which
depends on the unknown values of a stationary stochastic sequence ξ(k) based on observations of the sequence
ξ(k) + η(k), where η(k) is an uncorrelated with the sequence ξ(k) stationary stochastic sequence. Formulas for
calculating the mean-square errors and the spectral characteristics of the optimal estimate of the functional are
derived in the case of spectral certainty, where the spectral densities of the sequences ξ(n) and η(n) are exactly
known. The estimation problem is solved in the case of spectral uncertainty, where the spectral densities of
sequences are not exactly known, but, instead, a set of admissible spectral densities is given. The minimax-robust
estimation method is applied in this case. Formulas that determine the least favourable spectral densities and the
minimax-robust spectral characteristic of the optimal linear estimates of the functional Aξ are derived in the case
of spectral uncertainty for some concrete classes of admissible spectral densities.

The paper is organized as follows. The spectral representations of stationary stochastic sequences and their
correlation functions are described in Section 2. Factorizations of spectral densities with relations to one-sided
moving average representations and applications to the problem of prediction of stationary sequences are discussed
in this section. In section 3 the problem of the mean square optimal linear estimation of the functionals which
depend on the unknown ‘future’ values of a stationary stochastic sequence from a class of stationary stochastic
sequences is investigated. Estimates are based on observations of the sequence in the ‘past’. Following the
Grenander [15] approach to investigation the problem of optimal linear estimation of the linear functional we
consider the problem as a two-person zero-sum game. It is show that this game has equilibrium point. In Section 4
the extrapolation problem for functionals of stationary sequences is investigated in the case of spectral certainty,
where the spectral density of the stationary stochastic sequence is exactly known, as well as in the case of spectral
uncertainty, where the spectral density of the sequence is not exactly known, but a class of admissible spectral
densities is given. The classical Hilbert space projection method and the minimax-robust procedure to extrapolation
of the functional are applied. The corresponding results of investigation of the extrapolation problem for functionals
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of stationary sequences from observations with noise are presented in Section 5. In Section 6 and Section 7 results of
investigation of the interpolation problem for functionals of stationary sequences from observations without noise
and with noise are presented. The problem is investigated in the case of spectral certainty as well as in the case
of spectral uncertainty. Formulas are proposed for calculation the value of the mean square errors and the spectral
characteristics of the interpolation in the case of spectral certainty. Relations which determine the least favourable
spectral densities and the minimax spectral characteristics are proposed in the case of spectral uncertainty for some
special classes of spectral densities.

2. Stationary stochastic sequences. Spectral representation

In this section properties of stationary stochastic sequences illustrated with the help of some examples are
presented. The spectral representation of stationary stochastic sequences and their correlation functions are
described. Basic properties of linear transformations of stationary stochastic sequences are proposed. The Wold
representation of stationary stochastic sequences is studied with application to the problem of prediction of
stationary sequences.

2.1. Definitions. Examples

Let H = L2(Ω,F , P ) be the space of all complex valued random variables ξ = ξ(ω), ω ∈ Ω, such that E|ξ|2 <∞.
Covariation of the random variables ξ, η ∈ H is defined as the quantity

cov (ξ, η) = E(ξ − Eξ)(η − Eη). (1)

Definition 2.1. A sequence of complex valued random variables ξ(n), n ∈ Z, with values in the space H =
L2(Ω,F , P ) is called wide sense stationary if for all n ∈ Z and k ∈ Z the following relations hold true

Eξ(n) = Eξ(0) = C = const,

cov(ξ(k + n), ξ(k)) = cov(ξ(n), ξ(0)). (2)

In the following we will assume that Eξ(n) = 0, n ∈ Z. This assumption gives us a possibility to consider the
covariation as the inner product in the Hilbert space H = L2(Ω,F , P ) and use the powerful methods and results of
the Hilbert space theory.

Definition 2.2. The function
R(n) = cov(ξ(n), ξ(0)), n ∈ Z, (3)

is called the correlation function of the wide sense stationary sequence ξ(n).

Example 1
White noise sequence. The white noise sequence ε = {ε(n), n ∈ Z} is a sequence of orthogonal random variables
such that Eε(n) = 0, Eε(i)ε(j) = δij , where δij is the Kroneker symbol. This sequence is stationary with the
correlation function

R(n) =

π∫
−π

eiλndF (λ), (4)

F (λ) =
1

2π

λ∫
−π

f(v)dv, f(v) = 1, −π < v < π. (5)

The white noise sequence has the absolutely continuous spectral function F (λ) with the constant spectral density
function f(v) = 1.
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Example 2
Moving average sequence. Let ε = {ε(n), n ∈ Z} be a white noise sequence. Consider the sequence

ξ(n) =

∞∑
k=−∞

a(k)ε(n− k), (6)

where a(k) are complex valued numbers such that
∑∞

k=−∞ |a(k)|2 <∞. By the Parseval equality

cov(ξ(n+m), ξ(m)) = cov(ξ(n), ξ(0)) =
∞∑

k=−∞

a(n+ k)a(k).

For this reason ξ = {ξ(n), n ∈ Z} is a stationary sequence, which is called (two-sided) moving average (MA)
sequence generated by the white noise sequence ε = {ε(n), n ∈ Z}.
In the case where a(k) = 0 for all k = −1,−2, . . . , the sequence

ξ(n) =

∞∑
k=0

a(k)ε(n− k), (7)

is called one-sided moving average (MA) sequence generated by the white noise sequence ε = {ε(n), n ∈ Z}.
In the case where a(k) = 0 for all k = −1,−2, . . . and all k = p+ 1, p+ 2, . . . , the sequence

ξ(n) = a(0)ε(n) + a(1)ε(n− 1) + · · ·+ a(p)ε(n− p), (8)

is called moving average MA(p) sequence of order p generated by the white noise sequence ε = {ε(n), n ∈ Z}.
The correlation function R(n) of the moving average sequence MA(p) is of the form

R(n) =
1

2π

π∫
−π

eiλnf(λ)dλ,

with the spectral density function
f(λ) =

∣∣P (e−iλ)
∣∣2 , (9)

where
P (z) = a(0) + a(1)z + · · ·+ a(p)zp.

is a polynomial of order p.

Example 3
The autoregressive sequence AR(q). Let ε = {ε(n), n ∈ Z} be a white noise sequence. A sequence ξ = {ξ(n), n ∈
Z} is called the autoregressive sequence of order q if it satisfies the equation

ξ(n) + b(1)ξ(n− 1) + · · ·+ b(q)ξ(n− q) = ε(n). (10)

In the case where all zeros of the polynomial

Q(z) = 1 + b1z + · · ·+ bqz
q (11)

are outside the unit disk D = {z : |z| < 1}, equation (10) has a stationary solution which can be represented as
one-sided moving average sequence. In this case the correlation function R(n) is of the form

R(n) =
1

2π

π∫
−π

eiλnf(λ)dλ, (12)

f(λ) =
1

|Q(e−iλ)|2
.
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Example 4
The autoregressive and moving average ARMA(p, q) sequence. Suppose that in the right-hand side of the equation
(10) instead of ε(n) we put the sequence a0ε(n) + a(1)ε(n− 1) + · · ·+ a(p)ε(n− p). We get the so called
autoregressive and moving average ARMA(p, q) sequence of order (p, q)

ξ(n) + b(1)ξ(n− 1) + · · ·+ b(q)ξ(n− q) = a(0)ε(n) + a(1)ε(n− 1) + · · ·+ a(p)ε(n− p). (13)

Under the same conditions on zeros of the polynomial Q(z) as in the previous example, equation (13) has a
stationary solution ξ = {ξ(n), n ∈ Z}. The correlation function R(n) of the sequence ξ = {ξ(n), n ∈ Z} is of the
form

R(n) =
1

2π

π∫
−π

eiλnf(λ)dλ,

f(λ) =

∣∣∣∣P (e−iλ)

Q(e−iλ)

∣∣∣∣2 . (14)

2.2. Spectral representation of stationary sequences

Theorem 1
Herglotz theorem. Let R(n) be the covariance function of a (wide sense) stationary stochastic sequence ξ =
{ξ(n), n ∈ Z} with zero mean value. Then on the space ([−π, π),B([−π, π))) there is a finite measure F = F (B),
B ∈ B([−π, π)), such that for every n ∈ Z

R(n) =

π∫
−π

eiλnF (dλ), (15)

where
π∫

−π

eiλnF (dλ) is the Lebesgue-Stieltjes integral.

Remark 2.1. The measure F = F (B) in the representation (15) is called the spectral measure, and the function
F (λ) = F ([−π, λ]) is called the spectral function of the stationary sequence with the covariance function R(n).

Remark 2.2. In the case where
∑∞

n=−∞ |R(n)| <∞ the spectral function F (λ) has the spectral density f(λ),
which is determined by the formula

f(λ) =

∞∑
n=−∞

e−inλR(n).

The following theorem provides the corresponding spectral representation of the stationary stochastic sequence
ξ = {ξ(n), n ∈ Z} itself.

Theorem 2
Let ξ = {ξ(n), n ∈ Z} be a stationary stochastic sequence with zero mean value Eξ(n) = 0, n ∈ Z. There is
an orthogonal stochastic measure Z = Z(∆), ∆ ∈ B([−π, π)), such that for every n ∈ Z the following spectral
representation is valid

ξ(n) =

π∫
−π

eiλnZ(dλ)

=

∫
[−π,π)

eiλnZ(dλ)

. (16)

Moreover, E |Z(∆)|2 = F (∆).

Let ξ = {ξ(n), n ∈ Z} be a stationary stochastic sequence with the spectral representation (16). Let H(ξ) be the
closed in the mean-square sense linear manifold spanned by the random variables ξ(n), n ∈ Z. Let η ∈ H(ξ). The
following theorem describes the structure of such random variables.

Stat., Optim. Inf. Comput. Vol. 3, December 2015



354 MINIMAX-ROBUST ESTIMATION PROBLEMS FOR STATIONARY STOCHASTIC SEQUENCES

Theorem 3
For any η ∈ H(ξ) there is a function φ ∈ L2(F ) such that

η =

π∫
−π

φ(λ)Z(dλ). (17)

Remark 2.3. Let H0(ξ) and L2
0(F ) be the corresponding closed linear manifolds spanned by the variables

{ξ(n), n = 0,−1,−2, . . . } and by the functions {en = einλ, n = 0,−1,−2, . . . }. Then for η ∈ H0(ξ) there is a
function φ ∈ L2

0(F ) such that

η =

∫ π

−π

φ(λ)Z(dλ).

2.3. Linear filters of stationary sequences

Consider a special but important class of linear transformations that are defined by means of the so called linear
filters. Suppose that, at instant of time m, a system (filter) receives as input a signal x(m), and that the output of the
system is, at instant of time n, the signal h(n−m)x(m), where h = h(m), m ∈ Z, is a complex valued function
called the impulse response function of the filter. The total signal y(n) obtained from the input x(m), m ∈ Z, can
be represented in the form

y(n) =

∞∑
m=−∞

h(n−m)x(m). (18)

For physically realizable systems values of the output at instant of time n are determined only by the ”past” values
of the signal, i.e. the values x(m) at instants m ≤ n. It is therefore natural to call a filter with the impulse response
function h = h(m) physically realizable (causal filter), if h(m) = 0 for all m < 0, in other words if

y(n) =

n∑
m=−∞

h(n−m)x(m) =

∞∑
m=0

h(m)x(n−m). (19)

An important spectral characteristic of a filter with the impulse response function h = h(m) is its Fourier transform

φ(λ) =

∞∑
m=−∞

e−imλh(m), (20)

which is called the spectral characteristic of the filter.
Let us now describe conditions under which the series in (18) and (20) convergence. Let us suppose that the input is
a stationary stochastic sequence ξ = {ξ(n), n ∈ Z} with the covariance function R(n) and spectral decomposition
(16). If the following condition holds true

∞∑
k,l=−∞

h(k)R(k − l)h(l) <∞, (21)

then the series
∑∞

m=−∞ h(n−m)ξ(m) converges in the mean-square sense and therefore there is a stationary
sequence η = {η(n), n ∈ Z} such that

η(n) =

∞∑
m=−∞

h(n−m)ξ(m) =

∞∑
m=−∞

h(m)ξ(n−m). (22)

In terms of the spectral measure condition (21) is equivalent to the condition that the spectral characteristic of the
filter φ(λ) ∈ L2(F ), that is

π∫
−π

|φ(λ)|2 F (dλ) <∞. (23)
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Under the condition (21) or condition (23) from (22) and (16) we find the spectral representation of the sequence
η = {η(n), n ∈ Z}:

η(n) =

π∫
−π

eiλnφ(λ)Z(dλ). (24)

The correlation function Rη(n) of the sequence η = {η(n), n ∈ Z} is determined by the formula

Rη(n) =

π∫
−π

eiλn |φ(λ)|2 F (dλ). (25)

In particular, if the input to a filter with the spectral characteristic φ = φ(λ) is taken to be white noise ε =
{ε(n)}, n ∈ Z}, then the output will be a moving average stationary sequence

η(n) =

∞∑
m=−∞

h(m)ε(n−m) (26)

with the spectral density
fη(λ) = |φ(λ)|2 .

The following theorem shows that every stationary stochastic sequence with a spectral density can be represented
as a moving average sequence.

Theorem 4
Let η = {η(n), n ∈ Z} be a stationary stochastic sequence with the spectral density fη(λ). Then (possibly on
the extended probability space) we can find a white noise sequence ε = {ε(n), n ∈ Z} and a filter such that the
representation (26) is valid.

Proof
For a given (nonnegative) spectral density function fη(λ) we can find a function φ(λ) such that

fη(λ) = |φ(λ)|2 .

Since ∫ π

−π

fη(λ)dλ <∞,

we have φ(λ) ∈ L2(λ), where λ is the Lebesgue measure on [−π, π].
Hence the function φ(λ) can be represented as a Fourier series (20) with

h(m) =
1

2π

∫ π

−π

eimλφ(λ)dλ,

where convergence is understood in the sense that

∫ π

−π

∣∣∣∣∣∣φ(λ)−
∑

|m|≤n

e−imλh(m)

∣∣∣∣∣∣
2

dλ→ 0, n→ ∞.

Let

η(n) =

∫ π

−π

einλZ(dλ), n ∈ Z.
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In addition to the random measure Z = Z(∆) we introduce another (independent) orthogonal stochastic measure
Z̃ = Z̃(∆) with M |Z̃(a, b]|2 = b−a

2π and construct the measure

Z̄(∆) =

∫
∆

φ⊕(λ)Z(dλ) +

∫
∆

[1− φ⊕(λ)φ(λ)]Z̃(dλ),

where a⊕ is the pseudoinverse operation

a⊕ =

{
a−1, a ̸= 0,

0, a = 0.

The stochastic measure Z̄ = Z̄(∆) is a measure with orthogonal values, and for every ∆ = (a, b] we have

E|Z̄(∆)|2 =
1

2π

∫
∆

|φ⊕(λ)|2|φ(λ)|2dλ+
1

2π

∫
∆

|1− φ⊕(λ)φ(λ)|2dλ =
|∆|
2π

,

where |∆| = b− a. Therefore the stationary sequence

ε(n) =

∫ π

−π

einλZ̄(dλ), n ∈ Z,

is a white noise sequence. Note that∫ π

−π

einλφ(λ)Z̄(dλ) =

∫ π

−π

einλZ(dλ) = η(n), (27)

and, from the other hand,∫ π

−π

einλφ(λ)Z̄(dλ) =

∫ π

−π

einλ

( ∞∑
m=−∞

e−imλh(m)

)
Z̄(dλ) =

=

∞∑
m=−∞

h(m)

∫ π

−π

ei(n−m)λZ̄(dλ) =

∞∑
m=−∞

h(m)ε(n−m).

This equality, together with (27), establishes the representation (26). This completes the proof of the theorem.

Corrolary 2.1
Let the spectral density function fη(λ) > 0 (almost everywhere with respect to the Lebesgue measure) and let the
following factorization of the function fη(λ) > 0 holds true

fη(λ) = |φ(λ)|2 , (28)

φ(λ) =

∞∑
k=0

e−iλkh(k),

∞∑
k=0

|h(k)|2 <∞. (29)

Then the sequence η = {η(n), n ∈ Z} admits the representation as one-sided moving average sequence

η(n) =

∞∑
m=0

h(m)ε(n−m).

In particular, if P (z) = a(0) + a(1)z + · · ·+ a(p)zp is a polynomial that has no zeros on {z : |z| = 1}, then the
sequence η = {η(n), n ∈ Z} with the spectral density

fη(λ) =
∣∣P (e−iλ)

∣∣2
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can be represented in the form

η(n) = a(0)ε(n) + a(1)ε(n− 1) + · · ·+ a(p)ε(n− p),

where ε = {ε(n), n ∈ Z} is a white noise sequence.

Corrolary 2.2
Let ξ = {ξ(n), n ∈ Z} be a sequence with rational spectral density

f(λ) =

∣∣∣∣P (e−iλ)

Q(e−iλ)

∣∣∣∣2 , (30)

where polynomials P (z) = a(0) + a(1)z + · · ·+ a(p)zp and Q(z) = 1 + b(1)z + · · ·+ b(q)zq have no zeros on
{z : |z| = 1}. Then there is a white noise sequence ε = {ε(n), n ∈ Z} such that the following equation holds true

ξ(n) + b(1)ξ(n− 1) + · · ·+ b(q)ξ(n− q) = a(0)ε(n) + a(1)ε(n− 1) + · · ·+ a(p)ε(n− p). (31)

Conversely, every stationary stochastic sequence ξ = {ξ(n), n ∈ Z} that satisfies this equation with a white noise
ε = {ε(n), n ∈ Z} and polynomialQ(z) = 1 + b(1)z + · · ·+ b(q)zq with no zeros on {z : |z| = 1} has the spectral
density (30).

Let us describe conditions under which a function f(λ) admits the representation (28), (29).
First, denote by H2 the set of all analytic in the unit disk D = {z : |z| < 1} functions f(z) such that

|f(z)|2 = lim
r↑1

∫ π

−π

|f(reiθ)|2dθ <∞.

For the function

f(z) =

∞∑
n=0

anz
n

we have

f(reiθ) =

∞∑
n=0

anr
neinθ.

It means that anrn are the Fourier coefficients of the function f(reiθ). From the Parseval equality it follows that∫ π

−π

|f(reiθ)|2dθ = 2π

∞∑
n=0

|an|2r2n.

We can conclude that f(z) ∈ H2 if and only if
∞∑

n=0

|an|2 <∞.

For any function f(z) ∈ H2 we can determine a series

f(eiθ) =

∞∑
n=0

ane
inθ,

which converges in L2[−π, π]. The function f(z), |z| < 1, restores from the function f(eiθ) with the help of the
Poisson formula

f(reiθ) =
1

2π

∫ π

−π

f(eiu)P (r, θ, u)du,

where

P (r, θ, u) =
1− r2

1− 2r cos(θ − u) + r2
=

∞∑
n=−∞

r|n|ein(θ−u).
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Theorem 5
Let f(λ) be a nonnegative and integrable with respect to the Lebesgue measure on [−π, π) function. In order that
a function g(z) ∈ H2 exists such that

f(λ) = |g(eiλ)|2,

it is necessary and sufficient that the following condition holds∫ π

−π

| ln f(λ)|dλ <∞. (32)

Proof
Let condition (32) holds true. Then the function

v(r, θ) =
1

2π

∫ π

−π

ln f(λ)P (r, θ, λ)dλ

is harmonic in the unit disk D = {z : |z| < 1}. From the Jensen inequality it follows that

v(r, θ) ≤ ln

{
1

2π

∫ π

−π

f(λ)P (r, θ, λ)dλ

}
.

Denote by φ(z) the analytic in the unit disk D = {z : |z| < 1} function with the real part v(r, θ). Consider the
function g(z) = eφ(z)/2. For this function

|g(reiθ)|2 = eReφ(z) = ev(r,θ) ≤ 1

2π

∫ π

−π

f(λ)P (r, θ, λ)dλ,

∫ π

−π

|g(reiθ)|2dθ ≤
∫ π

−π

f(λ)dλ.

So, the function g(z) ∈ H2 and
lim
r↑1

|g(reiθ)|2 = elimr↑1 v(r,θ) = f(θ)

almost everywhere.

Corrolary 2.3
In order that a stochastic sequence η = {η(n), n ∈ Z} admits the representation as one-sided moving average
sequence

η(n) =

∞∑
m=0

a(m)ε(n−m),

∞∑
m=0

|a(m)|2 <∞.

where ε = {ε(n), n ∈ Z} is a white noise sequence, it is necessary and sufficient that the sequence η = {η(n), n ∈
Z} has an absolutely continuous spectral measure and its spectral density f(λ) satisfies the condition∫ π

−π

ln f(λ)dλ > −∞. (33)

Determined in the theorem analytical in the unit disk D = {z : |z| < 1} function φ(z) with the real part v(r, θ)
has the boundary value ln f(λ). By the Schwartz formula we have

φ(z) =
1

2π

∫ π

−π

ln f(λ)
eiλ + z

eiλ − z
dλ. (34)
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It follows from the decomposition of the function g(z) = exp {φ(z)
2 } into a power series g(z) =

∑∞
n=0 bnz

n that
the coefficients an =

√
2πbn. From the other hand, the function g(z) can be represented in a different form. Since

eiλ + z

eiλ − z
= 1 +

2ze−iλ

1− ze−iλ
= 1 + 2

∞∑
k=1

zke−ikλ,

we have

g(z) = exp

{
1

4π

∫ π

−π

ln f(λ)dλ+
1

2π

∞∑
k=1

dkz
k

}
,

dk =

∫ π

−π

eikλ ln f(λ)dλ.

If we introduce the notation

P = exp

{
1

4π

∫ π

−π

ln f(λ)dλ

}
,

exp

{
1

2π

∞∑
k=1

dkz
k

}
=

∞∑
n=0

cnz
n, c0 = 1,

we will have

g(z) = P

∞∑
n=0

cnz
n.

So
an =

√
2πPcn.

2.4. Wold expansion of stationary sequences

In contrast to the representation (16) which gives an expansion of a stationary sequence in the frequency domain,
the Wold [78, 78] expansion operates in the time domain. The main point of this expansion is that a stationary
sequence ξ(n) can be represented as a sum of two stationary sequences, one of which is completely predictable (in
the sense that its values are completely determined by its “past), whereas the second does not have this property.

First we give some definitions. Let H(ξ) and Hn(ξ) be closed linear manifolds, spanned by all values of the
stationary sequence {ξ(k), k ∈ Z} and values {ξ(k), k = n, n− 1, n− 2, . . . } respectively. Let

S(ξ) = ∩
n
Hn(ξ).

For every element η ∈ H(ξ) denote by
η̂n = Proj (η|Hn(ξ))

the projection of the element η on the subspace Hn(ξ). Denote also

η̂S = Proj (η|S(ξ)),

Every element η ∈ H(ξ) can be represented in the form

η = η̂S + (η − η̂S),

where η − η̂S⊥η̂S . Therefore the space H(ξ) can be represented as the orthogonal sum

H(ξ) = S(ξ)⊕R(ξ),

where S(ξ) consists of the elements η̂S with η ∈ H(ξ), and R(ξ) consists of the elements of the form η − η̂S .

Stat., Optim. Inf. Comput. Vol. 3, December 2015



360 MINIMAX-ROBUST ESTIMATION PROBLEMS FOR STATIONARY STOCHASTIC SEQUENCES

Definition 2.3. A stationary sequence ξ(n) is called regular, if

H(ξ) = R(ξ),

and singular, if
H(ξ) = S(ξ).

Remark 2.4. Singular sequence is also called deterministic, and regular sequence is called purely or completely
nondeterministic. If S(ξ) is a proper subspace of the spaceH(ξ), then the sequence ξ(n) is called nondeterministic.

Theorem 6
Every wide sense stationary random sequence ξ(n) has a unique decomposition

ξ(n) = ξr(n) + ξs(n), (35)

where ξr(n) is regular sequence and ξs(n) is singular sequence. The sequences ξr(n) and nd ξs(n) are orthogonal.

Proof
Define

ξs(n) = Proj (ξ(n)|S(ξ)), ξr(n) = ξ(n)− ξs(n).

Since ξr(n)⊥S(ξ) for every n, we have S(ξr)⊥S(ξ). On the other hand, S(ξr) ⊆ S(ξ) and therefore S(ξr) is trivial
(contains only random sequences that coincide almost surely with zero). Consequently ξr(n) is regular.
Moreover, Hn(ξ) ⊆ Hn(ξ

s)⊕Hn(ξ
r) and Hn(ξ

s) ⊆ Hn(ξ), Hn(ξ
r) ⊆ Hn(ξ). Therefore Hn(ξ) = Hn(ξ

s)⊕
Hn(ξ

r), and hence for every n
S(ξ) ⊆ Hn(ξ

s)⊕Hn(ξ
r). (36)

Since ξrn⊥S(ξ), it follows from (36) that
S(ξ) ⊆ Hn(ξ

s),

and therefore S(ξ) ⊆ S(ξs) ⊆ H(ξs). But ξsn ∈ S(ξ), hence H(ξs) ⊆ S(ξ), and consequently

S(ξ) = S(ξs) = H(ξs),

which means that ξs(n) is singular.
The orthogonality of ξs(n) and ξr(n) follows in an obvious way from ξs(n) ∈ S(ξ) and ξr(n)⊥S(ξ).

Definition 2.4. Let ξ(n) be a nondegenerate stationary sequence. A random sequence ε(n) is called the innovation
sequence for ξ(n), if the following conditions holds true:
1) ε(n) consists of pairwise orthogonal random variables with Eε(n) = 0, E|ε(n)|2 = 1;
2) Hn(ξ) = Hn(ε) for all n ∈ Z.

Remark 2.5. The reason for the term “innovation” is that ε(n+ 1) provides new ”information”, not contained in
Hn(ξ), that is needed for forming Hn+1(ξ).

The following fundamental theorem establishes a connection between one-sided moving average sequences and
regular sequences.

Theorem 7
The necessary and sufficient condition for a nondegenerate stationary sequence ξ(n) to be regular is that there exist

an innovation sequence ε = {ε(n)} and a sequence of complex numbers {a(n), n ≥ 0}, with
∞∑

n=0

|a(n)|2 <∞,

such that

ξ(n) =

∞∑
k=0

a(k)ε(n− k). (37)
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Proof
Necessity. Represent Hn(ξ) in the form

Hn(ξ) = Hn−1(ξ)⊕Bn(ξ),

where Bn(ξ) is the space of random variables of the form β · ξ(n), where β is a complex number. Since Hn(ξ) is
generated by elements from Hn−1(ξ) and elements of the form β · ξ(n), the dimension (dim) of the space Bn(ξ)
is either zero or one. But the space Hn(ξ) cannot coincide with Hn−1(ξ) for any value of n. In fact, if for some n
the space Bn(ξ) is trivial, then by stationarity Bn(ξ) is trivial for all n, and therefore H(ξ) = S(ξ), contradicting
the assumption that the sequence ξ(n) is regular. Thus the space Bn(ξ) has the dimension 1. Let η(n) be a nonzero
element of Bn(ξ). Take

εn =
η(n)

∥η(n)∥
,

where ∥η(n)∥2 = E|η(n)|2 > 0. For fixed n and k ≥ 0 consider the decomposition

Hn(ξ) = Hn−k(ξ)⊕Bn−k+1(ξ)⊕ · · · ⊕Bn(ξ).

The elements ε(n− k), . . . , ε(n) is an orthogonal basis in Bn−k+1(ξ)⊕ · · · ⊕Bn(ξ) and

ξ(n) =

k−1∑
j=0

a(j)ε(n− j) + Proj (ξ(n)|Hn−k(ξ)), a(j) = Eξ(n)ε(n− j). (38)

By the Bessel inequality
∞∑
j=0

|a(j)|2 ≤ ∥ξ(n)∥2 <∞.

The series
∞∑
j=0

a(j)ε(n− j)

converges in the mean square, and then, by (38), relation (37) will be established as soon as we show that

Proj (ξ(n)|Hn−k(ξ))
L2

−→0, k → ∞.

Consider the case n = 0. Denote ξ̂i = Proj (ξ(0)|Hi(ξ)). Since

ξ̂−k = ξ̂0 +

k∑
i=1

[ξ̂−i − ξ̂−i+1],

and the terms that appear in this sum are orthogonal, we have for every k ≥ 0

k∑
i=1

∥∥∥ξ̂−i − ξ̂−i+1

∥∥∥2 =

∥∥∥∥∥
k∑

i=1

(ξ̂−i − ξ̂−i+1)

∥∥∥∥∥
2

=

=
∥∥∥ξ̂−k − ξ̂0

∥∥∥2 ≤ 4∥ξ(0)∥2 <∞.

Therefore the limit lim
k→∞

ξ̂−k exists (in the mean square sense). For each k the value ξ̂−k ∈ H−k(ξ), and therefore

the limit in question must belong to the space ∩
k≥0

H−k(ξ) = S(ξ). But, by assumption, S(ξ) is trivial, and therefore

Proj (ξ(n)|Hn−k(ξ))
L2

−→0, k → ∞.
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Sufficiency. Let the nondegenerate stationary sequence ξ(n) have a representation (37), where ε = {ε(n)} is an
orthonormal system (not necessarily satisfying the condition Hn(ξ) = Hn(ε), n ∈ Z). Then Hn(ξ) ⊆ Hn(ε) and
therefore S(ξ) = ∩

k
Hk(ξ) ⊆ Hn(ε) for every n. But εn+1⊥Hn(ε), and therefore εn+1⊥S(ξ) and at the same time

ε = {ε(n)} is a basis in H(ξ). lt follows that S(ξ) is trivial, and consequently ξ(n) is regular. This completes the
proof of the theorem.

Remark 2.6. It follows from the proof of the theorem 7 that a nondegenerate sequence ξ(n) is regular if and only
if it admits a representation as one-sided moving average

ξ(n) =

∞∑
k=0

ãkε̃n−k (39)

where ε̃ = {ε̃(n)} is an orthonormal system which (it is important to emphasize this !) does not necessarily satisfy
the condition Hn(ξ) = Hn(ε̃), n ∈ Z. In this sense the conclusion of the theorem 7 says more, and specifically that
for a regular stationary sequence ξ(n) there exist a sequence of numbers a = {a(n)} and an orthonormal system
of random variables ε = {ε(n)}, such that not only (39), but also (37), is satisfied, with Hn(ξ) = Hn(ε), n ∈ Z.

Theorem 8
Wold expansion. A nondegenerate stationary sequence ξ = {ξ(n)} can be represented in the form

ξ(n) = ξs(n) +

∞∑
k=0

a(k)ε(n− k), (40)

where
∞∑
k=0

|a(k)|2 <∞,

and ε = {ε(n)} is the innovation sequence (for ξr(n)).

The significance of the concepts of regular and singular sequences becomes clear if we consider the following
(linear) extrapolation problem, for whose solution the Wold expansion (40) is especially useful.

LetH0(ξ) be the closed linear manifold spanned by values of the stationary sequence {ξ(k), k = 0,−1,−2, . . . }.
Consider the problem of constructing an optimal (least-squares) linear estimator ξ̂(n) of the value ξ(n) of the
sequence at point n > 0 based on observations of the “past” {ξ(k), k = 0,−1,−2, . . . }. The estimate ξ̂(n) is a
projection of ξ(n) on the manifold H0(ξ):

ξ̂(n) = Proj (ξ(n)|H0(ξ)). (41)

Since the sequences ξs(n) and ξr(n) are orthogonal and H0(ξ) ⊆ H0(ξ
s)⊕H0(ξ

r), we obtain, by using (40)

ξ̂(n) = Proj (ξs(n) + ξr(n)|H0(ξ)) = Proj (ξs(n)|H0(ξ)) + Proj (ξr(n)|H0(ξ)) =
= Proj (ξs(n)|H0(ξ

s)⊕H0(ξ
r)) + Proj (ξrn|H0(ξ

s)⊕H0(ξ
r)) =

= Proj (ξs(n)|H0(ξ
s)) + Proj (ξr(n)|H0(ξ

r)) =

= ξs(n) + Proj (
∞∑
k=0

a(k)ε(n− k)|H0(ξ
r)).

In (40) the sequence ε = {ε(n)} is an innovation sequence for ξr = {ξr(n)} and H0(ξ
r) = H0(ε). Therefore

ξ̂(n) = ξs(n) + Proj

( ∞∑
k=0

a(k)ε(n− k)|H0(ε)

)
= ξs(n) +

∞∑
k=n

a(k)ε(n− k) (42)

and the mean-square error of prediction ξ(n) based on observations {ξ(k), k = 0,−1,−2, . . . } equals

σ2
n = E

∣∣∣ξ(n)− ξ̂(n)
∣∣∣2 =

n−1∑
k=0

|a(k)|2. (43)
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Two important conclusions follows from the presented results.
1) If the sequence ξ(n) is singular, then for every n ≥ 1 the error of the extrapolation σ2

n is zero; in other words,
we can predict ξ(n) without error from its ”past” {ξ(k), k = 0,−1,−2, . . . }.

2) If the sequence ξ(n) is regular, then σ2
n ≤ σ2

n+1 and

lim
n→∞

σ2
n =

∞∑
k=0

|a(k)|2. (44)

Since
∞∑
k=0

|a(k)|2 = E|ξ(n)|2,

it follows from (44) and (43) that if n increases, the prediction of ξ(n) based on observations {ξ(k), k =
0,−1,−2, . . . } becomes trivial (reducing simply to Eξ(n) = 0).

2.5. Conclusions

In this section we describe properties of stationary stochastic sequence illustrated with the help of some examples.
The spectral representation of stationary stochastic sequences and their correlation functions are described.
Properties of linear transformations of stationary stochastic sequences are described. The Wold representation
of stationary stochastic sequences is analysed. Application to the problem of prediction of stationary sequences is
described.

For the detailed exposition of results of the theory of stationary stochastic sequences see books by Gikhman and
Skorokhod [12], Hannan[17], Rozanov[73], Yaglom [80, 81].

3. Estimates for functionals of stationary sequences

In this section we deal with the problem of the mean square optimal linear estimation of the functionals

ANξ =

N∑
j=0

a(j)ξ(j),

Aξ =

∞∑
j=0

a(j)ξ(j)

which depend on the unknown values of a stationary stochastic sequence ξ(j) from the class Ξ of stationary
stochastic sequences satisfying the conditions

Eξ(j) = 0, E|ξ(j)|2 ≤ P. (45)

Estimates are based on results of observations of the sequence ξ(j) at points of time j = −1,−2, . . . .
Following the Ulf Grenander [15] approach to investigation the problem of optimal linear estimation of the

functional ANξ (as well estimation of the functional Aξ) we consider the problem as a two-person zero-sum game
in which the first player chooses a stationary stochastic sequence ξ(j) from the class Ξ of stationary stochastic
sequences such that the value of the mean square error of estimate of the functional attains its maximum. The
second player is looking for an estimate of the linear functional which minimizes the value of the mean square
error. It is show that this game has equilibrium point. The maximum error gives a moving average stationary
sequence which is least favourable in the given class of stationary sequences. The greatest value of the error and
the least favourable sequence are determined by the largest eigenvalue and the corresponding eigenvector of the
operator determined by the coefficients a(j) which determine the functionals.
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3.1. The maximum value of the mean-square error of estimate of the functional ANξ

In this subsection the maximum value of the mean-square error of the optimal linear estimate of the functional
ANξ which depend on the unknown values of a stationary stochastic sequence ξ(j) from the class Ξ is found.

Let ∆(ξ, ÂN ) = E
∣∣∣ANξ − ÂNξ

∣∣∣2 denotes the mean-square error of an estimate ÂNξ of the functional ANξ.
Denote by Λ the class of all linear estimates of the functional ANξ.

Theorem 1
The function ∆(ξ, ÂN ) has a saddle point on the set Ξ× Λ. The following relation holds true

min
ÂN∈Λ

max
ξ∈Ξ

∆(ξ, ÂN ) = max
ξ∈Ξ

min
ÂN∈Λ

∆(ξ, ÂN ) = Pν2N .

The least favourable in the class Ξ of stationary stochastic sequences satisfying conditions (45) for the optimal
linear estimation of the functional ANξ is one-sided moving average sequence of order N , which is determined by
the formula

ξ(j) =

j∑
u=j−N

φ(j − u)ε(u).

Here ν2N is the largest eigenvalue of the selfadjoint compact operator QN in the space C(N+1), determined by the
matrix QN = {QN (p, q)}Np,q=0 that is constructed with the elements

QN (p, q) =

min(N−p,N−q)∑
u=0

a(p+ u) a(q + u), p, q = 0, 1, . . . , N,

ε(u) is a stationary stochastic sequence with orthogonal values:

Eε(i)ε(j) = δij ,

where δij is the Kronecker symbol; {φ(u), u = 0, . . . , N} is determined by the eigenvector that corresponds to ν2N ,
and the condition ∥ξ(j)∥2 = P.

Proof. Lower bound. Denote by ΞR the class of all regular stationary sequences which satisfy conditions (45).
Since ΞR ⊂ Ξ, we have

max
ξ∈Ξ

min
ÂN∈Λ

∆(ξ, ÂN ) ≥ max
ξ∈ΞR

min
ÂN∈ΞR

∆(ξ, ÂN ). (46)

A regular stationary sequence ξ(j) admits the canonical representation as an one-sided moving average sequence

ξ(j) =

j∑
u=−∞

φ(j − u)ε(u), (47)

where ε(u) is a standard stationary stochastic sequence with orthogonal values, {φ(u) : u = 0, 1, . . .} are
coefficients of the canonical representation (47). The sequence ξ(j) ∈ ΞR is determined if there are determined
coefficients {φ(u) : u = 0, 1, . . .} such that

E|ξ(j)|2 =

∣∣∣∣∣
j∑

u=−∞
φ(j − u)ε(u)

∣∣∣∣∣
2

=

=

j∑
u,v=−∞

φ(j − u)φ(j − v)Eε(u)ε(v) =
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=

j∑
u=−∞

|φ(j − u)|2 =

∞∑
u=0

|φ(u)|2 ≤ P. (48)

The value of the mean-square error E
∣∣∣ANξ − ÂNξ

∣∣∣2 attains its minimum if we choose an estimate ÂNξ of the
form

ÂNξ =

N∑
j=0

a(j)ξ̂(j),

where ξ̂(j) is the optimal estimate of the value of ξ(j) based on observations of the sequence ξ(p) at points
p = −1,−2, . . . . Taking into consideration the canonical representation (47) of the regular sequence and the form
of the optimal estimates of its values

ξ̂(j) =

−1∑
u=−∞

φ(j − u)ε(u), (49)

we can write
min
ÂN∈Λ

E
∣∣∣ANξ − ÂNξ

∣∣∣2 =

=

N∑
i,j=0

a(i)a(j)

i∑
u=0

j∑
v=0

φ(i− u)φ(j − v)Eε(u)ε(v)

=

N∑
i,j=0

a(i)a(j)

min(i,j)∑
u=0

φ(i− u)φ(j − u) =

=

N∑
i,j=0

a(i)a(j)R(i, j), (50)

where

R(i, j) =

min(i,j)∑
u=0

φ(i− u)φ(j − u).

The change of variables p = i− u, q = j − u, gives us a possibility to write (50) in a different form

min
ÂN∈Λ

E
∣∣∣ANξ − ÂNξ

∣∣∣2 =

N∑
p,q=0

φ(p)φ(q) QN (p, q), (51)

where

QN (p, q) =

min(N−p,N−q)∑
u=0

a(p+ u)a(q + u). (52)

Denote by QN the operator in the space C(N+1), determined by the matrix {QN (p, q)}Np,q=0. The operator QN is
selfadjoint (its matrix is Hermitian) bounded operator. It can be represented in the form QN = AN ·A∗

N , where the
operator AN is determined by the matrix {AN (p, q)}Np,q=0 with

AN (p, q) =

{
a(p+ q), p+ q ≤ N,

0, p+ q > N.

For this reason the operator QN has nonnegative eigenvalues [1], [71]. It follows from (51), that φ(p) = 0 for
p > N . Denote by

φ⃗ = {φ̃(0), φ̃(1), . . . , φ̃(N)}, φ̃(p) = P−1/2φ(p).
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Condition (48) with this notation is of the form

∥φ⃗∥2 =

N∑
p=0

|φ̃(p)|2 ≤ 1, (53)

where ∥φ⃗∥ is the norm in the space C(N+1). Taking into consideration (51) and (53), we can write

min
ÂN∈Λ

∆(ξ, ÂN ) = P ⟨QN φ⃗, φ⃗⟩ ,

where ⟨·, ·⟩ is the inner product in the space C(N+1).
Taking into account (46), we get the following bound from below for the maximum value of the error [8], [14],

[71]
max
ξ∈Ξ

min
ÂN∈Λ

∆(ξ, ÂN ) ≥ P max
∥φ⃗∥≤1

⟨QN φ⃗, φ⃗⟩ = Pν2N , (54)

where ν2N is the greatest eigenvalue of the operator QN .
Upper bound. To find the upper bound of the minimax values of the error we use the inequality

min
ÂN∈Λ

max
ξ∈Ξ

∆(ξ, ÂN ) ≤ min
ÂN∈Λ1

max
ξ∈Ξ

∆(ξ, ÂN ), (55)

where Λ1 is the class of all linear estimates of the functional ANξ, which have the form

ÂNξ =

−1∑
j=−∞

c(j)ξ(j). (56)

Here c(j) are complex-valued coefficients such that

−1∑
j=−∞

|c(j)|2 <∞.

Taking into consideration the spectral representations of the stationary stochastic sequence ξ(j) and the correlation
function of the sequence ξ(j) , we can write

∆(ξ, ÂN ) = E
∣∣∣ANξ − ÂNξ

∣∣∣2 = E

∣∣∣∣∣
N∑
j=0

a(j)ξ(j)−
−1∑

j=−∞

c(j)ξ(j)

∣∣∣∣∣
2

=

=

∫ π

−π

|AN (eiλ)− C(eiλ)|2Fξ(dλ),

where

AN (eiλ) =

N∑
j=0

a(j)eijλ, C(eiλ) =

−1∑
j=−∞

c(j)eijλ.

Here Fξ(dλ) is the spectral measure of the stationary stochastic sequence. Restriction (45) is equivalent to the
restriction

max
ξ∈Ξ

∫ π

−π

Fξ(dλ) ≤ P. (57)

So we can write

max
ξ∈Ξ

∆(ξ, ÂN ) = max
ξ∈Ξ

∫ π

−π

|AN (eiλ)− C(eiλ)|2Fξ(dλ) ≤
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≤
(

max
λ∈[−π,π]

|AN (eiλ)− C(eiλ)|2
)
max
ξ∈Ξ

∫ π

−π

Fξ(dλ)

≤ P max
λ∈[−π,π]

|AN (eiλ)− C(eiλ)|2.

To calculate
max

λ∈[−π,π]
|AN (eiλ)− C(eiλ)|2

consider the class of all power series

f(z) =

∞∑
n=0

α(n)zn,

which are regular in the region |z| < 1 and have fixed first N + 1 coefficients

α(n) = d(n), n = 0, 1, . . . , N.

Denote by ρ2N the greatest eigenvalue of the matrix

H = {H(p, q)}Np,q=0 ,

H(p, q) =

min(p,q)∑
j=0

d(p− j)d(q − j), p, q = 0, 1, . . . , N.

It follows from the properties of the power series, that [16]

min
{α(n):n≥N+1}

max
|z|=1

|f(z)|2 = ρ2N .

Since in our case
d(p) = a(N − p), p = 0, 1, . . . , N,

we have to determine the greatest eigenvalue of the matrix

GN = {GN (p, q)}Np,q=0 ,

GN (p, q) =

min(p,q)∑
u=0

a(N − p+ u)a(N − q + u).

Denote this greatest eigenvalue by ω2
N . With this notations we have

min
ÂN∈Λ1

max
ξ∈Ξ

∆(ξ, ÂN ) ≤ Pω2
N .

Taking into account (55), we get
min
ÂN∈Λ

max
ξ∈Ξ

∆(ξ, ÂN ) ≤ Pω2
N . (58)

Note, that
GN (N − p,N − q) = QN (p, q).

For this reason ω2
N = ν2N . Comparing (54) and (58), we get

min
ÂN∈Λ

max
ξ∈Ξ

∆(ξ, ÂN ) ≤ max
ξ∈Ξ

min
ÂN∈Λ

∆(ξ, ÂN ). (59)

Since the opposite inequality always holds true, only equality is possible in (59). Proof is complete.
From the proof of the theorem a construction of the optimal minimax estimate follows.
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Corollary 1
The optimal minimax estimate ÂNξ of the functional ANξ is of the form

ÂNξ =

N∑
j=0

a(j)

( −1∑
u=j−N

φ(j − u)ε(u)

)
,

where ε(u) is a stationary sequence with orthogonal values, the sequence {φ(u), u = 0, 1, . . . , N} is uniquely
determined by coordinates of the eigenvector of the operator QN that corresponds to the greatest eigenvalue ν2N
and condition E |ξ(j)|2 = P .

Example 1
Consider the problem of optimal linear stimulation of the functional

A1ξ = ξ(0) + ξ(1)

that depends on the unknown values of a stationary sequence ξ(j), that satisfies the conditions

Eξ(j) = 0, E |ξ(j)|2 ≤ 1,

based on observations of the sequence ξ(j) at points j = −1,−2, . . . .
Eigenvalues of the operator Q1, determined by equation (52), are equal to 3±

√
5. So the greatest eigenvalue

is ν21 = 3 +
√
5. The eigenvector corresponding to the eigenvalue ν21 = 3 +

√
5 is of the form φ⃗ = {φ(0), φ(1)},

where

φ(0) =

√
(5 +

√
5)/10, φ(1) =

√
(5−

√
5)/10.

The least favourable stationary sequence ξ(j) is a moving average sequence of the form

ξ(j) = φ(0)ε(j) + φ(1)ε(j − 1) =

=

√
(5 +

√
5)/10 ε(j) +

√
(5−

√
5)/10 ε(j + 1).

The optimal linear minimax estimate Â1ξ of the functional A1ξ is of the form

Â1ξ = φ(1) ε(−1) =

√
(5−

√
5)/10 ε(−1).

The mean-square error of the optimal estimate of the functional A1ξ does not exceed 3 +
√
5.

3.2. The maximum value of the mean square error of estimate of the functional Aξ

In this subsection the maximum value of the mean square error of the optimal linear estimate of the functional

Aξ =

∞∑
j=0

a(j)ξ(j)

which depend on unknown values of a stationary stochastic sequence ξ(j) from the class Ξ is found.
We will suppose that the sequence {a(j) : j = 0, 1, . . .} which determines the functional Aξ satisfies conditions

∞∑
j=0

|a(j)| <∞,

∞∑
j=0

(j + 1) |a(j)|2 <∞. (60)
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Theorem 9
The function ∆(ξ, Â) = E

∣∣∣Aξ − Âξ
∣∣∣2 has a saddle point on the set Ξ× Λ. The following relation holds true

min
Â∈Λ

max
ξ∈Ξ

∆(ξ, Â) = max
ξ∈Ξ

min
Â∈Λ

∆(ξ, Â) = Pν2.

The least favourable in the class Ξ of stationary stochastic sequences satisfying conditions (45) for the optimal
linear estimation of the functional Aξ is a moving average sequence

ξ(j) =

j∑
u=−∞

φ(j − u)ε(u).

Here ν2 is the greatest eigenvalue and φ⃗ = {φ(u) : u = 0, 1, . . . } is the corresponding eigenvector of the selfadjoint
compact operator in the space ℓ2 determined by the matrix

Q = {Q(p, q)}∞p,q=0 , Q(p, q) =

∞∑
u=0

a(p+ u)a(q + u),

ε(u) is a stationary sequence with orthogonal values.

Proof. Lower bound. Let ξ ∈ ΞR. In this case the following inequality holds true

max
ξ∈Ξ

min
Â∈Λ

∆(ξ, Â) ≥ max
ξ∈ΞR

min
Â∈Λ

∆(ξ, Â). (61)

Making use the canonical representation of the regular stationary sequence (47) as a moving average sequence and
form (49) of the optimal estimate we have

min
Â∈Λ

∆(ξ, Â) = min
Â∈Λ

E
∣∣∣Aξ − Âξ

∣∣∣2 =

= E

∣∣∣∣∣
∞∑
j=0

a(j)

j∑
u=0

φ(j − u)ε(u)

∣∣∣∣∣
2

=

=

∞∑
p,q=0

φ(p)φ(q)Q(p, q), (62)

where

Q(p, q) =

∞∑
u=0

a(p+ u)a(q + u). (63)

Denote byQ the operator in the space ℓ2, determined by the matrixQ = {Q(p, q)}∞p,q=0 . Since the second condition
from (60) is satisfied and

∞∑
p,q=0

|Q(p, q)|2 =

∞∑
p,q=0

∣∣∣∣∣
∞∑
u=0

a(p+ u)a(q + u)

∣∣∣∣∣
2

≤

≤
∞∑

p,q=0

( ∞∑
u=0

|a(p+ u)|2 ·
∞∑
u=0

|a(q + u)|2
)

=

=

( ∞∑
p=0

∞∑
u=0

|a(p+ u)|2
)2

=

( ∞∑
p=0

(p+ 1) |a(p)|2
)2

,
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we have

∥Q∥ ≤ N(Q) ≤
∞∑
p=0

(p+ 1) |a(p)|2 <∞,

where N(Q) is the Hilbert-Schmidt norm of the operator Q. The operator Q is selfadjoint (its matrix is Hermitian)
Hilbert-Schmidt operator. For these reasons the operator Q is selfadjoint continuous operator [1],[71]. It can be
represented in the form Q = A ·A∗, where the operator A is determined by the matrix

A = {A(p, q)}∞p,q=0 , A(p, q) = a(p+ q), p, q = 0, 1, . . . ,∞.

The operator Q has real nonnegative eigenvalues. Note that the operator A is a Hilbert-Schmidt operator and its
Hilbert-Schmidt norm equals to

N(A) =

( ∞∑
p=0

(p+ 1) |a(p)|2
)1/2

.

Let us introduce the notation

φ⃗ = {φ̃(u) : u = 0, 1, . . . }, φ̃(u) = P−1/2φ(u).

Making use the introduced notations (62) can be written in the form

min
Â∈Λ

∆(ξ, Â) = P ⟨Qφ⃗, φ⃗⟩ .

Taking into consideration (48), we get

max
ξ∈ΞR

min
Â∈Λ

∆(ξ, Â) = P max
∥φ⃗∥=1

⟨Qφ⃗, φ⃗⟩ = Pν2,

where ν2 is the greatest eigenvalue of the operator Q and ⟨·, ·⟩ is the inner product in the space ℓ2. Making use (61),
we can estimate the maximin value of the error

max
ξ∈Ξ

min
Â∈Λ

∆(ξ, Â) ≥ Pν2. (64)

Upper bound. Consider the sequence of operators QN , determined by matrices (52), and the operator Q
determined by the matrix with elements (63). Since the second condition from (60) is satisfied, then

N(Q−QN ) =

∞∑
p=N+1

(p+ 1) |a(p)|2 → 0,

as N → ∞. Having in mind that
∥Q−QN∥ ≤ N(Q−QN ),

we have
lim

N→∞
∥Q−QN∥ = 0.

It means that the sequence of operators QN converge uniformly to the operator Q. That is why [8], [14]

lim
N→∞

ν2N = ν2,

where ν2N is the greatest eigenvalue of the operatorQN , and ν2 is the greatest eigenvalue of the operatorQ. Making
use the statement of Theorem 1, we can write

min
Â∈Λ

max
ξ∈Ξ

∆(ξ, Â) = (65)
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= lim
N→∞

min
ÂN∈Λ

max
ξ∈Ξ

∆(ξ, ÂN ) = lim
N→∞

Pν2N = Pν2.

Comparing (65) and (64), we get

min
Â∈Λ

max
ξ∈Ξ

∆(ξ, Â) = Pν2 ≤ max
ξ∈Ξ

min
Â∈Λ

∆(ξ, Â),

where only equality is possible.
This completes the proof of the theorem.

Corollary 2
The optimal minimax linear estimate Âξ of the functional Aξ is of the form

Âξ =

∞∑
j=0

a(j)

[ −1∑
u=−∞

φ(j − u)ε(u)

]
,

where ε(u) is a standard stationary sequence with orthogonal values, the sequence {φ(u) : u = 0, 1, . . . } is
uniquely determined by coordinates of the eigenvector of the operatorQ that corresponds to the greatest eigenvalue
ν2 and condition E ∥ξ(j)∥2 = P .

Example 2
Consider the problem of optimal linear estimation of the functional

Aξ =

∞∑
j=0

e−λjξ(j),

where λ > 0, which depends on the unknown values of a stationary sequence ξ(j), that satisfies the condition

Eξ(j) = 0, E |ξ(j)|2 ≤ 1,

based on observations of the sequence at points j = −1,−2, . . . . Conditions (60) are satisfied. Elements of the
matrix which determines the operator Q, determined by the equation (63), are of the form

Q(p, q) =

∞∑
u=0

a(p+ u)a(q + u) = e−λ(p+q)(1− e−2λ)−1.

Eigenvalues of the operator Q are determined by the system of equations

µφ(p) =

∞∑
s=0

e−λ(p+s)(1− e−2λ)−1φ(s), p = 0, 1, . . . .

It follows from this system of equations that φ(p) are of the form

φ(p) = Ce−λp, p = 0, 1, . . .

The constant C is determined by the condition

∞∑
p=0

|φ(p)|2 = 1.

So we have
C = (1− e−2λ)1/2, φ(p) = (1− e−2λ)1/2e−λp.
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Substitution of these expressions to the system of equations gives us

µ = (1− e−2λ)−2.

We can conclude that the least favourable in the class Ξ stationary sequence ξ(j) is a moving average sequence of
the form

ξ(j) = (1− e−2λ)1/2e−λj

j∑
u=−∞

eλuε(u),

where ε(u) is a stationary sequence with orthogonal values.
The optimal linear minimax estimate Âξ of the functional Aξ is as follows

Âξ = (1− e−2λ)1/2
∞∑
j=0

e−2λj

[ −1∑
u=−∞

eλuε(u)

]
.

The value of the mean-square error does not exceed

∆ = (1− e−2λ)−2.

This value of the mean-square error gives the least favourable stationary sequence.

3.3. Conclusions

In this section we propose a method of solution of the mean square optimal linear estimation of the functionals
ANξ =

∑N
j=0 a(j)ξ(j) and Aξ =

∑∞
j=0 a(j)ξ(j) which depend on the unknown values of a stationary stochastic

sequence ξ(j) from the class Ξ of stationary stochastic sequences satisfying the conditions Eξ(j) = 0, E|ξ(j)|2 ≤
P. Estimates are based on results of observations of the sequence ξ(j) at points of time j = −1,−2, . . . .

Inspired by the Ulf Grenander [15] approach to investigation the problem of optimal linear estimation of the
functionals which depend on the unknown values of a stationary stochastic process we consider the problem as a
two-person zero-sum game. It is show that this game has an equilibrium point. The maximum error gives a moving
average stationary sequence which is least favourable in the given class of stationary sequences. The greatest value
of the error and the least favourable sequence are determined by the greatest eigenvalue and the corresponding
eigenvector of the operator determined by the coefficients a(j) which determine the functional.

For the corresponding results for stationary stochastic processes with values in a Hilbert space see papers by
Moklyachuk [35] – [39], [57].

4. Extrapolation problem for functionals of stationary sequences

In this section we deal with the problem of the mean-square optimal estimation of the linear functionals

ANξ =

N∑
j=0

a(j)ξ(j), Aξ =

∞∑
j=0

a(j)ξ(j),

which depend on the unknown values of a stationary stochastic sequence ξ(j), j ∈ Z, based on observations of the
sequence ξ(j) at points of time j = −1,−2, . . . .

The problem is investigated in the case of spectral certainty, where the spectral density of the stationary stochastic
sequence ξ(j) is exactly known. In this case the classical Hilbert space projection method of linear estimation of
the functional is applied. Formulas are derived for calculation the value of the mean square error and the spectral
characteristic of the mean-square optimal estimate of the linear functional. In the case of spectral uncertainty, where
the spectral density of the stationary stochastic sequence is not exactly known, but a class of admissible spectral
densities is given, the minimax-robust procedure to linear estimation of the functional is applied. Relations which
determine the least favourable spectral densities and the minimax spectral characteristics are proposed for some
special sets of admissible spectral densities.
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4.1. The classical Hilbert space projection method of linear extrapolation

Let ξ(j), j ∈ Z, Eξ(j) = 0, be a (wide sense) stationary stochastic sequence. We will consider values of
ξ(j), j ∈ Z, as elements of the Hilbert space H = L2(Ω,F , P ) of complex valued random variables with zero
first moment, Eξ = 0, finite second moment, E|ξ|2 <∞, and the inner product (ξ, η) = Eξη. The correlation
function R(k) = (ξ(j + k), ξ(j)) = Eξ(j + k)ξ(j) of the stationary stochastic sequence ξ(j), j ∈ Z, admits the
spectral representation

R(k) =

π∫
−π

eikλF (dλ),

where F (dλ) is the spectral measure of the sequence. We will consider regular stationary stochastic sequences with
absolutely continuous spectral measures and the correlation functions of the form

R(k) =
1

2π

π∫
−π

eikλf(λ)dλ,

where f(λ) is the spectral density function of the sequence ξ(j) that satisfies the regularity condition

π∫
−π

ln (f(λ))dλ > −∞. (66)

This condition is necessary and sufficient in order that the error-free extrapolation of the unknown values of the
sequence is impossible [12].
Suppose that coefficients a(j), which determine the functional Aξ, satisfy conditions

∞∑
j=0

|a(j)| <∞,

∞∑
j=0

(j + 1) |a(j)|2 <∞. (67)

In this case the functional Aξ has the second moment and the Hilbert-Schmidt operator Q, determined in the
previous section, has its Hilbert-Schmidt norm finite.
Let the sequence ξ(j) admits the canonical representation as a moving average sequence

ξ(j) =

j∑
u=−∞

d(j − u)ε(u), (68)

where the sequence d(u) satisfies condition

∞∑
u=0

|d(u)|2 <∞,

and where ε(u) is a standard stationary white noise sequence

Eε(i)ε(j) = δij ,

δij is the Kronecker symbol.
In this case the spectral density f(λ) of the stationary sequence ξ(j) admits the canonical factorization

f(λ) = φ(λ)φ(λ), φ(λ) =

∞∑
k=0

d(k)e−ikλ. (69)
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Denote by L2(f) the Hilbert space of functions a(λ) such that∫ π

−π

a(λ)a(λ) f(λ) dλ <∞.

Denote by L−
2 (f) the subspace of the space L2(f) generated by functions

{einλ, n = −1,−2, . . . }.

Every linear estimate Âξ of the functional Aξ based on observations of the sequence ξ(j) at points j = −1,−2, . . .
is of the form

Âξ =

∫ π

−π

h(eiλ)Zξ(dλ),

where Zξ(∆) is the orthogonal random measure of the sequence ξ(j):

E
(
Zξ(∆1)Zξ(∆2)

)
=

1

2π

∫
∆1∩∆2

f(λ)dλ,

h(eiλ) is the spectral characteristic of the estimate Âξ which belongs to the subspace L−
2 (f). The mean-square error

of the linear estimate Âξ of the functional Aξ based on observations of the sequence ξ(j) at points j = −1,−2, . . . ,
is calculated by the formula

∆(h, f) =M
∣∣∣Aξ − Âξ

∣∣∣2 =

=
1

2π

∫ π

−π

∣∣A(eiλ)− h(eiλ)
∣∣2 f(λ)dλ,

where

A(eiλ) =

∞∑
j=0

a(j)eijλ.

If the stationary stochastic sequence ξ(j) admits the canonical representation in the form of a moving average
sequence (68), then the optimal estimate of the functional Aξ is determined by the spectral characteristic h(f) ∈
L−
2 (f) such that

∆(h(f), f) = min
h∈L−

2 (f)
∆(h, f) = ∥Ad∥2 , (70)

where

∥Ad∥2 =

∞∑
k=0

∥(Ad)k∥2 , (Ad)k =

∞∑
l=0

a(k + l)d(l).

Note, that ∥Ad∥2 <∞ under the conditions (67). The spectral characteristic h(f) of the optimal estimate is
calculated by the formula

h(f) = A(eiλ)− φ−1(λ) r(eiλ), (71)

where

r(eiλ) =

∞∑
k=0

(Ad)ke
ikλ. (72)

For the functional ANξ the mean-square error and the spectral characteristic of the optimal estimate of the
functional is calculated by the formulas

∆N (h(f), f) = ∥ANd∥2 , (73)

hN (f) = AN (eiλ)− φ−1(λ) rN (eiλ), (74)
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where

AN (eiλ) =

N∑
j=0

a(j)eijλ, rN (eiλ) =

N∑
k=0

(ANd)ke
ikλ, (75)

∥ANd∥2 =

N∑
k=0

∥(ANd)k∥2 , (ANd)k =

N−k∑
l=0

a(k + l)d(l), k = 0, 1, . . . , N.

As a corollary, from the formula (73) one can find the following formula for calculation the mean-square error of
optimal estimates ξ̂(j) of the unknown values ξ(j)

E
∣∣∣ξ(j)− ξ̂(j)

∣∣∣2 =

j∑
u=0

|d(u)|2 , (76)

where d(u) are determined from equations of factorization (69) of the density f(λ).
Thus we came to conclusion that the following theorem holds true.

Theorem 10
If conditions (67) are satisfied and the density f(λ) admits the canonical factorization (69), then the mean-square
error of the optimal linear estimate of the functional Aξ based on observations of the sequence ξ(j) at points
j = −1,−2, . . . , is calculated by formula (70) (by formula (73) for the functional ANξ). The spectral characteristic
of the optimal linear estimate of the functional is calculated by formula (71) ( by formula (74) for the functional
ANξ ).

4.2. Minimax-robust method of linear extrapolation of functionals

Formulas (70) – (76) can be applied to calculate the spectral characteristic and the mean-square error of the optimal
linear estimate of the functional Aξ only in the case where the spectral density f(λ) of the stationary stochastic
sequence ξ(j) is exactly known. In the case where the spectral density f(λ) is not exactly known, but, instead,
a set D of admissible spectral densities is specified, the minimax approach to the problem of the optimal linear
estimate of the functional which depends on the unknown values of the stationary sequence is reasonable. Under
this approach one finds an estimate of the functional which is optimal and minimize the mean-square error for all
spectral densities from a given class D simultaneously.

Definition 1
A spectral density f0(λ) is called the least favourable in the class D for the optimal linear extrapolation of the
functional Aξ if the following relation holds true

∆(h(f0), f0) = max
f∈D

∆(h(f), f) = max
f∈D

min
h∈L−

2 (f)
∆(h, f).

Taking into consideration relations (70) – (76), we can verify that the following statements hold true

Theorem 11
The spectral density f0(λ) ∈ D is the least favourable in the class D for the optimal linear extrapolation of the
functional Aξ, if it admits the canonical factorization

f0(λ) =

( ∞∑
k=0

d0(k)e−ikλ

)
·

( ∞∑
k=0

d0(k)e−ikλ

)
, (77)

where d0 =
{
d0(k) : k = 0, 1, . . .

}
is a solution to the constrained optimization problem

∥Ad∥2 → max, (78)
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f(λ) =

( ∞∑
k=0

d(k)e−ikλ

)
·

( ∞∑
k=0

d(k)e−ikλ

)
∈ D.

The sequence ξ(j) in this case admits the canonical one-sided moving average representation

ξ(j) =

j∑
u=−∞

d0(j − u)ε(u). (79)

Theorem 12
The spectral density f0(λ) ∈ D is the least favourable in the class D for the optimal linear extrapolation of the
functional ANξ, if it admits the canonical factorization

f0(λ) =

(
N∑

k=0

d0(k)e−ikλ

)
·

(
N∑

k=0

d0(k)e−ikλ

)
, (80)

where d0 =
{
d0(k) : k = 0, 1, . . . , N

}
is a solution to the constrained optimization problem

∥ANd∥2 → max, (81)

f(λ) =

(
N∑

k=0

d(k)e−ikλ

)
·

(
N∑

k=0

d(k)e−ikλ

)
∈ D.

The sequence ξ(j) in this case admits the canonical one-sided moving average representation of order N + 1:

ξ(j) =

j∑
u=j−N

d0(j − u)ε(u). (82)

Definition 2
The spectral characteristic h0(eiλ) of the optimal linear extrapolation of the functional Aξ is called minimax
(robust) if the following conditions hold true

h0(eiλ) ∈ HD =
∩
f∈D

L−
2 (f), min

h∈HD

max
f∈D

∆(h, f) = max
f∈D

∆(h0, f).

The least favourable spectral density f0(λ) ∈ D and the minimax (robust) spectral characteristic h0(eiλ) ∈ HD

form a saddle point of the function ∆(h, f) on the set HD ×D. The saddle point inequalities

∆(h, f0) ≥ ∆(h0, f0) ≥ ∆(h0, f) ∀f ∈ D ∀h ∈ HD

hold true if h0 = h(f0) and h(f0) ∈ HD, where f0 is a solution to the constrained optimization problem

∆(h(f0), f0) = max
f∈D

∆(h(f0), f).

If we have found a solution f0(λ) to this problem, then the minimax(robust) spectral characteristics can be
calculated by formulas (71), (74) if the condition h(f0) ∈ HD holds true.

The spectral density f0(λ) is a solution to the following constrained optimization problem

∆(f) = −∆(h(f0), f) → inf, f(λ) ∈ D, (83)

∆(h(f0), f) =
1

2π

∫ π

−π

|r(eiλ)|2

|φ0(λ)|2
f(λ)dλ,
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where r(eiλ) is calculated by formulas (72), (75) with f(λ) = f0(λ).
The constrained optimization problem (83) is equivalent to the following unconstrained optimization problem

[58],[70]
∆D(f) = −∆(h(f0), f) + δ(f |D) → inf, (84)

where δ(f |D) is the indicator function of the set D. Solution of the problem (84) is determined by the condition
0 ∈ ∂∆D(f0), where ∂∆D(f0) is the subdifferential on the convex functional ∆D(f) at the point f0. With the help
of conditions (83), (84) we can find the least favourable spectral densities for concrete classes of spectral densities.

Note, that the form of the functional ∆(h(f0), f) is convenient for application the Lagrange method of indefinite
multipliers for finding solution to the problem (83). Making use the method of Lagrange multipliers and the form of
subdifferentials of the indicator functions of certain classes of spectral densities we describe relations that determine
least favourable spectral densities in some special classes of spectral densities [57], [64].

4.3. Least favourable spectral densities in the class D0

Consider the problem of the optimal estimation of the functionalsAξ =
∑∞

j=1 a(j)ξ(j) andANξ =
∑N

j=1 a(j)ξ(j)
which depends on the unknown values of a stationary stochastic sequence ξ(j) from observations of the sequence
ξ(j) at points of time j = −1,−2, . . . in the case where the spectral density f(λ) is from the class D0 of spectral
densities which are characterized by restrictions on the first moment of the density

D0 =

{
f(λ) :

1

2π

∫ π

−π

f(λ)dλ ≤ P0

}
,

where P0, P0 > 0, is a given number. This class of spectral densities describes stationary sequences with restriction
on the dispersion E|ξ(j)|2 ≤ P0.

We can apply the method of Lagrange multipliers to find solution to the optimization problem (83). We get the
following relations that determine the least favourable spectral density f0 ∈ D0

|r(eiλ)|2 = α2|φ0(λ)|2, (85)

where α2 is the Lagrange multiplier.
This relation can be rewritten in the following way( ∞∑

k=0

(Ad0)ke
ikλ

)
·

( ∞∑
k=0

(Ad0)keikλ

)
= α2

( ∞∑
k=0

d0(k)e−ikλ

)
·

( ∞∑
k=0

d0(k)e−ikλ

)
. (86)

The unknown α2 and d0 =
{
d0(k) : k = 0, 1, . . .

}
are determined with the help of equations of the canonical

factorization (77) of the density f0(λ), solution of the constrained optimization problem (78) and restrictions
imposed on densities from the class of admissible spectral densities D0.

For all solutions d = {d(k) : k = 0, 1, . . .} of the equation

Ad = αd, α ∈ C, (87)

which satisfy condition

∥d∥2 =

∞∑
k=0

|d(k)|2 = P0, (88)

the following equality holds true

f0(λ) =

∣∣∣∣∣
∞∑
k=0

d(k)e−ikλ

∣∣∣∣∣
2

=

∣∣∣∣∣c
∞∑
k=0

(Ad)ke
ikλ

∣∣∣∣∣
2

. (89)
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Solution d0 =
{
d0(k) : k = 0, 1, . . .

}
of the equation (87) which satisfies condition (88) and gives the maximum

value ∥Ad0∥2 = ν0P0 of the quantity ∥Ad∥2 determines the least favourable spectral density

f0(λ) =

∣∣∣∣∣
∞∑
k=0

d0(k)e−ikλ

∣∣∣∣∣
2

, (90)

which is the spectral density of the one-sided moving-average sequence

ξ(j) =

j∑
u=−∞

d0(j − u)ε(u). (91)

Thus the following statement fulfilled.

Theorem 13
The least favourable in the classD0 for the optimal extrapolation of the functional Aξ is the spectral density (90) of
the one-sided moving-average sequence (91) which is determined by solution d0 =

{
d0(k) : k = 0, 1, . . .

}
of the

equation (87) which satisfies condition (88) and gives the maximum value ∥Ad0∥2 = ν2P0 of the quantity ∥Ad∥2.
The minimax spectral characteristic of the optimal estimate of the functional Aξ is calculated by the formula (71).

For the functional ANξ =
∑N

j=1 a(j)ξ(j) the corresponding relation has the following form∣∣rN (eiλ)
∣∣2 = α2

∣∣φ0(λ)
∣∣2 , (92)

and the equality ∣∣rN (eiλ)
∣∣2 =

∣∣∣∣∣
N∑

k=0

(ANd)ke
ikλ

∣∣∣∣∣
2

=

∣∣∣∣∣
N∑

k=0

(ÃNd)ke
−ikλ

∣∣∣∣∣
2

, (93)

holds true, where

(ÃNd)k =

k∑
u=0

a(N − k + u)d(u), k = 0, 1, . . . , N.

For all solutions d = {d(k) : k = 0, 1, . . . , N} to equations

ANd = αd, α ∈ C, (94)

ÃNd = βd, β ∈ C, (95)

which satisfy condition

∥d∥2 =

N∑
k=0

|d(k)|2 = P0, (96)

the following equality holds true

f0(λ) =

∣∣∣∣∣
N∑

k=0

d(k)e−ikλ

∣∣∣∣∣
2

=

∣∣∣∣∣c
N∑

k=0

(Ad)ke
ikλ

∣∣∣∣∣
2

. (97)

Solutions d0 =
{
d0(k) : k = 0, 1, . . . , N

}
of the equations (94), (95) which satisfy condition (96) and gives the

maximum values ∥ANd
0∥2 = ∥ÃNd

0∥2 = ν2NP0 of the quantity ∥ANd∥2 determines the least favourable spectral
density

f0(λ) =

∣∣∣∣∣
N∑

k=0

d0(k)e−ikλ

∣∣∣∣∣
2

, (98)
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which is the spectral density of the one-sided moving-average sequence of order N

ξ(j) =

j∑
u=j−N

d0(j − u)ε(u). (99)

Thus the following statement holds true.

Theorem 14
The least favourable in the class D0 for the optimal extrapolation of the functional ANξ is the spectral density (98)
of the one-sided moving-average sequence (99) which is determined by solutions d0 =

{
d0(k) : k = 0, 1, . . . , N

}
of the equations (94), (95) which satisfy condition (96) and gives the maximum value ∥ANd

0∥2 = ∥ÃNd
0∥2 =

ν2NP0 of the quantity ∥ANd∥2. The minimax spectral characteristic of the optimal estimate of the functional ANξ
is calculated by the formula (74).

Corollary 3
The spectral density (98) of the one-sided moving-average sequence (99), where the sequence d0 ={
d0(k) : k = 0, 1, . . . , N

}
satisfy condition (96), is the least favourable in the classD0 for the optimal extrapolation

of the functional a(N)ξ(N).

4.4. Least favourable spectral densities in the class DM

Consider the problem of the optimal estimation of the functionalsAξ =
∑∞

j=1 a(j)ξ(j) andANξ =
∑N

j=1 a(j)ξ(j)
which depends on the unknown values of a stationary stochastic sequence ξ(j) from observations of the sequence
ξ(j) at points of time j = −1,−2, . . . in the case where the spectral density f(λ) is from the class DM of spectral
densities which are characterized by restrictions on the moments of the density

DM =

{
f(λ)

∣∣∣∣ 1

2π

∫ π

−π

f(λ) cos(mλ)dλ = r(m), m = 0, 1, . . . ,M

}
,

where r(0) = P0 and r(0), r(1), . . . , r(M) is a strictly positive sequence. The moment problem in this case has not
uniquely determined solutions and the class DM contains an infinite number of densities [25].

We can apply the method of Lagrange multipliers to find solution to the optimization problem (83) in the case
D = DM . We get the following relations that determine the least favourable spectral density f0 ∈ DM

|r(eiλ)|2(f0(λ))−1 =

M∑
m=0

αm cos(mλ) =

∣∣∣∣∣
M∑

m=0

p(m)eimλ

∣∣∣∣∣
2

, (100)

where αm,m = 0, 1, . . . ,M are the Lagrange multipliers.
It follows from this relation that the least favourable spectral density f0 ∈ DM is of the form

f0(λ) =

∣∣∣∣ ∞∑
k=0

(Ad)ke
ikλ

∣∣∣∣2∣∣∣∣ M∑
m=0

p(m)e−imλ

∣∣∣∣2
. (101)

The unknown {p(m) : m = 0, 1, . . . ,M} and d = {d(k) : k = 0, 1, . . .} are determined by equations of the
canonical factorization (77) of the density f0(λ), solution of the constrained optimization problem (78) and
restrictions imposed on densities from the class of admissible spectral densities DM .

Denote by νMP0 the maximum value ∥Ad0∥2 of the quantity ∥Ad∥2, where d = {d(k) : k = 0, 1, . . .} satisfies
condition (88) and are determined by equations of the canonical factorization (77) of the density f0(λ) and
restrictions imposed on densities from the class of admissible spectral densities DM .
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Denote by ν+MP0 the maximum value ∥Ad0∥2 of the quantity ∥Ad∥2, where d = {d(k) : k = 0, 1, . . .} satisfies
condition (88) and are determined by equations of canonical factorization (77) of the density (101) and restrictions
imposed on densities from the class of admissible spectral densities DM .
The following statement is true.

Theorem 15
If there exists a sequence d0 =

{
d0(k) : k = 0, 1, . . .

}
which satisfies condition (88) and such that νMP0 =

ν+MP0 = ∥Ad0∥2, then the least favourable in the class DM for the optimal extrapolation of the functional Aξ is the
spectral density (90) of the one-sided moving-average sequence (91). If νM < ν+M , then the least favourable in the
classDM for the optimal extrapolation of the functionalAξ is the spectral density (101) which admits the canonical
factorization (77). The unknown {p(m) : m = 0, 1, . . . ,M} and d = {d(k) : k = 0, 1, . . .} are determined by
equations of canonical factorization (77) of the density f0(λ), solution of the constrained optimization problem
(78) and restrictions imposed on densities from the class of admissible spectral densitiesDM . The minimax spectral
characteristic of the optimal estimate of the functional Aξ is calculated by the formula (71).

Consider now the problem of the optimal estimation of the functional ANξ =
∑N

j=1 a(j)ξ(j). It follows from
the relation (100) that in this case the least favourable spectral density f0(λ) ∈ DM is of the form

f0(λ) =

∣∣∣∣ N∑
k=0

(ANd)ke
ikλ

∣∣∣∣2∣∣∣∣ M∑
m=0

p(m)e−imλ

∣∣∣∣2
. (102)

These densities are spectral densities of the autoregressive-moving-average ARMA(M,N) sequences
M∑

m=0

p(m)ξ(n−m) =

N∑
k=0

(ANd)kε(n− k). (103)

The unknown {p(m) : m = 0, 1, . . . ,M} and d = {d(k) : k = 0, 1, . . . , N} are determined by equations of
canonical factorization (80) of the density f0(λ), solution of the constrained optimization problem (81) and
restrictions imposed on densities from the class of admissible spectral densities DM .

Denote by νMNP0 the maximum value ∥ANd
0∥2 of the quantity ∥ANd∥2, where d = {d(k) : k = 0, 1, . . . , N}

are determined by equations (94), (95), condition (96) and equations of canonical factorization (80) of the density
f0(λ) ∈ DM .

Denote by ν+MNP0 the maximum value ∥ANd
0∥2 of the quantity ∥ANd∥2, where d = {d(k) : k = 0, 1, . . . , N}

satisfies condition (96), equations of canonical factorization (77) of the density (102) and restrictions imposed on
densities from the class of admissible spectral densities f0(λ) ∈ DM .

Thus the following statement holds true.

Theorem 16
If there exists a solution d0 =

{
d0(k) : k = 0, 1, . . . , N

}
of the equation (94), or the equation (95), which satisfy

condition (96) and such that νMNP0 = ν+MNP0 = ∥ANd
0∥2, then the least favourable in the class DM for the

optimal extrapolation of the functional ANξ is the spectral density (98) of the one-sided moving-average sequence
(99). If νMN < ν+MN , then the least favourable in the class DM for the optimal extrapolation of the functional ANξ
is the spectral density (102) of the autoregressive-moving-average ARMA(M,N) sequences (103). The unknown
{p(m) : m = 0, 1, . . . ,M} and d = {d(k) : k = 0, 1, . . .} are determined by equations of canonical factorization
(77) of the density f0(λ), solution of the constrained optimization problem (78) and restrictions imposed on
densities from the class of admissible spectral densities DM . The minimax spectral characteristic of the optimal
estimate of the functional ANξ is calculated by the formula (74).

4.5. Least favourable spectral densities in the class Du
v

Consider the problem of minimax estimation of the functionals Aξ and ANξ which depend on the unknown values
of a stationary stochastic sequence ξ(j) for the sets of spectral densities that describe the “strip” model of stationary
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stochastic sequences

Du
v =

{
f(λ)

∣∣∣∣v(λ) ≤ f(λ) ≤ u(λ),
1

2π

∫ π

−π

f(λ)dλ = P0

}
,

where v(λ), u(λ) are given bounded spectral densities.
From the condition 0 ∈ ∂∆D(f0) for D = Du

v we find the following equation which determines the least
favourable spectral density for the optimal estimation of the functional Aξ∣∣∣∣∣

∞∑
k=0

(Ad)ke
ikλ

∣∣∣∣∣
2

= (ψ1(λ) + ψ2(λ) + α0)
∣∣φ0(λ)

∣∣2 , (104)

where ψ1(λ) ≥ 0 and ψ1(λ) = 0 if f0(λ) ≥ v(λ); ψ2(λ) ≤ 0 and ψ2(λ) = 0 if f0(λ) ≤ u(λ).
From this equation we find that the least favourable spectral density for the optimal estimation of the functional

Aξ is of the form

f0(λ) = max

v(λ),min

u(λ), c
∣∣∣∣∣
∞∑
k=0

(Ad)ke
ikλ

∣∣∣∣∣
2

 . (105)

Denote by νuP0 the maximum value ∥Ad0∥2 of the quantity ∥Ad∥2, where d = {d(k) : k = 0, 1, . . .} are
solutions of the equation (87) which satisfy condition (88), the inequality

v(λ) ≤

∣∣∣∣∣
∞∑
k=0

d(k)e−ikλ

∣∣∣∣∣
2

≤ u(λ), (106)

and determine the canonical factorization (77) of the density f0(λ) ∈ Du
v .

Denote by ν+u P0 the maximum value ∥Ad0∥2 of the quantity ∥Ad∥2, where d = {d(k) : k = 0, 1, . . .} satisfies
condition (88) and determine the canonical factorization (77) of the density (105) from the class of admissible
spectral densities Du

v .
Thus the following theorem holds true.

Theorem 17
If there exists a solution of the equation (87) which satisfy condition (88) and such that νuP0 = ν+u P0 = ∥Ad0∥2,
then the spectral density (90) of the one-sided moving-average sequence (91) is the least favourable in the setDu

v for
the optimal extrapolation of the functional Aξ. If νu < ν+u , then the least favourable in the class Du

v for the optimal
extrapolation of the functional Aξ is the spectral density (105) which admits the canonical factorization (90).
The sequence d = {d(k) : k = 0, 1, . . .} is determined by the optimisation problem (78) and restrictions imposed
on densities by the given set of admissible spectral densities. The minimax spectral characteristic of the optimal
estimate of the functional Aξ is calculated by the formula (71).

For the functional ANξ the least favourable spectral density for the optimal estimation of the functional is of the
form

f0(λ) = max

v(λ),min

u(λ), c
∣∣∣∣∣

N∑
k=0

(ANd)ke
ikλ

∣∣∣∣∣
2

 . (107)

Denote by νuNP0 the maximum value ∥ANd
0∥2 of the quantity ∥ANd∥2, where d = {d(k) : k = 0, 1, . . . , N}

are solutions of the equations (94), (95), which satisfy condition (96), the inequality

v(λ) ≤

∣∣∣∣∣
N∑

k=0

d(k)e−ikλ

∣∣∣∣∣
2

≤ u(λ), (108)

and determine the canonical factorization (80) of the density f0(λ) ∈ Du
v .
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Denote by ν+uNP0 the maximum value ∥ANd
0∥2 of the quantity ∥ANd∥2, where d = {d(k) : k = 0, 1, . . .}

satisfies condition (88) and determine the canonical factorization (77) of the density (107) from the class of
admissible spectral densities Du

v .
The following theorem holds true.

Theorem 18
If there exists a solution of the equation (94), or equation (95), which satisfy condition (96) and such that
νuNP0 = ν+uNP0 = ∥ANd

0∥2, then the spectral density (98) of the one-sided moving-average sequence (99) is
the least favourable in the set Du

v for the optimal extrapolation of the functional ANξ. If νuN < ν+uN , then the least
favourable in the class Du

v for the optimal extrapolation of the functional ANξ is the spectral density (107) which
admits the canonical factorization (90). The sequence d = {d(k) : k = 0, 1, . . .} is determined by the optimisation
problem (78) and restrictions imposed on densities by the given set of admissible spectral densities. The minimax
spectral characteristic of the optimal estimate of the functional ANξ is calculated by the formula (74).

4.6. Least favourable spectral densities in the class Dε

Consider the problem of minimax estimation of the functionals Aξ and ANξ which depend on the unknown values
of a stationary stochastic sequence ξ(j) for the set of spectral densities that describes the “ε– contamination” model
of stationary stochastic sequences

Dε =

{
f(λ)

∣∣∣∣ f(λ) = (1− ε)w(λ) + εu(λ),
1

2π

∫ π

−π

f(λ)dλ = P0

}
,

where w(λ) is a known spectral density, and u(λ) is an unknown spectral density. From the condition 0 ∈ ∂∆D(f0)
for the functional Aξ we find the following equations which determine the least favourable spectral densities for
the optimal estimation of the functional Aξ for the given set of admissible spectral densities∣∣∣∣∣

∞∑
k=0

(Ad)ke
ikλ

∣∣∣∣∣
2

= (ψ1(λ) + α−1
0 )

∣∣φ0(λ)
∣∣2 , (109)

where ψ1(λ) ≥ 0 and ψ1(λ) = 0 if f0(λ) ≥ (1− ε)w(λ).
From this equation we find that the least favourable spectral density for the optimal estimation of the functional

Aξ is of the form

f0(λ) = max

(1− ε)w(λ), α0

∣∣∣∣∣
∞∑
k=0

(Ad)ke
ikλ

∣∣∣∣∣
2
 . (110)

Denote by νεP0 the maximum value ∥Ad0∥2 of the quantity ∥Ad∥2, where d = {d(k) : k = 0, 1, . . .} are
solutions of the equation (87) which satisfy condition (88), the inequality∣∣∣∣∣

∞∑
k=0

d(k)e−ikλ

∣∣∣∣∣
2

≥ (1− ε)w(λ), (111)

and determine the canonical factorization (77) of the density f0(λ) ∈ Dε.
Denote by ν+ε P0 the maximum value ∥Ad0∥2 of the quantity ∥Ad∥2, where d = {d(k) : k = 0, 1, . . .} satisfies

condition (88) and determine the canonical factorization (77) of the density (110) from the class of admissible
spectral densities Dε.

The following theorem holds true.

Theorem 19
If there exists a solution of the equation (87) which satisfy condition (88) and such that νεP0 = ν+ε P0 = ∥Ad0∥2,
then the spectral density (90) of the one-sided moving-average sequence (91) is the least favourable in the setDε for
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the optimal extrapolation of the functional Aξ. If νε < ν+ε , then the least favourable in the class Dε for the optimal
extrapolation of the functional Aξ is the spectral density (110) which admits the canonical factorization (90).
The sequence d = {d(k) : k = 0, 1, . . .} is determined by the optimisation problem (78) and restrictions imposed
on densities by the given set of admissible spectral densities. The minimax spectral characteristic of the optimal
estimate of the functional Aξ is calculated by the formula (71).

For the functional ANξ the least favourable spectral density for the optimal estimation of the functional is of the
form

f0(λ) = max

(1− ε)w(λ), α0

∣∣∣∣∣
N∑

k=0

(ANd)ke
ikλ

∣∣∣∣∣
2
 . (112)

Denote by νNε P0 the maximum value ∥ANd
0∥2 of the quantity ∥ANd∥2, where d = {d(k) : k = 0, 1, . . . , N} are

solutions of the equations (94), (95), which satisfy condition (96), the inequality∣∣∣∣∣
N∑

k=0

d(k)e−ikλ

∣∣∣∣∣
2

≥ (1− ε)w(λ), (113)

and determine the canonical factorization (80) of the density f0(λ) ∈ Dε.
Denote by νN+

ε P0 the maximum value ∥ANd
0∥2 of the quantity ∥ANd∥2, where d = {d(k) : k = 0, 1, . . .}

satisfies condition (88) and determine the canonical factorization (77) of the density (107) from the class of
admissible spectral densities Dε.

The following theorem holds true.

Theorem 20
If there exists a solution of the equation (94), or the equation, (95), which satisfy condition (96) and such that
νNε P0 = νN+

ε P0 = ∥ANd
0∥2, then the spectral density (98) of the one-sided moving-average sequence (99) is the

least favourable in the set Dε for the optimal extrapolation of the functional ANξ. If νNε < νN+
ε , then the least

favourable in the class Dε for the optimal extrapolation of the functional ANξ is the spectral density (112) which
admits the canonical factorization (90). The sequence d = {d(k) : k = 0, 1, . . .} is determined by the optimisation
problem (78) and restrictions imposed on densities by the given set of admissible spectral densities. The minimax
spectral characteristic of the optimal estimate of the functional ANξ is calculated by the formula (74).

4.7. Least favourable spectral densities in the class D1ε

Consider the problem of minimax estimation of the functionals Aξ and ANξ which depend on the unknown values
of a stationary stochastic sequence ξ(j) for the set of spectral densities that describes the model of “ε– neighborhood
in the space L1 of a stationary stochastic sequence

D1ε =

{
f(λ)

∣∣∣∣ 1

2π

∫ π

−π

|f(λ)− v(λ)| dλ ≤ ε

}
,

where ε is a given numbers, v(λ) is a given spectral density.
From the condition 0 ∈ ∂∆D(f0) we find that the least favourable spectral density for the optimal estimation of

the functional Aξ is of the form

f0(λ) = max

v(λ), c
∣∣∣∣∣
∞∑
k=0

(Ad)ke
ikλ

∣∣∣∣∣
2
 . (114)

Denote by ν1εP0 the maximum value ∥Ad0∥2 of the quantity ∥Ad∥2, where d = {d(k) : k = 0, 1, . . .} are
solutions of the equation (87) which satisfy condition (88), the inequality∣∣∣∣∣

∞∑
k=0

d(k)e−ikλ

∣∣∣∣∣
2

≥ v(λ), (115)
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and determine the canonical factorization (77) of the density f0(λ) ∈ D1ε.
Denote by ν+1εP0 the maximum value ∥Ad0∥2 of the quantity ∥Ad∥2, where d = {d(k) : k = 0, 1, . . .} satisfies

condition (88) and determine the canonical factorization (77) of the density (114) from the class of admissible
spectral densities D1ε.

The following theorem holds true.

Theorem 21
If there exists a solution of the equation (87) which satisfy condition (88) and such that ν1εP0 = ν+1εP0 = ∥Ad0∥2,
then the spectral density (90) of the one-sided moving-average sequence (91) is the least favourable in the set D1ε

for the optimal extrapolation of the functional Aξ. If ν1ε < ν+1ε, then the least favourable in the class D1ε for the
optimal extrapolation of the functional Aξ is the spectral density (114) which admits the canonical factorization
(90). The sequence d = {d(k) : k = 0, 1, . . .} is determined by the optimisation problem (78) and restrictions
imposed on densities by the given set of admissible spectral densities. The minimax spectral characteristic of
the optimal estimate of the functional Aξ is calculated by the formula (71).

For the functional ANξ the least favourable spectral density for the optimal estimation of the functional is of the
form

f0(λ) = max

v(λ), c
∣∣∣∣∣

N∑
k=0

(ANd)ke
ikλ

∣∣∣∣∣
2
 . (116)

Denote by νN1εP0 the maximum value ∥ANd
0∥2 of the quantity ∥ANd∥2, where d = {d(k) : k = 0, 1, . . . , N} are

solutions of the equations (94), (95), which satisfy condition (96), the inequality∣∣∣∣∣
N∑

k=0

d(k)e−ikλ

∣∣∣∣∣
2

≥ v(λ), (117)

and determine the canonical factorization (80) of the density f0(λ) ∈ D1ε.
Denote by νN+

1ε P0 the maximum value ∥ANd
0∥2 of the quantity ∥ANd∥2, where d = {d(k) : k = 0, 1, . . .}

satisfies condition (88) and determine the canonical factorization (77) of the density (116) from the class of
admissible spectral densities D1ε.

The following theorem holds true.

Theorem 22
If there exists a solution of the equation (94), or equation (95), which satisfy condition (96) and such that
νN1εP0 = νN+

1ε P0 = ∥ANd
0∥2, then the spectral density (98) of the one-sided moving-average sequence (99) is

the least favourable in the set D1ε for the optimal extrapolation of the functional ANξ. If νN1ε < νN+
1ε , then the least

favourable in the class D1ε for the optimal extrapolation of the functional ANξ is the spectral density (116) which
admits the canonical factorization (90). The sequence d = {d(k) : k = 0, 1, . . .} is determined by the optimisation
problem (78) and restrictions imposed on densities by the given set of admissible spectral densities. The minimax
spectral characteristic of the optimal estimate of the functional ANξ is calculated by the formula (74).

4.8. Least favourable spectral densities in the class D2ε

Consider the problem of minimax estimation of the functionals Aξ and ANξ which depend on the unknown values
of a stationary stochastic sequence ξ(j) for the set of spectral densities that describes the model of “ε– neighborhood
in the space L2 of a stationary stochastic sequence

D2ε =

{
f(λ)

∣∣∣∣ 1

2π

∫ π

−π

|f(λ)− v(λ)|2 dλ ≤ ε

}
,

where ε is a given numbers, v(λ) is a given spectral density.
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From the condition 0 ∈ ∂∆D(f0) we find that the least favourable spectral density for the optimal estimation of
the functional Aξ is of the form

f0(λ) =
v(λ)

2
+

 (v(λ))2

4
+

∣∣∣∣∣
∞∑
k=0

(Ad)ke
ikλ

∣∣∣∣∣
2
1/2

. (118)

The sequence d = {d(k) : k = 0, 1, . . .} is determined by equations of the canonical factorization (90) of the density
(118), optimisation problem (78) and restriction

1

2π

∫ π

−π

|f(λ)− v(λ)|2 dλ = ε. (119)

The following theorem holds true.

Theorem 23
The least favourable in the set D2ε spectral density for the optimal extrapolation of the functional Aξ is
determined by equation (118). The sequence d = {d(k) : k = 0, 1, . . .} is determined by equations of the canonical
factorization (90) of the density (118), optimisation problem (78) and restriction (119) imposed on densities by
the given set of admissible spectral densities. The minimax spectral characteristic of the optimal estimate of the
functional Aξ is calculated by the formula (71).

For the functional ANξ the least favourable spectral density for the optimal estimation of the functional is of the
form

f0(λ) =
v(λ)

2
+

 (v(λ))2

4
+

∣∣∣∣∣
N∑

k=0

(ANd)ke
ikλ

∣∣∣∣∣
2
1/2

. (120)

The sequence d = {d(k) : k = 0, 1, . . . , N} is determined by equations of the canonical factorization (90) of the
density (120), optimisation problem (78) and restriction (119).

Theorem 24
The least favourable in the set D2ε spectral density for the optimal extrapolation of the functional ANξ is
determined by equation (120). The sequence d = {d(k) : k = 0, 1, . . . , N} is determined by equations of the
canonical factorization (90) of the density (120), optimisation problem (78) and restriction (119) imposed on
densities by the given set of admissible spectral densities. The minimax spectral characteristic of the optimal
estimate of the functional Aξ is calculated by the formula (74).

4.9. Conclusions

In this section we propose methods of solution of the problem of the mean-square optimal linear estimation

of the functionals Aξ =
∞∑
j=0

a(j)ξ(j) and ANξ =
N∑
j=0

a(j)ξ(j) which depend on the unknown values of the

stationary stochastic sequence ξ(j). Estimates are based on observations of the sequence ξ(j) at points of time
j = −1,−2, . . . . The problem is investigated in the case of spectral certainty, where the spectral densities of the
stationary stochastic sequence ξ(j) is exactly known. In this case the classical Hilbert space projection method of
linear estimation is applied. Formulas are derived for calculation the value of the mean square errors and the spectral
characteristics of the mean-square optimal estimates of the linear functionals. In the case of spectral uncertainty,
where the spectral density of the stationary stochastic sequence is not exactly known, but a class of admissible
spectral densities is given the minimax-robust procedure to linear estimation of the functionals is applied. Relations
which determine the least favourable spectral densities and the minimax spectral characteristics are proposed for
some given sets of admissible spectral densities.

The minimax-robust approach to the problem of one step ahead optimal prediction of the stationary stochastic
sequences as well as estimation of one missed value of the sequences based on convex optimization methods was
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initiated in papers by Franke [9, 10], Franke and Poor [11]. See also papers by Hosoya [19], Taniguchi [75], and
survey paper by Kassam and Poor [23].

For the relative results on the mean-square optimal linear extrapolation of linear functionals for stationary
stochastic sequences and processes see papers by Moklyachuk [39] – [45], [57], book by Moklyachuk and
Masyutka [64].

5. Extrapolation problem for stationary sequences from observations with noise

In this section we deal with the problem of the mean-square optimal estimation of the linear functionals Aξ =
∞∑
j=0

a(j)ξ(j) and ANξ =
N∑
j=0

a(j)ξ(j) which depend on the unknown values of a stationary stochastic sequence

ξ(j), j ∈ Z, from observations of the sequence ξ(j) + η(j) at points of time j = −1,−2, . . . , where η(j) is an
uncorrelated with ξ(j) stationary stochastic sequence. The problem is investigated in the case of spectral certainty,
where the spectral densities of the stationary stochastic sequences ξ(j) and η(j) are exactly known. In this case the
classical Hilbert space projection method of linear estimation is applied. Formulas are derived for calculation the
value of the mean square errors and the spectral characteristics of the mean-square optimal estimates of the linear
functionals. In the case of spectral uncertainty, where the spectral densities of the stationary stochastic sequences
are not exactly known, but a class of admissible spectral densities is given the minimax-robust procedure to linear
estimation of the functional is applied. Relations which determine the least favourable spectral densities and the
minimax spectral characteristics are proposed for some special sets of admissible spectral densities.

5.1. The classical Hilbert space projection method of linear extrapolation

Let ξ(j), j ∈ Z, and η(j), j ∈ Z, be (wide sense) stationary stochastic sequences with zero mathematical
expectations Eξ(j) = 0, Eη(j) = 0. The correlation functions Rξ(k) = Eξ(j + k)ξ(j) and Rη(k) = Eη(j +

k)η(j) of stationary stochastic sequences ξ(j), j ∈ Z, and η(j), j ∈ Z, admit the spectral representations

Rξ(k) =

π∫
−π

eikλF (dλ), Rη(k) =

π∫
−π

eikλG(dλ),

where F (dλ) and G(dλ) are spectral measures of the sequences. We will consider stationary stochastic sequences
with absolutely continuous spectral measures F (dλ) and G(dλ) and the correlation functions of the form

Rξ(k) =
1

2π

π∫
−π

eikλf(λ)dλ, Rη(k) =
1

2π

π∫
−π

eikλg(λ)dλ,

where f(λ) and g(λ) are the spectral density functions of the sequences ξ(j), j ∈ Z, and η(j), j ∈ Z,
correspondingly.

We will suppose that the spectral density functions f(λ) and g(λ) satisfy the minimality condition

π∫
−π

1

f(λ) + g(λ)
dλ <∞. (121)

Under this condition the error-free extrapolation of the unknown values of the sequence ξ(j) + η(j) is impossible.
The stationary stochastic sequences ξ(j) and η(j) admit the spectral representations

ξ(j) =

π∫
−π

eijλdZξ(λ), η(j) =

π∫
−π

eijλdZη(λ),
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where Zξ(dλ) and Zη(dλ) are orthogonal stochastic measures of the sequences ξ(j) and η(j) such that

EZξ(∆1)Zξ(∆2) = F (∆1 ∩∆2) =
1

2π

∫
∆1∩∆2

f(λ)dλ,

EZη(∆1)Zη(∆2) = G(∆1 ∩∆2) =
1

2π

∫
∆1∩∆2

g(λ)dλ.

Consider the problem of the mean-square optimal estimation of the linear functional

Aξ =

∞∑
j=0

a(j)ξ(j)

which depends on the unknown values of a stationary stochastic sequence ξ(j), j = 0, 1, . . . , based on observations
of the sequence ξ(j) + η(j) at points of time j = −1,−2, . . . .

We will suppose that the sequence {a(j) : j = 0, 1, . . .} which determines the functional Aξ satisfies the
following conditions

∞∑
j=0

|a(j)| <∞,

∞∑
j=0

(j + 1) |a(j)|2 <∞. (122)

It follows from the spectral representation of the sequence ξ(j) that we can represent the functional Aξ in the
form

Aξ =

π∫
−π

A(eiλ)Zξ(dλ), (123)

where

A(eiλ) =

∞∑
j=0

a(j)eijλ.

Denote by Âξ the mean square optimal linear estimate of the functional Aξ from observations of the sequence

ξ(j) + η(j) at points of time j = −1,−2, . . . . Denote by ∆(f, g) = E
∣∣∣Aξ − Âξ

∣∣∣2 the mean square error of the

estimate Âξ. To find the estimate Âξ we will use the Hilbert space projection method proposed by Kolmogorov [24].
We will consider ξ(j), j ∈ Z, and η(j), j ∈ Z, as elements of the Hilbert space H = L2(Ω,F , P ) of complex
valued random variables with zero first moment, Eξ = 0, finite second moment, E|ξ|2 <∞, and the inner product
(ξ, η) = Eξη.

Denote by H0(ξ + η) the subspace of the Hilbert space H = L2(Ω,F , P ) generated by elements {ξ(j) + η(j) :
j = −1,−2, . . . }. Denote by L2(f + g) the Hilbert space of complex-valued functions that are square-integrable
with respect to the measure whose density is f(λ) + g(λ). Denote by L0

2(f + g) the subspace of L2(f + g)
generated by functions {eijλ : j = −1,−2, . . . }.

The mean square optimal linear estimate Âξ of the functional Aξ based on observations of the sequence
ξ(j) + η(j) at points of time j = −1,−2, . . . is an element of the H0(ξ + η). It can be represented in the form

Âξ =

π∫
−π

h(eiλ)(Zξ(dλ) + Zη(dλ)), (124)

where h(eiλ) ∈ L0
2(f + g) is the spectral characteristic of the estimate Âξ.

The mean square error ∆(h; f, g) of the estimate Âξ is given by the formula

∆(h; f, g) = E
∣∣∣Aξ − Âξ

∣∣∣2 =
1

2π

π∫
−π

∣∣A(eiλ)− h(eiλ)
∣∣2 f(λ)dλ+

1

2π

π∫
−π

∣∣h(eiλ)∣∣2 g(λ)dλ.
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The Hilbert space projection method proposed by A. N. Kolmogorov [24] makes it possible to find the spectral
characteristic h(eiλ) and the mean square error ∆(h; f, g) of the optimal linear estimate of the functional Aξ in
the case where the spectral densities f(λ) and g(λ) of the sequences ξ(j), j ∈ Z, and η(j), j ∈ Z, are exactly
known and the minimality condition (121) is satisfied. The spectral characteristic is determined by the following
conditions:

1)Âξ ∈ H0(ξ + η),

2)Aξ − Âξ⊥H0(ξ + η).

It follows from the second condition that the following equations should be satisfied

E
(
Aξ − Âξ

)(
ξ(j) + η(j)

)
=

=
1

2π

π∫
−π

(
A(eiλ)− h(eiλ)

)
e−ijλf(λ)dλ−

π∫
−π

h(eiλ)e−ijλg(λ)dλ = 0, j = −1,−2, . . . .

The last equations are equivalent to equations

π∫
−π

[
A(eiλ)f(λ)− h(eiλ)(f(λ) + g(λ))

]
e−ijλdλ = 0, j = −1,−2, . . . .

It follows from these equations that the function
[
A(eiλ)f(λ)− h(eiλ)(f(λ) + g(λ))

]
is of the form

A(eiλ)f(λ)− h(eiλ)(f(λ) + g(λ)) = C(eiλ), (125)

C(eiλ) =

∞∑
j=0

c(j)eijλ,

where c(j), j = 0, 1, . . . are unknown coefficients that we have to find.
From the relation (125) we deduce that the spectral characteristic h(eiλ) of the optimal linear estimate of the

functional Aξ is of the form

h(eiλ) =
A(eiλ)f(λ)− C(eiλ)

f(λ) + g(λ)
=

= A(eiλ)−A(e
iλ)g(λ) + C(eiλ)

f(λ) + g(λ)
.

(126)

It follows from the first condition, which determines the spectral characteristic h(eiλ) ∈ L0
2(f + g) of the optimal

linear estimate of the functional Aξ that the Fourier coefficients of the function h(eiλ) are equal to zero for
j = 0, 1, . . . , namely

1

2π

π∫
−π

h(eiλ)e−ijλdλ = 0, j = 0, 1, . . .

Using the last relations and (126) we get the following system of equations

π∫
−π

(
A(eiλ)

f(λ)

f(λ) + g(λ)
− C(eiλ)

f(λ) + g(λ)

)
e−ijλdλ = 0, j = 0, 1, . . .
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These equations can be represented in the form

∞∑
k=0

a(k)

π∫
−π

ei(k−j)λf(λ)

f(λ) + g(λ)
dλ−

∞∑
k=0

c(k)

π∫
−π

ei(k−j)λ

f(λ) + g(λ)
dλ = 0, j = 0, 1, . . . (127)

Let us introduce the following notations

Rj,k =
1

2π

π∫
−π

e−i(j−k)λ f(λ)

f(λ) + g(λ)
dλ;

Bj,k =
1

2π

π∫
−π

e−i(j−k)λ 1

f(λ) + g(λ)
dλ;

Qj,k =
1

2π

π∫
−π

e−i(j−k)λ f(λ)g(λ)

f(λ) + g(λ)
dλ.

Making use the introduced notations we can write equations (127) in the form
∞∑
k=0

Rj,ka(k) =

∞∑
k=0

Bj,kc(k), j = 0, 1, . . .

The derived equations can be written in the form

Ra = Bc,

where a = (a(0), a(1), . . . ) is a vector constructed from the coefficients that determine the functional Aξ, c =
(c(0), c(1), . . . ) is a vector constructed from the unknown coefficients c(k), k = 0, 1, . . . , B and R are linear
operators in ℓ2, which are determined by matrices with elements (B)j,k = Bj,k, (R)j,k = Rj,k, j, k = 0, 1, . . .

We get the formula
c = B−1Ra, (128)

Hence, the unknown coefficients c(j), j = 0, 1, . . . , are calculated by the formula

c(j) =
(
B−1Ra

)
j
,

where
(
B−1Ra

)
j

is the j-th component of the vector B−1Ra, and the formula for calculating the spectral

characteristic of the estimate Âξ is of the form

h(eiλ) = A(eiλ)
f(λ)

f(λ) + g(λ)
−

∞∑
k=0

(B−1Ra)ke
ikλ

f(λ) + g(λ)
.

(129)

The mean square error of the estimate of the function can be calculated by the formula

∆(h; f, g) = E
∣∣∣Aξ − Âξ

∣∣∣2 =
1

2π

π∫
−π

∣∣∣∣A(eiλ)g(λ) + ∞∑
k=0

(B−1Ra)ke
ikλ

∣∣∣∣2
(f(λ) + g(λ))2

f(λ)dλ

+
1

2π

π∫
−π

∣∣∣∣A(eiλ)f(λ)− ∞∑
k=0

(B−1Ra)ke
ikλ

∣∣∣∣2
(f(λ) + g(λ))2

g(λ)dλ

= ⟨Ra,B−1Ra⟩+ ⟨Qa,a⟩,

(130)
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where ⟨a, c⟩ =
∑∞

k=0 a(k)c(k) is the inner product in the space ℓ2 and Q is a linear operator in ℓ2, which is
determined by the matrix with elements (Q)j,k = Qj,k, j, k = 0, 1, . . .
Let us summarize our results and present them in the form of a theorem.

Theorem 5.1
Let ξ(j) and η(j) be stationary stochastic sequences with the spectral densities f(λ) and g(λ) that satisfy the
minimality condition (121). Let conditions (122) be satisfied. The spectral characteristic h(eiλ) and the mean
square error ∆(h; f, g) of the optimal linear estimate Âξ of the functional Aξ from observations of the sequence
ξ(j) + η(j) at points of time j = −1,−2, . . . can be calculated by formulas (129), (130).

5.2. Minimax-robust method of extrapolation

The traditional methods of estimation of the functional Aξ which depends on the unknown values of a stationary
stochastic sequence ξ(j) can be applied in the case where the spectral densities f(λ) and g(λ) of the considered
stochastic sequences ξ(j) and η(j) are exactly known. In practise, however, we do not have complete information
on spectral densities of the sequences. For this reason we apply the minimax(robust) method of estimation of the
functional Aξ, that is we find an estimate that minimizes the maximum of the mean square errors for all spectral
densities from the given class of admissible spectral densities D.

Definition 5.1. For a given class of spectral densitiesD = Df ×Dg the spectral densities f0(λ) ∈ Df , g0(λ) ∈ Dg

are called the least favourable in D for the optimal linear estimation of the functional Aξ if the following relation
holds true

∆(f0, g0) = ∆ (h (f0, g0) ; f0, g0) = max
(f,g)∈Df×Dg

∆(h (f, g) ; f, g) .

Definition 5.2. For a given class of spectral densities D = Df ×Dg the spectral characteristic h0(eiλ) of the
optimal linear estimate of the functional Aξ is called minimax-robust if

h0(eiλ) ∈ HD =
∩

(f,g)∈Df×Dg

L0
2(f + g),

min
h∈HD

max
(f,g)∈D

∆(h; f, g) = sup
(f,g)∈D

∆
(
h0; f, g

)
.

It follows from the introduced definitions and the obtained formulas that the following statement holds true.

Lemma 5.1
The spectral densities f0(λ) ∈ Df , g0(λ) ∈ Dg are the least favourable in the class of admissible spectral densities
D = Df ×Dg for the optimal linear estimate of the functional Aξ if the Fourier coefficients of the functions

(f0(λ) + g0(λ))
−1, f0(λ)(f0(λ) + g0(λ))

−1, f0(λ)g0(λ)(f0(λ) + g0(λ))
−1

define operators B0,R0,Q0 that determine a solution to the optimization problem

max
(f,g)∈Df×Dg

⟨Ra,B−1Ra⟩+ ⟨Qa,a⟩

= ⟨R0a, (B0)−1R0a⟩+ ⟨Q0a,a⟩.
(131)

The minimax spectral characteristic h0 = h(f0, g0) can be calculated by the formula (129) if h(f0, g0) ∈ HD.

The least favourable spectral densities f0(λ), g0(λ) and the minimax spectral characteristic h0 = h(f0, g0) form
a saddle point of the function ∆(h; f, g) on the set HD ×D. The saddle point inequalities

∆(h; f0, g0) ≥ ∆
(
h0; f0, g0

)
≥ ∆

(
h0; f, g

)
∀h ∈ HD, ∀f ∈ Df , ∀g ∈ Dg
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hold true if h0 = h(f0, g0) and h(f0, g0) ∈ HD,where (f0, g0) is a solution to the constrained optimization problem

sup
(f,g)∈Df×Dg

∆(h(f0, g0); f, g) = ∆ (h(f0, g0); f0, g0) , (132)

where

∆(h(f0, g0); f, g) =
1

2π

π∫
−π

∣∣∣∣∣A(eiλ)g0(λ) + ∞∑
j=0

((B0)−1R0a)je
ijλ

∣∣∣∣∣
2

(f0(λ) + g0(λ))2
f(λ)dλ

+
1

2π

π∫
−π

∣∣∣∣∣A(eiλ)f0(λ)− ∞∑
j=0

((B0)−1R0a)je
ijλ

∣∣∣∣∣
2

(f0(λ) + g0(λ))2
g(λ)dλ,

(133)

The constrained optimization problem (132) is equivalent to the unconstrained optimization problem

∆D(f, g) = −∆(h(f0, g0); f, g) + δ(f, g |Df ×Dg ) → inf, (134)

where δ(f, g |Df ×Dg ) is the indicator function of the set D = Df ×Dg. Solution (f0, g0) to the problem (134) is
characterized by the condition 0 ∈ ∂∆D(f0, g0), where ∂∆D(f0, g0) is the subdifferential of the convex functional
∆D(f, g) at point (f0, g0). This condition makes it possible to find the least favourable spectral densities in some
special classes of spectral densities D (see books [20], [70], [72] for additional details).

Note, that the form of the functional ∆(h(f0, g0); f, g) (133) is convenient for application the Lagrange method
of indefinite multipliers for finding solution to the problem (132). Making use the method of Lagrange multipliers
and the form of subdifferentials of the indicator functions we describe relations that determine least favourable
spectral densities in some special classes of spectral densities (see books [13, 58, 64] for additional details).

Lemma 5.2
Let (f0, g0) be a solution to the optimization problem (134). The spectral densities f0(λ), g0(λ) are the least
favourable in the class D = Df ×Dg, and the spectral characteristic h0 = h(f0, g0) is minimax for the optimal
estimate of the functional Aξ, in the case where h(f0, g0) ∈ HD.

5.3. Least favourable spectral densities in the class D0
f ×D0

g

Consider the problem of the optimal estimation of the functional Aξ =
∑∞

j=0 a(j)ξ(j) which depends on the
unknown values of a stationary stochastic sequence ξ(j) based on observations of the sequence ξ(j) + η(j) at
points of time j = −1,−2, . . . in the case where the spectral densities f(λ), g(λ) are from the classD = D0

f ×D0
g ,

where

D0
f =

f(λ)
∣∣∣∣∣∣ 12π

π∫
−π

f(λ)dλ ≤ P1

 ,

D0
g =

g(λ)
∣∣∣∣∣∣ 12π

π∫
−π

g(λ)dλ ≤ P2

 .

Let the densities f0(λ) ∈ D0
f , g0(λ) ∈ D0

g and the functions hf (f0, g0), hg(f0, g0), determined by the relations

hf (f0, g0) =

∣∣∣∣∣A(eiλ)g0(λ) + ∞∑
j=0

((B0)−1R0a)je
ijλ

∣∣∣∣∣
2

(f0(λ) + g0(λ))2
, (135)
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hg(g0, g0) =

∣∣∣∣∣A(eiλ)f0(λ)− ∞∑
j=0

((B0)−1R0a)je
ijλ

∣∣∣∣∣
2

(f0(λ) + g0(λ))2
, (136)

be bounded. In this case the functional

∆(h(f0, g0); f, g) =
1

2π

π∫
−π

hf (f0, g0)f(λ)dλ+
1

2π

π∫
−π

hg(f0, g0)g(λ)dλ

is linear and continuous on the space L1 × L1 and we can apply the method of Lagrange multipliers to find solution
to the optimization problem (134). We get the following relations that determine least favourable spectral densities
f0 ∈ D0

f , g0 ∈ D0
g

− 1

2π

π∫
−π

hf (f0, g0)ρ(f(λ))dλ− 1

2π

π∫
−π

hg(f0, g0)ρ(g(λ))dλ

+ α1
1

2π

π∫
−π

ρ(f(λ))dλ+ α2
1

2π

π∫
−π

ρ(g(λ))dλ = 0,

where ρ(f(λ)) and ρ(g(λ)) are variations of the functions f(λ) and g(λ), the constants α1 ≥ 0 and α2 ≥ 0. From
this relation we get that the least favourable spectral densities f0(λ) ∈ D0

f , g0(λ) ∈ D0
g satisfy equations∣∣∣∣∣A(eiλ)g0(λ) +

∞∑
j=0

((B0)−1R0a)je
ijλ

∣∣∣∣∣ = α1(f0(λ) + g0(λ)), (137)

∣∣∣∣∣A(eiλ)f0(λ)−
∞∑
j=0

((B0)−1R0a)je
ijλ

∣∣∣∣∣ = α2(f0(λ) + g0(λ)). (138)

Note, that α1 ̸= 0 in the case, where

1

2π

π∫
−π

f0(λ)dλ = P1,

and α2 ̸= 0 in the case, where

1

2π

π∫
−π

g0(λ)dλ = P2.

Summing up our reasoning we come to conclusion that the following theorem holds true.

Theorem 5.2
Let the spectral densities f0(λ) ∈ D0

f and g0(λ) ∈ D0
g satisfy the minimality condition (121) and let the functions

hf (f0, g0) and hg(f0, g0), determined by the formulas (135), (136), be bounded. The functions f0(λ) and g0(λ),
which give solution to the system of equations (137), (138) are the least favourable spectral densities in the class
D = D0

f ×D0
g for the optimal estimation of the functional Aξ =

∑∞
j=0 a(j)ξ(j) which depends on the unknown

values of a stationary stochastic sequence ξ(j) based on observations of the sequence ξ(j) + η(j) at points of time
j = −1,−2, . . . , if they determine a solution to the optimization problem (131). The function h0(eiλ), determined
by the formula (129), is minimax-robust spectral characteristic of the optimal linear estimate of the functional Aξ.
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Theorem 5.3
Let the spectral density f(λ) be known and fixed and the spectral density g0(λ) ∈ D0

g . Let the functions f(λ) and
g0(λ) be such that the function (f(λ) + g0(λ))

−1 is integrable and let the function hg(f, g0), determined by the
formula (136), be bounded. The spectral density g0(λ) is the least favourable spectral densities in the class D0

g for
the optimal estimation of the functionalAξ =

∑∞
j=0 a(j)ξ(j) which depends on the unknown values of a stationary

stochastic sequence ξ(j) based on observations of the sequence ξ(j) + η(j) at points of time j = −1,−2, . . . , if it
is of the form

g0(λ) = max

{
0, α−1

2

∣∣∣∣∣A(eiλ)f(λ)−
∞∑
j=0

((B0)−1R0a)je
ijλ

∣∣∣∣∣− f(λ)

}
and the functions f(λ) and g0(λ) determine a solution to the optimization problem (131). The function h0(eiλ),
determined by the formula (129), is minimax-robust spectral characteristic of the optimal linear estimate of the
functional Aξ.

5.4. Least favourable spectral densities in the class Du
v ×Dε

Consider the problem for the optimal estimation of the functional Aξ =
∑∞

j=0 a(j)ξ(j) which depends on the
unknown values of a stationary stochastic sequence ξ(j) based on observations of the sequence ξ(j) + η(j) at
points of time j = −1,−2, . . . in the case where the spectral densities f(λ), g(λ) are from the classD = Du

v ×Dε,
where

Du
v =

f(λ)
∣∣∣∣∣∣v(λ) ≤ f(λ) ≤ u(λ),

1

2π

π∫
−π

f(λ)dλ ≤ P1

 ,

Dε =

g(λ)
∣∣∣∣∣∣g(λ) = (1− ε)g1(λ) + εw(λ),

1

2π

π∫
−π

g(λ)dλ ≤ P2

 .

Here the spectral densities v(λ), u(λ), g1(λ) are known and fixed and the densities v(λ) and u(λ) are bounded.
Let the densities f0(λ) ∈ Du

v , g0(λ) ∈ Dε determine bounded functions hf (f0, g0), hg(f0, g0) with the help
of formulas (135), (136). Then from the condition 0 ∈ ∂∆Df,g

(f0, g0) we derive the following equations that
determine the least favourable spectral densities∣∣∣∣∣A(eiλ)g0(λ) +

∞∑
j=0

((B0)−1R0a)je
ijλ

∣∣∣∣∣ = (f0(λ) + g0(λ))(γ1(λ) + γ2(λ) + α1), (139)

∣∣∣∣∣A(eiλ)f0(λ)−
∞∑
j=0

((B0)−1R0a)je
ijλ

∣∣∣∣∣ = (f0(λ) + g0(λ))(φ(λ) + α2), (140)

where γ1 ≤ 0 and γ1 = 0 in the case f0(λ) ≥ v(λ); γ2 ≥ 0 and γ2 = 0 in the case f0(λ) ≤ u(λ); φ(λ) ≤ 0 and
φ(λ) = 0 in the case g0(λ) ≥ (1− ε)g1(λ).

The following theorems hold true.

Theorem 5.4
Let the spectral densities f0(λ) ∈ Du

v and g0(λ) ∈ Dε satisfy the minimality condition (121) and let the functions
hf (f0, g0) and hg(f0, g0), determined by the formulas (135), (136), be bounded. The functions f0(λ), g0(λ), which
give solution to the system of equations (139), (140) are the least favourable spectral densities in the classDu

v ×Dε,
if they determine a solution to the optimization problem (131). The function h0(eiλ), determined by the formula
(129), is minimax-robust spectral characteristic of the optimal linear estimate of the functional Aξ.

Theorem 5.5
Let the spectral density f(λ) be known and fixed and let the spectral density g0(λ) ∈ Dε. Let the function
f(λ) + g0(λ) satisfy the minimality condition (121), and let the function hg(f, g0), determined by the formula
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(136), be bounded. The spectral density g0(λ) is the least favourable spectral densities in the class Dε for the
optimal linear estimate of the functional Aξ, based on observations of the sequence ξ(j) + η(j) at points of time
j = −1,−2, . . . , if it is of the form

g0(λ) = max

{
(1− ε)g1(λ), α2

∣∣∣∣∣A(eiλ)f(λ)−
∞∑
j=0

((B0)−1R0a)je
ijλ

∣∣∣∣∣− f(λ)

}

and the functions f(λ), g0(λ) determine a solution to the optimization problem (131). The function h0(eiλ),
determined by the formula (129), is minimax-robust spectral characteristic of the optimal linear estimate of the
functional Aξ.

5.5. Least favourable spectral densities in the class D2ε1 ×D1ε2

Consider the problem for the optimal estimation of the functional Aξ =
∑∞

j=0 a(j)ξ(j) which depends on the
unknown values of a stationary stochastic sequence ξ(j) based on observations of the sequence ξ(j) + η(j) at
points of time j = −1,−2, . . . in the case where the spectral densities f(λ), g(λ) are from the class D2ε1 ×D1ε2 ,
which describe the model of “ε-neighbourhood of spectral densities in the space L2 × L1. Let

D2ε1 =

f(λ)
∣∣∣∣∣∣ 12π

π∫
−π

|f(λ)− f1(λ)|2 dλ ≤ ε1


be the “ε-neighbourhood” in the space L2 of a given bounded spectral density f1(λ) and let

D1ε2 =

g(λ)
∣∣∣∣∣∣ 12π

π∫
−π

|g(λ)− g1(λ)| dλ ≤ ε2


be the “ε-neighbourhood” in the space L1 of a given bounded spectral density g1(λ).

Let the spectral densities f0(λ) ∈ D2ε1 , g0(λ) ∈ D1ε2 determine the bounded functions hf (f0, g0), hg(f0, g0)
with the help of formulas (135), (136). Then from the condition 0 ∈ ∂∆Df,g

(f0, g0) for D = D2ε1 ×D1ε2 we
derive the following equations that determine the least favourable spectral densities∣∣∣∣∣A(eiλ)g0(λ) +

∞∑
j=0

((B0)−1R0a)je
ijλ

∣∣∣∣∣
2

= (f0(λ) + g0(λ))
2(f0(λ)− f1(λ))α1, (141)

∣∣∣∣∣A(eiλ)f0(λ)−
∞∑
j=0

((B0)−1R0a)je
ijλ

∣∣∣∣∣
2

= (f0(λ) + g0(λ))
2Ψ(λ)α2, (142)

where |Ψ(λ)| ≤ 1 and Ψ(λ) = sign(g0(λ)− g1(λ)), in the case g0(λ) ̸= g1(λ), α1, α2 are constants.
Equations (141), (142) with the optimization problem (131) and the normalizing conditions

1

2π

π∫
−π

|f(λ)− f1(λ)|2 dλ = ε1 (143)

1

2π

π∫
−π

|g(λ)− g1(λ)| dλ = ε2 (144)

determine the least favourable spectral densities in the class D = D2ε1 ×D1ε2 .
The following theorems hold true.
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Theorem 5.6
Let the spectral densities f0(λ) ∈ D2ε1 , g0(λ) ∈ D1ε2 satisfy the minimality condition (121) and let the functions
hf (f0, g0) and hg(f0, g0), determined by the formulas (135), (136), be bounded. The spectral densities f0(λ), g0(λ),
which give solution to the system of equations (141)–(144) are the least favourable spectral densities in the class
D2ε1 ×D1ε2 , if they determine a solution to the optimization problem (131). The function h0(eiλ), determined by
the formula (129), is minimax-robust spectral characteristic of the optimal linear estimate of the functional Aξ.

Theorem 5.7
Let the spectral density f(λ) be known, and let the spectral density g0(λ) ∈ D1ε2 . Let the function f(λ) + g0(λ)
satisfy the minimality condition (121), and let the function hg(f, g0), determined by the formula (136), be bounded.
The spectral density g0(λ) is the least favourable spectral densities in the class D1ε2 for the optimal linear estimate
of the functional Aξ, based on observations of the sequence ξ(j) at points of time j = −1,−2, . . . , if it is of the
form

g0(λ) = max

{
g1(λ), α2

∣∣∣∣∣A(eiλ)f(λ)−
∞∑
j=0

((B0)−1R0a)je
ijλ

∣∣∣∣∣− f(λ)

}

and the functions f(λ), g0(λ) determine a solution to the optimization problem (131). The function h0(eiλ),
determined by the formula (129), is minimax-robust spectral characteristic of the optimal linear estimate of the
functional Aξ.

5.6. Conclusions

In this section we propose methods of solution of the problem of the mean-square optimal linear estimation of the

functional Aξ =
∞∑
j=0

a(j)ξ(j) which depends on the unknown values of the stationary stochastic sequence ξ(j).

Estimates are based on observations of the sequence ξ(j) + η(j) at points of time j = −1,−2, . . . . Here η(j) is
an uncorrelated with ξ(j) stationary sequence. We provide formulas for calculating the values of the mean square
error and the spectral characteristic of the optimal linear estimate of the functional in the case of spectral certainty,
where the spectral densities f(λ) and g(λ) of the sequences ξ(j) and η(j) are exactly known. In the case of spectral
uncertainty, where the spectral densities f(λ) and g(λ) are not known, but a set of admissible spectral densities
is given, the minimax approach is applied to estimation of the functionals. We obtain formulas that determine the
least favourable spectral densities and the minimax spectral characteristics of the optimal linear estimates of the
functional Aξ for concrete classes of admissible spectral densities.

For the relative results on the mean-square optimal linear extrapolation of linear functionals for stationary
stochastic sequences and processes based on observations with noise see papers by Moklyachuk [46] – [48], [52]
– [57], book by Moklyachuk and Masyutka [64].

6. Interpolation problem for stationary sequences

In this section we deal with the problem of the mean-square optimal estimation of the linear functional ANξ =
N∑
j=0

a(j)ξ(j) which depends on the unknown values of a stationary stochastic sequence ξ(j), j ∈ Z, based on

observations of the sequence at points of time j ∈ Z\{0, 1, . . . , N}. The problem is investigated in the case of
spectral certainty, where the spectral density of the stationary stochastic sequence ξ(j) is exactly known. In this case
the classical Hilbert space projection method of linear estimation of the functional is applied. Formulas are derived
for calculation the value of the mean square error and the spectral characteristic of the mean-square optimal estimate
of the linear functional. In the case of spectral uncertainty, where the spectral density of the stationary stochastic
sequence is not exactly known, but a class of admissible spectral densities is given the minimax-robust procedure
to linear estimation of the functional is applied. Relations which determine the least favourable spectral densities
and the minimax spectral characteristics are proposed for some special sets of admissible spectral densities.
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6.1. The classical Hilbert space projection method of linear interpolation

Let ξ(j), j ∈ Z, be a (wide sense) stationary stochastic sequence. We will consider values of ξ(j), j ∈ Z, as
elements of the Hilbert space H = L2(Ω,F , P ) of complex valued random variables with zero first moment,
Eξ = 0, finite second moment, E|ξ|2 <∞, and the inner product (ξ, η) = Eξη. The correlation function
R(k) = (ξ(j + k), ξ(j)) = Eξ(j + k)ξ(j) of the stationary stochastic sequence ξ(j), j ∈ Z, admits the spectral
representation [12]

R(k) =

π∫
−π

eikλF (dλ),

where F (dλ) is the spectral measure of the sequence. We will consider stationary stochastic sequences with
absolutely continuous spectral measures and the correlation functions of the form

R(k) =
1

2π

π∫
−π

eikλf(λ)dλ,

where f(λ) is the spectral density function of the sequence ξ(j) that satisfies the minimality condition

π∫
−π

f−1(λ)dλ <∞. (145)

Under this condition the error-free interpolation of the unknown values of the sequence is impossible [73].
The stationary stochastic sequence ξ(j), j ∈ Z, admits the spectral representation [12, 22]

ξ(j) =

π∫
−π

eijλZ(dλ), (146)

where Z(∆) is the orthogonal stochastic measure of the sequence such that

EZ(∆1)Z(∆2) = F (∆1 ∩∆2) =
1

2π

∫
∆1∩∆2

f(λ)dλ.

Consider the problem of the mean-square optimal estimation of the linear functional

ANξ =

N∑
j=0

a(j)ξ(j)

which depends on the unknown values of a stationary stochastic sequence ξ(j), j ∈ Z, from observations of the
sequence at points of time j ∈ Z\{0, 1, . . . , N}.

It follows from the spectral representation (146) of the sequence ξ(j) that we can represent the functional ANξ
in the form

ANξ =

π∫
−π

AN (eiλ)Z(dλ), (147)

where

AN (eiλ) =

N∑
j=0

a(j)eijλ.

Denote by HN (ξ) the subspace of the Hilbert space H = L2(Ω,F , P ) generated by elements {ξ(j) : j ∈
Z\{0, 1, . . . , N}. Let L2(f) be the Hilbert space of complex-valued functions that are square-integrable with
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respect to the measure whose density is f(λ). Denote by LN
2 (f) the subspace of L2(f) generated by functions

{eijλ, j ∈ Z\{0, 1, . . . , N}}. The mean square optimal linear estimate ÂNξ of the functional ANξ from
observations of the sequence ξ(j) at points of time j ∈ Z{0, 1, . . . , N} is an element of the HN (ξ). It can be
represented in the form

ÂNξ =

π∫
−π

h(eiλ)Z(dλ), (148)

where h(eiλ) ∈ LN
2 (f) is the spectral characteristic of the estimate ÂNξ.

The mean square error ∆(h; f) of the estimate ÂNξ is given by the formula

∆(h; f) = E
∣∣∣ANξ − ÂNξ

∣∣∣2 =
1

2π

π∫
−π

∣∣AN (eiλ)− h(eiλ)
∣∣2 f(λ)dλ.

The Hilbert space projection method proposed by A. N. Kolmogorov [24] makes it possible to find the spectral
characteristic h(eiλ) and the mean square error ∆(h; f) of the optimal linear estimate of the functional ANξ in the
case where the spectral density f(λ) of the sequence ξ(j), j ∈ Z, is exactly known and the minimality condition
(145) is satisfied. The spectral characteristic can be found from the following conditions:

1)h(eiλ) ∈ LN
2 (f),

2)AN (eiλ)− h(eiλ)⊥LN
2 (f).

It follows from the second condition that for any η ∈ HN (ξ) the following equation should be satisfied(
ANξ − ÂNξ, η

)
= E(ANξ − ÂNξ)η = 0.

The last relation is equivalent to equations

E(ANξ − ÂNξ)ξk = 0, k ∈ Z\{0, 1, . . . , N}.

By using representations (147), (148) and definition of the inner product in the Hilbert space H = L2(Ω,F , P )
we get

E

 π∫
−π

(
AN (eiλ)− h(eiλ)

)
Z(dλ) ·

π∫
−π

e−ikλZ(dλ)

 =

=
1

2π

π∫
−π

(
AN (eiλ)− h(eiλ)

)
f(λ)e−ikλdλ = 0, k ∈ Z\{0, 1, . . . , N}.

It follows from these equations that the function (AN (eiλ)− h(eiλ))f(λ) is of the form

(AN (eiλ)− h(eiλ))f(λ) = CN (eiλ), (149)

CN (eiλ) =

N∑
j=0

c(j)eijλ,

where c(j), j = 0, 1, . . . , N, are unknown coefficients that we have to find.
From the relation (149) we deduce that the spectral characteristic h(eiλ) of the optimal linear estimate of the

functional ANξ is of the form
h(eiλ) = AN (eiλ)− CN (eiλ)f−1(λ). (150)
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To find equations for determination the unknown coefficients c(j), j = 0, 1, . . . , N, we use the decomposition of
the function f−1(λ) into the Fourier series

f−1(λ) =

∞∑
m=−∞

rme
imλ, (151)

where rm are the Fourier coefficients of the function f−1(λ)

rm =
1

2π

π∫
−π

f−1(λ)e−imλdλ.

Inserting (151) into (150) we obtain the following representation of the spectral characteristic

h(eiλ) =

(
N∑
j=0

a(j)eijλ

)
−

(
N∑
j=0

c(j)eijλ

)( ∞∑
m=−∞

rme
imλ

)
. (152)

It follows from the first condition, h(eiλ) ∈ LN
2 (f), which determines the spectral characteristic, that the Fourier

coefficients of the function h(eiλ) are equal to zero for j = 0, 1, . . . , N , namely

1

2π

π∫
−π

h(eiλ)e−ijλdλ = 0, j = 0, 1, . . . , N.

Using the last relations and (152) we get the following system of equations that determine the unknown
coefficients c(j), j = 0, 1, . . . , N,

a(0)−
N∑
j=0

c(j)r−j = 0;

a(1)−
N∑
j=0

c(j)r1−j = 0;

. . .

a(N)−
N∑
j=0

c(j)rN−j = 0.

(153)

Denote by a⃗N = (a(0), a(1), . . . , a(N)) and let c⃗N = (c(0), c(1), . . . , c(N)) be a vector constructed from the
unknown coefficients c(j), j = 0, 1, . . . , N. Let BN be an (N + 1)× (N + 1) matrix

BN =


B00 B01 . . . B0s

B10 B11 . . . B1s

...
...

. . .
...

BN0 BN1 . . . BNN

 ,

with elements that are Fourier coefficients of the function f−1(λ) :

Bkj =
1

2π

π∫
−π

f−1(λ)e−i(k−j)λdλ = rk−j , k = 0, 1, . . . , N, j = 0, 1, . . . , N.
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Making use the introduced notations we can write equations (153) in the form of equation

a⃗N = BN c⃗N , (154)

Since the matrix BN is reversible [74], we get the formula

c⃗N = B−1
N a⃗N . (155)

Hence, the unknown coefficients c(j), j = 0, 1, . . . , N, are calculated by the formula

c(j) =
(
B−1

N a⃗N
)
j
,

where
(
B−1

N a⃗N
)
j

is the j component of the vector B−1
N a⃗N , and the formula for calculating the spectral

characteristic of the estimate ÂNξ is of the form

h(eiλ) =

(
N∑
j=0

a(j)eijλ

)
−

(
N∑
j=0

(
B−1

N a⃗N
)
j
eijλ

)( ∞∑
m=−∞

rme
imλ

)
. (156)

The mean square error of the estimate of the function can be calculated by the formula

∆(h; f) =
1

2π

π∫
−π

∣∣CN (eiλ)
∣∣2 f−1(λ)dλ =

=

π∫
−π

(
N∑

k=0

c(k)eikλ

)(
N∑
j=0

c(j)e−ijλ

)( ∞∑
m=−∞

rme
imλ

)
dλ =

= ⟨⃗cN , c⃗NBN ⟩ =
⟨
B−1

N a⃗N , a⃗N
⟩
,

(157)

where ⟨·, ·⟩ is the inner product in C(N+1).
Let us summarize our results and present them in the form of a theorem.

Theorem 6.1
Let ξ(j) be a stationary stochastic sequence with the spectral density f(λ) that satisfies the minimality condition
(145). The spectral characteristic h(eiλ) and the mean square error ∆(h, f) of the optimal linear estimate ÂNξ
of the functional ANξ based on observations of the sequence ξ(j) at points of time j ∈ Z\{0, 1, . . . , N} can be
calculated by formulas (156), (157).

Example 1. Consider the problem of linear estimation of the functional A1ξ = aξ(0) + bξ(1) which depends on
the unknown values ξ(0), ξ(1) of the stationary stochastic sequence ξ(j) from observations of the sequence ξ(j)
at points j ∈ Z\{0, 1}. In this case the spectral characteristic (152) of the estimate Â1ξ can be calculated by the
formula

h(f) = a+ beiλ −
(
c(0) + c(1)eiλ

)
f−1(λ), (158)

where f(λ) is a known spectral density, coefficients c(0), c(1) are determined by the system of equations

a = c(0)α+ c(1)β,

b = c(0)β̄ + c(1)α,

where

α =
1

2π

∫ π

π

f−1(λ) dλ,
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β =
1

2π

∫ π

π

eiλf−1(λ) dλ,

The matrix B1 is of the form

B1 =

(
α β
β̄ α

)
,

The determinant D = det(B1) of the matrix B1 is as follows D = det(B1) = α2 − |β|2
We get the following formulas for calculating the coefficients c(0), c(1)

c(0) = (aα− bβ)/(α2 − |β|2),

c(1) = (bα− aβ̄)/(α2 − |β|2).

Thus, the unknown coefficients c(0), c(1) in (158) are determined.
The mean square error of the estimate is calculated by the formula

∆(f) =
[(
|a|2 + |b|2

)
α− (āb+ ab̄)β

]
/(α2 − |β|2). (159)

6.2. Minimax-robust method of interpolation

The traditional methods of estimation of the functional ANξ which depends on the unknown values of a stationary
stochastic sequence ξ(j) can be applied in the case where the spectral density f(λ) of the considered stochastic
sequence ξ(j) is exactly known. In practice, however, we do not have complete information on spectral density of
the sequence. For this reason we apply the minimax(robust) method of estimation of the functional ANξ, that is
we find an estimate that minimizes the maximum of the mean square errors for all spectral densities from a given
class of admissible spectral densities D.

Definition 6.1. For a given class of spectral densities D a spectral density f0(λ) ∈ D is called the least favourable
in D for the optimal linear estimation of the functional ANξ if the following relation holds true

∆(f0) = ∆ (h (f0) ; f0) = max
f∈D

∆(h (f) ; f) .

Definition 6.2. For a given class of spectral densities D the spectral characteristic h0(eiλ) of the optimal linear
estimate of the functional ANξ is called minimax-robust if

h0(eiλ) ∈ HD =
∩
f∈D

LN
2 (f),

min
h∈HD

max
f∈D

∆(h; f) = sup
f∈D

∆
(
h0; f

)
.

It follows from the introduced definitions and the obtained formulas that the following statement holds true.

Lemma 6.1
The spectral density f0(λ) ∈ D is the least favourable in a class of admissible spectral densities D for the optimal
linear estimation of the functional ANξ if the Fourier coefficients of the function f−1

0 (λ) define a matrix B0
N that

determines a solution to the optimization problem

max
f∈D

⟨
B−1

N a⃗N , a⃗N
⟩
=
⟨
(B0

N )−1a⃗N , a⃗N
⟩
. (160)

The minimax spectral characteristic h0 = h(f0) can be calculated by the formula (156) if h(f0) ∈ HD.

The least favourable spectral density f0 and the minimax spectral characteristic h0 form a saddle point of the
function ∆(h; f) on the set HD ×D. The saddle point inequalities

∆(h; f0) ≥ ∆
(
h0; f0

)
≥ ∆

(
h0; f

)
∀f ∈ D, ∀h ∈ HD
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hold true if h0 = h(f0) and h(f0) ∈ HD, where f0 is a solution to the constrained optimization problem

∆̃(f) = −∆
(
h0; f

)
= − 1

2π

π∫
−π

∣∣C0
N (eiλ)

∣∣2
f20 (λ)

f(λ)dλ→ inf, f(λ) ∈ D, (161)

where

C0
N (eiλ) =

N∑
j=0

(
(B0

N )−1a⃗N
)
j
eijλ.

The constrained optimization problem (161) is equivalent to the unconstrained optimization problem

∆D(f) = ∆̃(f) + δ(f |D ) → inf,

where δ(f |D ) is the indicator function of the set D. Solution f0 to this problem is characterized by the condition
0 ∈ ∂∆D(f0), where ∂∆D(f0) is the subdifferential of the convex functional ∆D(f) at point f0. This condition
makes it possible to find the least favourable spectral densities in some special classes of spectral densities D [20],
[70], [72].

Note, that the form of the functional ∆
(
h0; f

)
is convenient for application the Lagrange method of indefinite

multipliers for finding solution to the problem (161). Making use the method of Lagrange multipliers and the form
of subdifferentials of the indicator functions we describe relations that determine least favourable spectral densities
in some special classes of spectral densities (see books [13, 58, 64] for additional details).

6.3. Least favourable spectral densities in the class D−
0

Consider the problem of the optimal estimation of the functional ANξ =
∑N

j=1 a(j)ξ(j) which depends on the
unknown values of a stationary stochastic sequence ξ(j) from observations of the sequence ξ(j) at points of time
j ∈ Z\{0, 1, . . . , N} in the case where the spectral density is from the class

D−
0 =

f(λ)
∣∣∣∣∣∣ 12π

π∫
−π

f−1(λ)dλ ≥ P

 .

Let the sequence a(k), k = 0, 1, . . . , N, that determines the functionalANξ, be strictly positive. To find solutions to
the constrained optimization problem (161) we use the Lagrange multipliers method. With the help of this method
we get the equation

1

2π

π∫
−π

[∣∣C0
N (eiλ)

∣∣2
f20 (λ)

− p20
1

f20 (λ)

]
ρ(f(λ))dλ = 0,

where p20 is a constant (the Lagrange multiplier), ρ(f(λ)) is a variation of the function f(λ). From a generalization
of the Lagrange lemma we get that the Fourier coefficients of the function f−1

0 satisfy the equation∣∣∣∣∣
N∑

k=0

c(k)eikλ

∣∣∣∣∣
2

= p20, (162)

where c(k), k = 0, 1, . . . , N, are components of the vector c⃗N that satisfies the equation

B0
N c⃗N = a⃗N , (163)

the matrix B0
N is determined by the Fourier coefficients of the function f−1

0 (λ)

B0
N (k, j) =

1

2π

π∫
−π

f−1
0 (λ)e−i(k−j)λdλ = r0k−j ,
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k = 0, 1, . . . , N,

j = 0, 1, . . . , N.

The Fourier coefficients rk = r−k, k = 0, 1, . . . , N, satisfy both equation (162) and equation (163). These
coefficients can be found from the equation

B0
N p⃗0

N = a⃗N , p⃗0
N = (p0, 0, . . . , 0).

The last relation can be presented in the form of the system of equations

rkp0 = a(k), k = 0, 1, . . . , N.

From the first equation of the system (for k = 0) we find the unknown value

p0 = a(0)(r0)
−1.

It follows from the extremum condition (160) and the restriction on the spectral densities from the class D−
0 that

the Fourier coefficient

r0 =
1

2π

π∫
−π

f−1
0 (λ)dλ = P.

Thus,
rk = Pa(k)a−1(0), k = 0, 1, . . . , N.

We can represent the function f−1
0 (λ) in the form

f−1
0 (λ) =

N∑
k=−N

r|k|e
ikλ.

Since the sequence a(k), k = 0, 1, . . . , N, is strictly positive, the sequence rk, k = 0, 1, . . . , N , is also strictly
positive and the function f−1

0 (λ) is positive, so it can be represented in the form [25]

f−1
0 (λ) =

∣∣∣∣∣
N∑

k=0

γke
−ikλ

∣∣∣∣∣
2

, λ ∈ [−π, π] ,

Hence, f0(λ) is the spectral density of the autoregressive stochastic sequence of order N generated by the equation

N∑
k=0

γkξ(n− k) = εn, (164)

where εn is a “white noise” sequence.
The minimax spectral characteristic h(f0) of the optimal linear estimate of the functional ANξ can be calculated

by the formula (150), where

CN (eiλ) =

N∑
k=0

c(k)eikλ = p0 = P−1a(0),

namely

h(f0) =

N∑
k=0

a(k)eikλ − P−1a(0)

N∑
k=−N

rke
ikλ =

N∑
k=1

a(k)e−ikλ. (165)

Let the sequence a(N), a(N − 1), . . . , a(0) that determines the functional ANξ be strictly positive. In this case
the Fourier coefficients rk = r−k, k = 0, 1, . . . , N, can be found from the equation

B0
N p⃗0

N = a⃗N , p⃗0
N = (0, . . . , 0, p0).
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From this equation we find the unknown values of

rk = Pa(N − k)a−1(N), k = 0, 1, . . . , N.

The minimax spectral characteristic h(f0) of the optimal linear estimate of the functional ANξ can be calculated
by the formula

h(f0) =

N∑
k=0

a(k)eikλ − P−1a(N)eiNλ
N∑

k=−N

r|k|e
ikλ =

N∑
k=1

a(N − k)e−i(N+k)λ. (166)

Summing up our reasoning we come to conclusion that the following theorem holds true.

Theorem 6.2
The least favourable in the class D−

0 spectral density for the optimal linear estimation of the functional
ANξ determined by strictly positive sequence a(0), a(1), . . . , a(N) is the spectral density of the autoregressive
sequence (164) whose Fourier coefficients are rk = r−k = Pa(k)a−1(0), k = 0, 1, . . . , N . The minimax spectral
characteristics h(f0) is given by formula (165). The least favourable in the classD−

0 spectral density for the optimal
linear estimation of the functional ANξ determined by strictly positive sequence a(N), a(N − 1), . . . , a(0) is the
spectral density of the autoregressive sequence whose Fourier coefficients are rk = r−k = Pa(N − k)a−1(N), k =
0, 1, . . . , N . The minimax spectral characteristics h(f0) is given by formula (166).

Example 2. Consider the problem of the optimal linear estimation of the functional A1ξ = aξ(0) + bξ(1) which
depends on the unknown values ξ(0), ξ(1) of the stationary stochastic sequence {ξ(j) : j ∈ Z} from observations
of the sequence at points of time Z\ {0, 1} .

The least favourable spectral density in the class D−
0 is of the form

f0(λ) = 1
/
|x+ yeiλ|2,

where

x = ±
(
P
(
1±

(
1− 4(b/a)2

)1/2)/
2
)1/2

,

y = ±
(
P
(
1∓

(
1− 4(b/a)2

)1/2)/
2
)1/2

under the condition |b/a| < 1/2. For example, in the case of a = 4, b =
√
3 the least favourable spectral density

f0(λ) and the minimax spectral characteristic are calculated by the formulas

f0(λ) = 4
/
P |

√
3 + eiλ|2,

h(f0) = −
√
3e−iλ.

Under the condition |b/a| > 2 the least favourable spectral density f0(λ) is as follows

f0(λ) = 1
/
|x+ yeiλ|2,

where

x = ±
(
P
(
1±

(
1− 4(a/b)2

)1/2)/
2
)1/2

,

y = ±
(
P
(
1∓

(
1− 4(a/b)2

)1/2)/
2
)1/2

.

For example, in the case of a =
√
3, b = 4 the least favourable spectral density f0(λ) and the minimax spectral

characteristic are calculated by the formulas

f0(λ) = 4
/
P |1 +

√
3eiλ|2,

h(f0) = −
√
3e2iλ.
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6.4. Least favourable spectral densities in the class DM

Consider the problem of the optimal estimation of the functional ANξ =
∑N

j=1 a(j)ξ(j) which depends on the
unknown values of a stationary stochastic sequence ξ(j) from observations of the sequence ξ(j) at points of time
j ∈ Z\{0, 1, . . . , N} in the case where the spectral density is from the set of spectral densities with restrictions on
the moments of the function f−1(λ). Let

DM =

f(λ)
∣∣∣∣∣∣ 12π

π∫
−π

f−1(λ) cos(mλ)dλ = rm ,m = 0, 1, . . . ,M

 ,

where rm,m = 0, 1, . . . ,M is a strictly positive sequence. There is an infinite number of functions in the class DM

[25] and the function

f−1(λ) =

M∑
m=−M

r|m|e
imλ > 0, λ ∈ [−π, π] .

To find solutions to the constrained optimization problem (161) for the set DM of admissible spectral densities we
use the Lagrange multipliers method and get the equation∣∣∣∣∣

N∑
k=0

c(k)eikλ

∣∣∣∣∣
2

=

M∑
m=0

αm cos(mλ) =

∣∣∣∣∣
M∑

m=0

p(m)eimλ

∣∣∣∣∣
2

, (167)

where αm,m = 0, 1, . . . ,M are the Lagrange multipliers and c(k), k = 0, . . . , N are solutions to the equation
B0

N c⃗N = a⃗N .
Consider two cases: M ≥ N and M < N. Let M ≥ N. In this case the given Fourier coefficients rm define

the matrix B0
N and the optimization problem (160) is degenerate. If we take p(N + 1) = · · · = p(M) = 0 and

components (p(0), . . . , p(N)) of the vector p⃗N find from the equation B0
N p⃗N = a⃗N then the relation (167) holds

true. Thus the least favorable is every density f(λ) ∈ DM and the density of the autoregression stochastic sequence

f0(λ) = 1/

M∑
m=−M

r|m|e
imλ = 1/

∣∣∣∣∣
M∑
k=0

γke
ikλ

∣∣∣∣∣ (168)

is least favourable, too.
Let M < N. Then the matrix BN is determined by the known rm, m = 0, 1, . . . ,M and the unknown rm,

m =M + 1, . . . , N , Fourier coefficients of the function f−1(λ).
The unknown coefficients p(k), k = 0, 1, . . . ,M , and rm, m =M + 1, . . . , N , can be found from the

equation BN p⃗
0
N = a⃗N with p0N = (p(0), . . . , p(M), 0, . . . , 0), or from the equation BN p⃗

N
0 = a⃗N with pN0 =

(0, . . . , 0, p(M), p(M − 1), . . . , p(0)).
If the sequence rm,m = 0, 1, . . . , N , that is constructed from the strictly positive sequence rm,m = 0, 1, . . . ,M ,

and the calculated coefficients rm, m =M + 1, . . . , N , is also strictly positive, then the least favourable spectral
density f0(λ) is determined by the Fourier coefficients rm, m = 0, 1, . . . , N , of the function f−1

0 (λ)

f0(λ) = 1/

N∑
m=−N

r|m|e
imλ = 1/

∣∣∣∣∣
N∑

k=0

γke
ikλ

∣∣∣∣∣ (169)

Let us summarize our results and present them in the form of a theorem.

Theorem 6.3
The least favourable spectral density in the class DM for the optimal linear estimation of the functional ANξ in the
case where M ≥ N is the spectral density (168) of the autoregression stochastic sequence of order M determined
by coefficients rm,m = 0, 1, . . . ,M. If M < N and solutions rm, m =M + 1, . . . , N , to the equation BN p⃗

0
N =
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a⃗N with p0N = (p(0), . . . , p(M), 0, . . . , 0), or to the equation BN p⃗
N
0 = a⃗N with pN0 = (0, . . . , 0, p(M), p(M −

1), . . . , p(0)) together with coefficients rm, m = 0, 1, . . . ,M , form a strictly positive sequence, the least favourable
spectral density in DM is the density (169) of the autoregression stochastic sequence of the order N. The minimax
characteristic of the estimate is calculated by formula (156).

Similar statement holds true for the set of spectral densities

DM,R =

f(λ)
∣∣∣∣∣∣ 12π

π∫
−π

f−1(λ) cos(wλ)dλ = rm , m = 0, 1, . . . ,M ; r⃗M ∈ R

 ,

where R is a convex compact which have a strictly positive sequence as an interior point.

6.5. Least favourable spectral densities in the class Du−
v

Consider the problem of the optimal estimation of the functional ANξ =
∑N

j=1 a(j)ξ(j) which depends on the
unknown values of a stationary stochastic sequence ξ(j) from observations of the sequence ξ(j) at points of time
j ∈ Z\{0, 1, . . . , N} in the case where the spectral density is from the set of spectral densities

Du−
v =

f(λ)
∣∣∣∣∣∣0 ≤ v(λ) ≤ f(λ) ≤ u(λ),

1

2π

π∫
−π

f−1(λ)dλ = P

 ,

where v(λ), u(λ) are given bounded spectral densities. Let the sequence {a(0), a(1), . . . , a(N)} (or the sequence
{a(N), a(N − 1), . . . , a(0)}) be strictly positive. To find solutions to the constrained optimization problem (161)
for the set Du−

v of admissible spectral densities we use the condition 0 ∈ ∂∆D(f0). It follows from the condition
0 ∈ ∂∆D(f0) for D = Du−

v that the Fourier coefficients of the function f−1
0 satisfy both equation

B0
N c⃗N = a⃗N

and the equation ∣∣∣∣∣
N∑

k=0

((
B0

N

)−1
a⃗N

)
k
eikλ

∣∣∣∣∣
2

= ψ1(λ) + ψ2(λ) + p−2
0 ,

where ψ1(λ) ≥ 0 and ψ1(λ) = 0 if f0(λ) ≥ v(λ); ψ2(λ) ≤ 0 and ψ2(λ) = 0 if f0(λ) ≤ u(λ).
Therefore, in the case where v(λ) ≤ f0(λ) ≤ u(λ), the function f−1

0 (λ) is of the form

f−1
0 (λ) =

N∑
k=−N

r|k|e
ikλ =

∣∣∣∣∣
N∑

k=0

γke
ikλ

∣∣∣∣∣
2

,

with rk = Pa(k)a−1(0), in the case where the sequence {a(0), a(1), . . . , a(N)} is strictly positive, and with
rk = r−k = Pa(N − k)a−1(N), in the case where the sequence {a(N), a(N − 1), . . . , a(0)} is strictly positive.

The least favourable in the class D = Du−
v is the density of the autoregression stochastic sequence of the order

N if the following inequality holds true

v−1(λ) ≥
N∑

k=0

(rke
ikλ + r−ke

−ikλ) =

∣∣∣∣∣
N∑

k=0

γke
ikλ

∣∣∣∣∣
2

≥ u−1(λ), λ ∈ [−π, π] . (170)

In general case the least favourable density is of the form

f0(λ) = max

v(λ),min

u(λ),
∣∣∣∣∣p0

N∑
k=0

((
B0

N

)−1
a⃗N

)
k
eikλ

∣∣∣∣∣
−2

 . (171)

The following theorem holds true.
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Theorem 6.4
If the sequence {a(0), a(1), . . . , a(N)} is strictly positive and coefficients rk = r−k = Pa(k)a−1(0) , k =
0, . . . , N , satisfy the inequality (170) (or the sequence {a(N), a(N − 1), . . . , a(0)} is strictly positive and
coefficients rk = r−k = Pa(N − k)a−1(N) satisfy the inequality (170)), then the least favourable in the classDu−

v

spectral density for the optimal linear estimate of the functional ANξ is density of the autoregression stochastic
sequence (164) of orderN . The minimax characteristic h(f0) of the estimate can be calculated by the formula (165).
If the inequality (170) is not satisfied, then the least favourable spectral density in Du−

v is determined by relation
(171) and the extremum condition (160). The minimax characteristic of the estimate is calculated by formula (156).

6.6. Conclusions

In this section we propose methods of solution of the problem of the mean-square optimal linear estimation of the

functional ANξ =
N∑
j=0

a(j)ξ(j) which depends on the unknown values of the stationary stochastic sequence ξ(j).

Estimates are based on observations of the sequence ξ(j) at points j ∈ Z\{0, 1, . . . , N}. We provide formulas for
calculating the values of the mean square error and the spectral characteristic of the optimal linear estimate of the
functional in the case of spectral certainty, where the spectral density of the sequence ξ(j) is exactly known. In
the case of spectral uncertainty, where the spectral density is unknown, but a set of admissible spectral densities
is given, the minimax approach is applied to estimation of the functional. We obtain formulas that determine
the least favourable spectral densities and the minimax spectral characteristics of the optimal linear estimates of
the functional ANξ for concrete classes of admissible spectral densities. It is shown that spectral densities the
autoregressive stochastic sequences are the least favourable in some classes of spectral densities.

The minimax-robust approach to the problem of estimation of one missed value of the stationary stochastic
sequences based on convex optimization methods was initiated in papers by Franke [9, 10]. See also papers by
Hosoya [19], Taniguchi [75], and survey by Kassam and Poor [23].

For the relative results on the mean-square optimal linear interpolation of linear functionals for stationary
stochastic sequences and processes see papers by Moklyachuk [50] – [57], book by Moklyachuk and
Masyutka [64], papers by Moklyachuk and Sidei[67], Moklyachuk and Ostapenko[65].

7. Interpolation problem for stationary sequences from observations with noise

In this section we consider the problem of the mean-square optimal estimation of the linear functional ANξ =
N∑
j=0

a(j)ξ(j) which depends on the unknown values of a stationary stochastic sequence ξ(j), j ∈ Z, from

observations of the sequence ξ(j) + η(j) at points of time j ∈ Z\{0, 1, . . . , N}. The problem is investigated in
the case of spectral certainty, where the spectral densities of the stationary stochastic sequences ξ(j) and η(j) are
exactly known. In this case the classical Hilbert space projection method of linear estimation of the functional is
applied. Formulas are derived for calculation the value of the mean square error and the spectral characteristic
of the mean-square optimal estimate of the linear functional. In in the case of spectral uncertainty, where the
spectral densities of the stationary stochastic sequences ξ(j) and η(j) are not exactly known, but classes of
admissible spectral densities are given, the minimax-robust procedure to linear estimation of the functional is
applied. Relations which determine the least favourable spectral densities and the minimax spectral characteristics
are proposed for some special sets of admissible spectral densities.

7.1. The classical Hilbert space projection method of linear interpolation

Let ξ(j), j ∈ Z, and η(j), j ∈ Z, be (wide sense) stationary stochastic sequences with zero mathematical
expectations Eξ(j) = 0, Eη(j) = 0. The correlation functions Rξ(k) = Eξ(j + k)ξ(j) and Rη(k) = Eη(j +
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k)η(j) of the stationary stochastic sequences ξ(j), j ∈ Z, and η(j), j ∈ Z, admit the spectral representations [12]

Rξ(k) =

π∫
−π

eikλF (dλ), Rη(k) =

π∫
−π

eikλG(dλ),

where F (dλ) and G(dλ) are the spectral measures of the sequences. We will consider stationary stochastic
sequences with absolutely continuous spectral measures F (dλ) and G(dλ) and the correlation functions of the
form

Rξ(k) =
1

2π

π∫
−π

eikλf(λ)dλ, Rη(k) =
1

2π

π∫
−π

eikλg(λ)dλ,

where f(λ) and g(λ) are the spectral density functions of the sequences ξ(j), j ∈ Z, and η(j), j ∈ Z,
correspondingly.

We will suppose that the spectral density functions f(λ) and g(λ) satisfy the minimality condition

π∫
−π

1

f(λ) + g(λ)
dλ <∞. (172)

Under this condition the error-free interpolation of the unknown values of the sequence ξ(j) + η(j) is impossible
[73].

The stationary stochastic sequences ξ(j) and η(j) admit the spectral representations [12, 22]

ξ(j) =

π∫
−π

eijλdZξ(λ), η(j) =

π∫
−π

eijλdZη(λ),

where Zξ(dλ) and Zη(dλ) are orthogonal stochastic measure of the sequences ξ(j) and η(j) such that

EZξ(∆1)Zξ(∆2) = F (∆1 ∩∆2) =
1

2π

∫
∆1∩∆2

f(λ)dλ,

EZη(∆1)Zη(∆2) = G(∆1 ∩∆2) =
1

2π

∫
∆1∩∆2

g(λ)dλ.

Consider the problem of the mean-square optimal estimation of the linear functional

ANξ =

N∑
j=0

a(j)ξ(j)

which depends on the unknown values of a stationary stochastic sequence ξ(j), j ∈ Z, from observations of the
sequence ξ(j) + η(j) at points of time j ∈ Z\{0, 1, . . . , N}, where η(j), j ∈ Z, is uncorrelated with ξ(j), j ∈ Z,
stationary stochastic sequence.

It follows from the spectral decomposition of the sequence ξ(j) that we can represent the functional ANξ in the
form

ANξ =

π∫
−π

AN (eiλ)Zξ(dλ), (173)

where

AN (eiλ) =

N∑
j=0

a(j)eijλ.
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Denote by ÂNξ the mean square optimal linear estimate of the functional ANξ from observations of the

sequence ξ(j) + η(j) at points of time j ∈ Z\{0, 1, . . . , N}. Denote by ∆(f, g) = E
∣∣∣ANξ − ÂNξ

∣∣∣2 the mean

square error of the estimate ÂNξ. To find the estimate ÂNξ we will use the Hilbert space projection method
proposed by A. N. Kolmogorov [24]. We will consider random values ξ(j), j ∈ Z, and η(j), j ∈ Z, as elements
of the Hilbert space H = L2(Ω,F , P ) of complex valued random variables with zero first moment, Eξ = 0, finite
second moment, E|ξ|2 <∞, and the inner product (ξ, η) = Eξη.

Denote by HN (ξ + η) the subspace of the Hilbert space H = L2(Ω,F , P ) generated by elements {ξ(j) + η(j) :
j ∈ Z\{0, 1, . . . , N}. Denote by L2(f + g) be the Hilbert space of complex-valued functions that are square-
integrable with respect to the measure whose density is f(λ) + g(λ). Denote by LN

2 (f + g) the subspace of
L2(f + g) generated by functions {eijλ, j ∈ Z\{0, 1, . . . , N}}.

The mean square optimal linear estimate ÂNξ of the functional ANξ from observations of the sequence
ξ(j) + η(j) at points of time j ∈ Z\{0, 1, . . . , N} is an element of the HN (ξ + η). It can be represented in the
form

ÂNξ =

π∫
−π

h(eiλ)(Zξ(dλ) + Zη(dλ)), (174)

where h(eiλ) ∈ LN
2 (f + g) is the spectral characteristic of the estimate ÂNξ.

The mean square error ∆(h; f, g) of the estimate ÂNξ is given by the formula

∆(h; f, g) = E
∣∣∣ANξ − ÂNξ

∣∣∣2 =
1

2π

π∫
−π

∣∣AN (eiλ)− h(eiλ)
∣∣2 f(λ)dλ+

1

2π

π∫
−π

∣∣h(eiλ)∣∣2 g(λ)dλ.
The Hilbert space projection method proposed by A. N. Kolmogorov [24] makes it possible to find the spectral

characteristic h(eiλ) and the mean square error ∆(h; f, g) of the optimal linear estimate of the functional ANξ
in the case where the spectral densities f(λ) and g(λ) of the sequences ξ(j), j ∈ Z, and η(j), j ∈ Z, are exactly
known and the minimality condition (172) is satisfied. The spectral characteristic can be found from the following
conditions:

1)ÂNξ ∈ HN (ξ + η),

2)ANξ − ÂNξ⊥HN (ξ + η).

It follows from the second condition that for any j ∈ Z\{0, 1, . . . , N} the following equations should be satisfied

E
[(
ANξ − ÂNξ

)(
ξ(j) + η(j)

)]
=

=
1

2π

π∫
−π

(
AN (eiλ)− h(eiλ)

)
e−ijλf(λ)dλ− 1

2π

π∫
−π

h(eiλ)e−ijλg(λ)dλ = 0.

The last equations are equivalent to equations

1

2π

π∫
−π

[
AN (eiλ)f(λ)− h(eiλ)(f(λ) + g(λ))

]
e−ijλdλ = 0, j ∈ Z\{0, 1, . . . , N}.

It follows from these equations that the function
[
AN (eiλ)f(λ)− h(eiλ)(f(λ) + g(λ))

]
is of the form

AN (eiλ)f(λ)− h(eiλ)(f(λ) + g(λ)) = CN (eiλ), (175)

CN (eiλ) =

N∑
j=0

c(j)eijλ,
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where c(j), j = 0, 1, . . . , N, are unknown coefficients that we have to find.
From the relation (175) we deduce that the spectral characteristic h(eiλ) of the optimal linear estimate of the

functional ANξ is of the form

h(eiλ) =
AN (eiλ)f(λ)− CN (eiλ)

f(λ) + g(λ)
=

= AN (eiλ)−AN (eiλ)g(λ) + CN (eiλ)

f(λ) + g(λ)
.

(176)

It follows from the first condition, which determines the spectral characteristic h(eiλ) ∈ LN
2 (f + g) of the

optimal linear estimate of the functional ANξ, that the Fourier coefficients of the function h(eiλ) are equal to
zero for j = 0, 1, . . . , N , namely

1

2π

π∫
−π

h(eiλ)e−ijλdλ = 0, j = 0, 1, . . . , N.

Using the last relations and (176) we get the following system of equations

π∫
−π

(
AN (eiλ)

f(λ)

f(λ) + g(λ)
− CN (eiλ)

f(λ) + g(λ)

)
e−ijλdλ = 0, j = 0, 1, . . . , N.

The last equations can be written in the form

N∑
k=0

a(k)

π∫
−π

ei(k−j)λf(λ)

f(λ) + g(λ)
dλ−

N∑
k=0

c(k)

π∫
−π

ei(k−j)λ

f(λ) + g(λ)
dλ = 0, j = 0, 1, . . . , N. (177)

Let us introduce the following notations

RN
j,k =

1

2π

π∫
−π

e−i(j−k)λ f(λ)

f(λ) + g(λ)
dλ,

BN
j,k =

1

2π

π∫
−π

e−i(j−k)λ 1

f(λ) + g(λ)
dλ,

QN
j,k =

1

2π

π∫
−π

e−i(j−k)λ f(λ)g(λ)

f(λ) + g(λ)
dλ.

Making use the introduced notations we can write equations (177) in the form

N∑
k=0

RN
j,ka(k) =

N∑
k=0

BN
j,kc(k), j = 0, 1, . . . , N.

The derived equations can be written in the matrix form

RNaN = BNcN ,

where aN = (a(0), a(1), . . . , a(N)) is a vector constructed from the coefficients that determine the functional
ANξ, cN = (c(0), c(1), . . . , c(N)) is a vector constructed from the unknown coefficients c(k), k = 0, 1, . . . , N ,
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BN and RN are linear operators in CN+1, which are determined by matrices with elements (BN )j,k = BN
j,k,

(RN )j,k = RN
j,k, j, k = 0, 1, . . . , N.

Since the matrix BN is reversible [74], we get the formula

cN = B−1
N RNaN , (178)

Hence, the unknown coefficients c(j), j = 0, 1, . . . , N, are calculated by the formula

c(j) =
(
B−1

N RNaN
)
j
,

where
(
B−1

N RNaN
)
j

is the j-th component of the vector B−1
N RNaN , and the formula for calculating the spectral

characteristic of the estimate ÂNξ is of the form

h(eiλ) = AN (eiλ)
f(λ)

f(λ) + g(λ)
−

N∑
k=0

(B−1
N RNaN )ke

ikλ

f(λ) + g(λ)
.

(179)

The mean square error of the estimate of the function can be calculated by the formula

∆(h; f, g) = E
∣∣∣ANξ − ÂNξ

∣∣∣2 =
1

2π

π∫
−π

∣∣∣∣AN (eiλ)g(λ) +
N∑

k=0

(B−1
N RNaN )ke

ikλ

∣∣∣∣2
(f(λ) + g(λ))2

f(λ)dλ

+
1

2π

π∫
−π

∣∣∣∣AN (eiλ)f(λ)−
N∑

k=0

(B−1
N RNaN )ke

ikλ

∣∣∣∣2
(f(λ) + g(λ))2

g(λ)dλ

= ⟨RNaN ,B
−1
N RNaN ⟩+ ⟨QNaN ,aN ⟩,

(180)

where QN is a linear operator in CN+1, which is determined by matrix with elements (QN )j,k = QN
j,k, j, k =

0, 1, . . . , N.
Let us summarize our results and present them in the form of a theorem.

Theorem 7.1
Let ξ(j) and η(j) be uncorrelated stationary stochastic sequences with the spectral densities f(λ) and g(λ) that
satisfy the minimality condition (172). The spectral characteristic h(eiλ) and the mean square error ∆(h; f, g) of
the optimal linear estimate ÂNξ of the functional ANξ based on observations of the sequence ξ(j) + η(j) at points
of time j ∈ Z\{0, 1, . . . , N} can be calculated by formulas (179), (180).

7.2. Minimax-robust method of interpolation

The traditional methods of estimation of the functional ANξ which depends on the unknown values of a stationary
stochastic sequence ξ(j) can be applied in the case where the spectral densities f(λ) and g(λ) of the considered
stochastic sequences ξ(j) and η(j) are exactly known. In practise, however, we do not have complete information
on spectral densities of the sequences. For this reason we apply the minimax(robust) method of estimation of the
functional ANξ, that is we find an estimate that minimizes the maximum of the mean square errors for all spectral
densities from the given class of admissible spectral densities D.

Definition 7.1. For a given class of spectral densitiesD = Df ×Dg the spectral densities f0(λ) ∈ Df , g0(λ) ∈ Dg

are called the least favourable in D for the optimal linear estimation of the functional ANξ if the following relation
holds true

∆(f0, g0) = ∆ (h (f0, g0) ; f0, g0) = max
(f,g)∈Df×Dg

∆(h (f, g) ; f, g) .
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Definition 7.2. For a given class of spectral densities D = Df ×Dg the spectral characteristic h0(eiλ) of the
optimal linear estimate of the functional ANξ is called minimax-robust if

h0(eiλ) ∈ HD =
∩

(f,g)∈Df×Dg

LN
2 (f + g),

min
h∈HD

max
(f,g)∈D

∆(h; f, g) = sup
(f,g)∈D

∆
(
h0; f, g

)
.

It follows from the introduced definitions and the obtained formulas that the following statement holds true.

Lemma 7.1
The spectral densities f0(λ) ∈ Df , g0(λ) ∈ Dg are the least favourable in the class of admissible spectral densities
D = Df ×Dg for the optimal linear estimate of the functional ANξ if the Fourier coefficients of the functions

(f0(λ) + g0(λ))
−1, f0(λ)(f0(λ) + g0(λ))

−1, f0(λ)g0(λ)(f0(λ) + g0(λ))
−1

define operators B0
N ,R

0
N ,Q

0
N that determine a solution to the optimization problem

max
(f,g)∈Df×Dg

⟨RNaN ,B
−1
N RNaN ⟩+ ⟨QNaN ,aN ⟩

= ⟨R0
NaN , (B

0
N )−1R0

NaN ⟩+ ⟨Q0
NaN ,aN ⟩.

(181)

The minimax spectral characteristic h0 = h(f0, g0) can be calculated by the formula (179) if h(f0, g0) ∈ HD.

The least favourable spectral densities f0(λ), g0(λ) and the minimax spectral characteristic h0 = h(f0, g0) form
a saddle point of the function ∆(h; f, g) on the set HD ×D. The saddle point inequalities

∆(h; f0, g0) ≥ ∆
(
h0; f0, g0

)
≥ ∆

(
h0; f, g

)
∀h ∈ HD, ∀f ∈ Df , ∀g ∈ Dg

hold true if h0 = h(f0, g0) and h(f0, g0) ∈ HD,where (f0, g0) is a solution to the constrained optimization problem

sup
(f,g)∈Df×Dg

∆(h(f0, g0); f, g) = ∆ (h(f0, g0); f0, g0) , (182)

where

∆(h(f0, g0); f, g) =
1

2π

π∫
−π

∣∣AN (eiλ)g0(λ) + C0
N (eiλ)

∣∣2
(f0(λ) + g0(λ))2

f(λ)dλ

+
1

2π

π∫
−π

∣∣AN (eiλ)f0(λ)− C0
N (eiλ)

∣∣2
(f0(λ) + g0(λ))2

g(λ)dλ,

C0
N (eiλ) =

N∑
j=0

((B0
N )−1R0

NaN )je
ijλ,

The constrained optimization problem (182) is equivalent to the unconstrained optimization problem

∆D(f, g) = −∆(h(f0, g0); f, g) + δ(f, g |Df ×Dg ) → inf, (183)

where δ(f, g |Df ×Dg ) is the indicator function of the set D = Df ×Dg. Solution (f0, g0) to the problem (183) is
characterized by the condition 0 ∈ ∂∆D(f0, g0), where ∂∆D(f0, g0) is the subdifferential of the convex functional
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∆D(f, g) at point (f0, g0). This condition makes it possible to find the least favourable spectral densities in some
special classes of spectral densities D [20], [70], [72].

Note, that the form of the functional ∆(h(f0, g0); f, g) is convenient for application the Lagrange method of
indefinite multipliers for finding solution to the problem (182). Making use the method of Lagrange multipliers
and the form of subdifferentials of the indicator functions we describe relations that determine least favourable
spectral densities in some special classes of spectral densities (see books [13, 58, 64] for additional details).

Lemma 7.2
Let (f0, g0) be a solution to the optimization problem (183). The spectral densities f0(λ), g0(λ) are the least
favourable in the class D = Df ×Dg, and the spectral characteristic h0 = h(f0, g0) is minimax for the optimal
estimate of the functional ANξ if h(f0, g0) ∈ HD.

7.3. Least favourable spectral densities in the class D0
f ×D0

g

Consider the problem of the optimal estimation of the functional ANξ =
∑N

j=1 a(j)ξ(j) which depends on the
unknown values of a stationary stochastic sequence ξ(j) from observations of the sequence ξ(j) + η(j) at points
of time j ∈ Z\{0, 1, . . . , N} in the case where the spectral densities f(λ), g(λ) are from the class D = D0

f ×D0
g ,

where

D0
f =

f(λ)
∣∣∣∣∣∣ 12π

π∫
−π

f(λ)dλ ≤ P1

 ,

D0
g =

g(λ)
∣∣∣∣∣∣ 12π

π∫
−π

g(λ)dλ ≤ P2

 .

Let the densities f0(λ) ∈ D0
f , g0(λ) ∈ D0

g and the functions hf (f0, g0), hg(f0, g0), which are determined by the
relations

hf (f0, g0) =

∣∣AN (eiλ)g0(λ) + C0
N (eiλ)

∣∣2
(f0(λ) + g0(λ))2

, (184)

hg(g0, g0) =

∣∣AN (eiλ)f0(λ)− C0
N (eiλ)

∣∣2
(f0(λ) + g0(λ))2

, (185)

be bounded. In this case the functional

∆(h(f0, g0); f, g) =
1

2π

π∫
−π

hf (f0, g0)f(λ)dλ+
1

2π

π∫
−π

hg(f0, g0)g(λ)dλ

is linear and continuous on the space L1 × L1 and we can apply the method of Lagrange multipliers to find solution
to the optimization problem (183). We get the following relations that determine the least favourable spectral
densities f0 ∈ D0

f , g0 ∈ D0
g

− 1

2π

π∫
−π

hf (f0, g0)ρ(f(λ))dλ− 1

2π

π∫
−π

hg(f0, g0)ρ(g(λ))dλ

+ α1
1

2π

π∫
−π

ρ(f(λ))dλ+ α2
1

2π

π∫
−π

ρ(g(λ))dλ = 0,

where ρ(f(λ)) and ρ(g(λ)) are variations of the functions f(λ) and g(λ), the constants α1 ≥ 0 and α2 ≥ 0. From
this relation we get that the least favourable spectral densities f0(λ) ∈ D0

f , g0(λ) ∈ D0
g satisfy equations∣∣AN (eiλ)g0(λ) + C0

N (eiλ)
∣∣ = α1(f0(λ) + g0(λ)), (186)
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∣∣AN (eiλ)f0(λ)− C0
N (eiλ)

∣∣ = α2(f0(λ) + g0(λ)). (187)

Note, that α1 ̸= 0 in the case where

1

2π

π∫
−π

f0(λ)dλ = P1,

and α2 ̸= 0 in the case where

1

2π

π∫
−π

g0(λ)dλ = P2.

Summing up our reasoning we come to conclusion that the following theorem holds true.

Theorem 7.2
Let the spectral densities f0(λ) ∈ D0

f and g0(λ) ∈ D0
g satisfy the minimality condition (172) and let the functions

hf (f0, g0) and hg(f0, g0), determined by the formulas (184), (185), be bounded. The functions f0(λ), g0(λ),
which give solution to the system of equations (186), (187) are the least favourable spectral densities in the class
D = D0

f ×D0
g , if they determine a solution to the optimization problem (181). The function h0(eiλ), determined

by the formula (176), is minimax-robust spectral characteristic of the optimal linear estimate of the functionalANξ.

Theorem 7.3
Let the spectral density f(λ) be known and fixed, and let the spectral density g0(λ) ∈ D0

g . Let the functions f(λ)
and g0(λ) be such that the function (f(λ) + g0(λ))

−1 is integrable and let the function hg(f, g0), determined by
the formula (185), be bounded. The spectral density g0(λ) is the least favourable spectral densities in the class D0

g

for the optimal linear estimate of the functional ANξ, if it is of the form

g0(λ) = max
{
0, α−1

2

∣∣AN (eiλ)f(λ)− C0
N (eiλ)

∣∣− f(λ)
}

and the functions f(λ), g0(λ) determine a solution to the optimization problem (181). The function h0(eiλ),
determined by the formula (176), is minimax-robust spectral characteristic of the optimal linear estimate of the
functional ANξ.

Theorem 7.4
Let the spectral density f0(λ) ∈ D0

f , let the function f−1
0 (λ) be integrable, and let the function h(f0), determined

by the formula (150), be bounded. The spectral density f0(λ) is the least favourable spectral densities in the class
D0

f for the optimal linear estimate of the functional ANξ, based on observations of the sequence ξ(j) at points of
time j ∈ Z\{0, 1, . . . , N}, if it satisfies the relation

f0(λ) = α1

∣∣C0
N (eiλ)

∣∣
and f0(λ) determine a solution to the optimization problem (160). The function h0(eiλ), determined by the formula
(150), is minimax-robust spectral characteristic of the optimal linear estimate of the functional ANξ.

7.4. Least favourable spectral densities in the class Du
v ×Dε

Consider the problem of the optimal estimation of the functional ANξ =
∑N

j=1 a(j)ξ(j) which depends on the
unknown values of a stationary stochastic sequence ξ(j) from observations of the sequence ξ(j) + η(j) at points
of time j ∈ Z\{0, 1, . . . , N} in the case where the spectral densities f(λ), g(λ) are from the class D = Du

v ×Dε,
where

Du
v =

f(λ)
∣∣∣∣∣∣v(λ) ≤ f(λ) ≤ u(λ),

1

2π

π∫
−π

f(λ)dλ ≤ P1

 ,

Dε =

g(λ)
∣∣∣∣∣∣g(λ) = (1− ε)g1(λ) + εw(λ),

1

2π

π∫
−π

g(λ)dλ ≤ P2

 .
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Here the spectral densities v(λ), u(λ), g1(λ) are known and fixed and the densities v(λ) and u(λ) are bounded.
Let the densities f0(λ) ∈ Du

v , g0(λ) ∈ Dε determine the bounded functions hf (f0, g0), hg(f0, g0) with the help
of formulas (184), (185). Then from the condition 0 ∈ ∂∆Df,g

(f0, g0) we derive the following equations that
determine the least favourable spectral densities∣∣AN (eiλ)g0(λ) + C0

N (eiλ)
∣∣ = (f0(λ) + g0(λ))(γ1(λ) + γ2(λ) + α−1

1 ), (188)∣∣AN (eiλ)f0(λ)− C0
N (eiλ)

∣∣ = (f0(λ) + g0(λ))(φ(λ) + α−1
2 ). (189)

Here γ1 ≤ 0 and γ1 = 0 in the case f0(λ) ≥ v(λ); γ2 ≥ 0 and γ2 = 0 in the case f0(λ) ≤ u(λ); φ(λ) ≤ 0 and
φ(λ) = 0 in the case g0(λ) ≥ (1− ε)g1(λ).

The following theorems hold true.

Theorem 7.5
Let the spectral densities f0(λ) ∈ Du

v , g0(λ) ∈ Dε satisfy the minimality condition (172) and let the functions
hf (f0, g0) and hg(f0, g0), determined by the formulas (184), (185), be bounded. The functions f0(λ), g0(λ), which
give solution to the system of equations (188), (189) are the least favourable spectral densities in the classDu

v ×Dε,
if they determine a solution to the optimization problem (181). The function h0(eiλ), determined by the formula
(176), is minimax-robust spectral characteristic of the optimal linear estimate of the functional ANξ.

Theorem 7.6
Let the spectral density f(λ) be known, and let the spectral density g0(λ) ∈ Dε. Let the function f(λ) + g0(λ)
satisfy the minimality condition (172), and let the function hg(f, g0), determined by the formula (185), be bounded.
The spectral density g0(λ) is the least favourable spectral densities in the class Dε for the optimal linear estimate
of the functional ANξ, if it is of the form

g0(λ) = max
{
(1− ε)g1(λ), α2

∣∣AN (eiλ)f(λ)− C0
N (eiλ)

∣∣− f(λ)
}

and the functions f(λ), g0(λ) determine a solution to the optimization problem (181). The function h0(eiλ),
determined by the formula (176), is minimax-robust spectral characteristic of the optimal linear estimate of the
functional ANξ.

Theorem 7.7
Let the spectral density f0(λ) ∈ Du

v , let the function f−1
0 (λ) be integrable, and let the function h(f0), determined

by the formula (150), be bounded. The spectral density f0(λ) is the least favourable spectral densities in the class
Du

v for the optimal linear estimate of the functional ANξ, based on observations of the sequence ξ(j) at points of
time j ∈ Z\{0, 1, . . . , N}, if it satisfies the relation

f0(λ) = max
{
v(λ),min

{
u(λ), α1

∣∣C0
N (eiλ)

∣∣}}
and f0(λ) determine a solution to the optimization problem (160). The function h0(eiλ), determined by the formula
(150), is minimax-robust spectral characteristic of the optimal linear estimate of the functional ANξ.

7.5. Least favourable spectral densities in the class D2ε1 ×D1ε2

Consider the problem of the optimal estimation of the functional ANξ =
∑N

j=1 a(j)ξ(j) which depends on the
unknown values of a stationary stochastic sequence ξ(j) from observations of the sequence ξ(j) + η(j) at points
of time j ∈ Z\{0, 1, . . . , N} in the case where the spectral densities f(λ), g(λ) are from the class D2ε1 ×D1ε2 ,
which describe the models of “ε-neighbourhood” of spectral densities in the space L2 × L1. Let

D2ε1 =

f(λ)
∣∣∣∣∣∣ 12π

π∫
−π

|f(λ)− f1(λ)|2 dλ ≤ ε1


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be “ε-neighbourhood” in the space L2 of a given bounded spectral density f1(λ), and let

D1ε2 =

g(λ)
∣∣∣∣∣∣ 12π

π∫
−π

|g(λ)− g1(λ)| dλ ≤ ε2


be “ε-neighbourhood in the space L1 of a given bounded spectral density g1(λ).

Let the spectral densities f0(λ) ∈ D2ε1 , g0(λ) ∈ D1ε2 determine the bounded functions hf (f0, g0), hg(f0, g0)
with the help of formulas (184), (185). Then from the condition 0 ∈ ∂∆Df,g

(f0, g0) for D = D2ε1 ×D1ε2 we
derive the following equations that determine the least favourable spectral densities∣∣AN (eiλ)g0(λ) + C0

N (eiλ)
∣∣2 = (f0(λ) + g0(λ))

2(f0(λ)− f1(λ))α1, (190)∣∣AN (eiλ)f0(λ)− C0
N (eiλ)

∣∣2 = (f0(λ) + g0(λ))
2Ψ(λ)α2, (191)

where |Ψ(λ)| ≤ 1 and Ψ(λ) = sign(g0(λ)− g1(λ)), in the case g0(λ) ̸= g1(λ), α1, α2 are constants.
Equations (190), (191) with the optimization problem (160) and the normalising conditions

1

2π

π∫
−π

|f(λ)− f1(λ)|2 dλ = ε1 (192)

1

2π

π∫
−π

|g(λ)− g1(λ)| dλ = ε2 (193)

determine the least favourable spectral densities in the class D = D2ε1 ×D1ε2 .
The following theorems hold true.

Theorem 7.8
Let the spectral densities f0(λ) ∈ D2ε1 , g0(λ) ∈ D1ε2 satisfy the minimality condition (172) and let the functions
hf (f0, g0) and hg(f0, g0), determined by the formulas (184), (185), be bounded. The spectral densities f0(λ), g0(λ),
which give solution to the system of equations (190)–(193) are the least favourable spectral densities in the class
D2ε1 ×D1ε2 , if they determine a solution to the optimization problem (181). The function h0(eiλ), determined by
the formula (176), is minimax-robust spectral characteristic of the optimal linear estimate of the functional ANξ.

Theorem 7.9
Let the spectral density f(λ) be known, and let the spectral density g0(λ) ∈ D1ε2 . Let the function f(λ) + g0(λ)
satisfy the minimality condition (172), and let the function hg(f, g0), determined by the formula (185), be bounded.
The spectral density g0(λ) is the least favourable spectral densities in the class D1ε2 for the optimal linear estimate
of the functional ANξ, if it is of the form

g0(λ) = max
{
g1(λ), α

−1
2

∣∣AN (eiλ)f(λ)− C0
N (eiλ)

∣∣− f(λ)
}

and the functions f(λ), g0(λ) determine a solution to the optimization problem (181). The function h0(eiλ),
determined by the formula (176), is minimax-robust spectral characteristic of the optimal linear estimate of the
functional ANξ.

Theorem 7.10
Let the spectral density f0(λ) ∈ D2ε1 , let the function f−1

0 (λ) be integrable, and let the function h(f0), determined
by the formula (150), be bounded. The spectral density f0(λ) is the least favourable spectral densities in the class
D2ε1 for the optimal linear estimate of the functional ANξ, based on observations of the sequence ξ(j) at points of
time j ∈ Z\{0, 1, . . . , N}, if it satisfies the relation∣∣C0

N (eiλ)
∣∣2 = (f0(λ))

2(f0(λ)− f1(λ))α1

and f0(λ) determine a solution to the optimization problem (160). The function h0(eiλ), determined by the formula
(150), is minimax-robust spectral characteristic of the optimal linear estimate of the functional ANξ.
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7.6. Conclusions

In this section we propose methods of solution of the problem of the mean-square optimal linear estimation of

the functional ANξ =
N∑
j=0

a(j)ξ(j) which depends on the unknown values of a stationary stochastic sequence ξ(j).

Estimates are based on observations of the sequence ξ(j) + η(j) at points j ∈ Z\{0, 1, . . . , N}, where η(j) is an
uncorrelated with ξ(j) stationary sequence. We provide formulas for calculating values of the mean square error
and the spectral characteristic of the optimal linear estimate of the functional in the case of spectral certainty where
the spectral densities f(λ) and g(λ) of the sequences ξ(j) and η(j) are exactly known. In the case of spectral
uncertainty where the spectral densities f(λ) and g(λ) are not known, but a set of admissible spectral densities is
given, the minimax approach is applied. We obtain formulas that determine the least favourable spectral densities
and the minimax spectral characteristics of the optimal linear estimates of the functional ANξ for concrete classes
of admissible spectral densities.

For the relative results on the mean-square optimal linear interpolation of linear functionals for stationary
stochastic sequences and processes based on observations with noise see papers by Moklyachuk [55] – [57], book
by Moklyachuk and Masyutka [64].

8. Conclusion Remarks

In the proposed paper we describe methods of solution of the problems of the mean-square optimal linear
extrapolation and interpolation of linear functionals which depend on the unknown values of a stationary stochastic
sequence ξ(k) based on observations of the sequence ξ(k) as well as observations of the sequence ξ(k) + η(k),
where η(k) is an uncorrelated with the sequence ξ(k) stationary stochastic sequence. The corresponding methods of
solution of the problem of the mean-square optimal linear filtering of stationary stochastic sequences are described
in the paper by Luz and Moklyachuk [33].

Following the Ulf Grenander [15] approach to investigation the problem of optimal linear estimation of the
functional which depends on the unknown values of the stationary stochastic continuous parameter process we
consider the problem as a two-person zero-sum game in which the first player chooses a stationary stochastic
sequence ξ(j) from the class Ξ of stationary stochastic sequences with Eξ(j) = 0 and E|ξ(j)|2 = 1 which
maximizes the value of the mean square error of estimate. The second player is looking for an estimate of the linear
functional which minimizes the value of the mean square error. It is show that this game has equilibrium point. The
maximum error gives a one-sided moving average stationary sequence which is least favourable in the given class
of stationary sequences. The greatest value of the error and the least favourable sequence are determined by the
largest eigenvalue and the corresponding eigenvector of the operator determined by coefficients which determine
the functionals. Note, that this approach can be applied to a specific class of estimation problems.

The second approach to the estimation problems we applied is based on the Kolmogorov [24] Hilbert space
projection method which we apply in the case of spectral certainty, where the spectral densities of the sequences
ξ(n) and η(n) are exactly known, and the convex optimization method proposed by Franke [9, 10] which is applied
in the case of spectral uncertainty, where the spectral densities of the sequences are not exactly known, but, instead,
a set of admissible spectral densities is given. Formulas for calculation the mean-square errors and the spectral
characteristics of the optimal estimates of functionals are derived in the case of spectral certainty. In the case of
spectral uncertainty the minimax-robust estimation method is applied. Formulas that determine the least favourable
spectral densities and the minimax-robust spectral characteristics of the optimal linear estimates of the functionals
are derived.

In the papers by Moklyachuk [35] – [58] problems of extrapolation, interpolation and filtering for stationary
processes and sequences were studied. The corresponding problems for vector-valued stationary sequences and
processes were investigated by Moklyachuk and Masyutka [59] – [64]. In the articles by Dubovets’ka and
Moklyachuk [3] - [7] and in the book by Golichenko and Moklyachuk [13] the minimax estimation problems were
investigated for another generalization of stationary processes – periodically correlated stochastic sequences and
stochastic processes. Luz and Moklyachuk [26] – [32], [34] investigated the classical and minimax extrapolation,
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interpolation and filtering problems for sequences and processes with nth stationary increments. Investigation of the
mean-square optimal linear estimation problems for functionals of stationary stochastic sequences and processes
with missing observations is started in the papers by Moklyachuk and Sidei [67], [68]. The minimax estimation
problems for functionals of a generalization of stationary processes – harmonizable stable stochastic sequences
and processes is started in the papers by Moklyachuk and Ostapenko [65], [66]. For the results for functionals of
random fields see the book by Moklyachuk and Shchestyuk [69].
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22. K. Karhunen, Über lineare Methoden in der Wahrscheinlichkeitsrechnung, Annales Academiae Scientiarum Fennicae. Ser. A I, vol.

37, 1947.
23. S. A. Kassam and H. V. Poor, Robust techniques for signal processing: A survey, Proceedings of the IEEE, vol. 73, no. 3, pp.

433–481, 1985.
24. A. N. Kolmogorov, Selected works by A. N. Kolmogorov. Vol. II: Probability theory and mathematical statistics. Ed. by A. N.

Shiryayev, Mathematics and Its Applications. Soviet Series. 26. Dordrecht etc. Kluwer Academic Publishers, 1992.
25. M. G. Krein and A. A. Nudelman, The Markov moment problem and extremal problems, Translations of Mathematical Monographs.

Vol. 50. Providence, R.I.: American Mathematical Society, 1977.
26. M. M. Luz and M. P. Moklyachuk, Interpolation of functionals of stochactic sequanses with stationary increments, Theory of

Probability and Mathematical Statistics, vol. 87, pp. 117-133, 2013.
27. M. M. Luz and M. P. Moklyachuk, Interpolation of functionals of stochastic sequences with stationary increments for observations

with noise, Prykl. Stat., Aktuarna Finans. Mat., no. 2, pp. 131-148, 2012.
28. M. M. Luz and M. P. Moklyachuk, Minimax-robust filtering problem for stochastic sequence with stationary increments, Theory of

Probability and Mathematical Statistics, vol. 89, pp. 127 - 142, 2014.
29. M. Luz and M. Moklyachuk, Robust extrapolation problem for stochastic processes with stationary increments, Mathematics and

Statistics, vol. 2, no. 2, pp. 78 - 88, 2014.

Stat., Optim. Inf. Comput. Vol. 3, December 2015



418 MINIMAX-ROBUST ESTIMATION PROBLEMS FOR STATIONARY STOCHASTIC SEQUENCES

30. M. Luz and M. Moklyachuk, Minimax-robust filtering problem for stochastic sequences with stationary increments and cointegrated
sequences, cStatistics, Optimization & Information Computing, vol. 2, no. 3, pp. 176 - 199, 2014.

31. M. Luz and M. Moklyachuk, Minimax interpolation problem for random processes with stationary increments, Statistics,
Optimization & Information Computing, vol. 3, no. 1, pp. 30-41, 2015.

32. M. Luz and M. Moklyachuk, Minimax-robust prediction problem for stochastic sequences with stationary increments and
cointegrated sequences, Statistics, Optimization & Information Computing, vol. 3, no. 2, pp. 160-188, 2015.

33. M. Luz and M. Moklyachuk, Filtering problem for functionals of stationary sequences, Statistics, Optimization & Information
Computing (submitted), 2015.

34. M. Moklyachuk and M. Luz, Robust extrapolation problem for stochastic sequences with stationary increments, Contemporary
Mathematics and Statistics, vol. 1, no. 3, pp. 123 - 150, 2013.

35. M. P. Moklyachuk, Estimation of linear functionals of stationary stochastic processes and a two-person zero-sum game, Stanford
University Technical Report, No. 169, 1981.

36. M. P. Moklyachuk, On a problem of game theory and the extrapolation of stochastic processes with values in a Hilbert space,
Theory of Probability and Mathematical Statistics, vol. 24, pp. 107–114, 1981.

37. M. P. Moklyachuk, On an antagonistic game and prediction of stationary random sequences in a Hilbert space, Theory of
Probability and Mathematical Statistics, vol. 25, pp. 107–113, 1982.

38. M. P. Moklyachuk, A filtration of transformations of random sequences, Ukrainian Mathematical Journal, vol.37, no.6, pp. 597–601,
1985.

39. M. P. Moklyachuk, On a property of one–sided moving average random sequences. Theory of Probability and Mathematical
Statistics, vol. 32, pp. 95–102, 1986.

40. M. P. Moklyachuk, Minimax extrapolation and autoregressive-moving average processes, Theory of Probability and Mathematical
Statistics, vol. 41, pp. 77–84, 1990.

41. M. P. Moklyachuk, Minimax extrapolation of random processes for models of ε–pollution, Theory of Probability and Mathematical
Statistics, vol. 42, pp. 113–121, 1991.

42. M. P. Moklyachuk, Minimax filtering of stationary sequences with white noise, Theory of Probability and Mathematical Statistics,
vol. 43, pp. 109–122, 1991.

43. M. P. Moklyachuk, Minimax filtering of linear transformations of stationary sequences, Ukrainian Mathematical Journal, vol. 43,
no. 1 pp. 92-99, 1991.

44. M. P. Moklyachuk, Minimax filtering of linear transforms of stationary processes, Theory of Probability and Mathematical Statistics,
vol. 44, pp. 95–102, 1992.

45. M. P. Moklyachuk, On linear prediction of random processes under conditions of uncertainty, Theory of Probability and
Mathematical Statistics, vol. 45, pp. 87–93, 1992.

46. M. P. Moklyachuk, On the problem of minimax extrapolation of vector sequences perturbed by white noise, Theory of Probability
and Mathematical Statistics, vol. 46, pp. 89–102, 1993.

47. M. P. Moklyachuk, On a filtering problem for vector-valued sequences, Theory of Probability and Mathematical Statistics, vol. 47,
pp. 107–118, 1993.

48. M. P. Moklyachuk, On stochastic equation describing the one–sided moving average process and minimax estimation problem,
Random Operators and Stochastic Equations, vol. 1, no.4, pp. 329–343, 1993.

49. M. P. Moklyachuk, On minimax filtration of vector processes, Ukrainian Mathematical Journal, vol.45, no.3, pp. 414–423, 1993.
50. M. P. Moklyachuk, Stochastic autoregressive sequences and minimax interpolation, Theory of Probability and Mathematical

Statistics, vol. 48, pp. 95-103, 1994.
51. M. P. Moklyachuk, On interpolation problem for vector–valued stochastic sequences, Random Operators and Stochastic Equations,

vol. 3, no.1, pp. 63–74, 1995.
52. M. P. Moklyachuk, Estimates of stochastic processes from observations with noise, Theory of Stochastic Processes, vol.3(19),

no.3-4, pp. 330–338, 1997.
53. M. P. Moklyachuk, Extrapolation of stationary sequences from observations with noise, Theory of Probability and Mathematical

Statistics, vol. 57, pp. 133–141, 1998.
54. M. P. Moklyachuk, Some problems of estimation from noisy data, ZAMM, Z. Angew. Math. Mech., vol.78, Suppl.3, pp. 1021–1022,

1998.
55. M. P. Moklyachuk, Robust procedures in time series analysis, Theory of Stochastic Processes, vol. 6, no. 3-4, pp. 127-147, 2000.
56. M. P. Moklyachuk, Game theory and convex optimization methods in robust estimation problems, Theory of Stochastic Processes,

vol. 7, no. 1-2, pp. 253–264, 2001.
57. M. P. Moklyachuk, Robust estimations of functionals of stochastic processes, Kyiv University, Kyiv, 2008.
58. M. P. Moklyachuk, Nonsmooth analysis and optimization, Kyiv University, Kyiv, 2008.
59. M. Moklyachuk and A. Masyutka, Extrapolation of multidimensional stationary processes, Random Operators and Stochastic

Equations, vol. 14, no. 3, pp. 233-244, 2006.
60. M. Moklyachuk and A. Masyutka, Robust estimation problems for stochastic processes, Theory of Stochastic Processes, vol. 12,

no. 3-4, pp. 88-113, 2006.
61. M. Moklyachuk and A. Masyutka, Robust filtering of stochastic processes, Theory of Stochastic Processes, vol. 13, no. 1-2, pp.

166-181, 2007.
62. M. Moklyachuk, and A. Masyutka, Minimax prediction problem for multidimensional stationary stochastic sequences, Theory of

Stochastic Processes, vol. 14, no. 3-4, pp. 89-103, 2008.
63. M. Moklyachuk and A. Masyutka, Minimax prediction problem for multidimensional stationary stochastic processes,

Communications in Statistics – Theory and Methods., vol. 40, no. 19-20, pp. 3700-3710, 2001.
64. M. Moklyachuk and O. Masyutka, Minimax-robust estimation technique for stationary stochastic processes, LAP LAMBERT

Academic Publishing, 2012.

Stat., Optim. Inf. Comput. Vol. 3, December 2015



MIKHAIL MOKLYACHUK 419

65. M. Moklyachuk and V. Ostapenko, Minimax interpolation of harmonizable sequences, Theory of Probability and Mathematical
Statistics, vol. 92, pp. 125–136, 2015.

66. M. Moklyachuk and V. Ostapenko, Minimax interpolation problem for harmonizable stable sequences with noise observations,
Journal of Applied Mathematics and Statistics (submitted), 2015.

67. M. Moklyachuk and M. Sidei, Interpolation problem for stationary sequences with missing observations, Statistics, Optimization
& Information Computing, vol. 3, no. 3, pp. 259-275, 2015.

68. M. Moklyachuk and M. Sidei, Interpolation of stationary sequences with missing observations observed with noise, Theory of
Probability and Mathematical Statistics (submitted), 2015.

69. M. Moklyachuk and N. Shchestyuk, Estimates of functionals from random fields, Uzhgorod: Autdor-Shark, 2013
70. B. N. Pshenichnyj, Necessary conditions of an extremum, Pure and Applied mathematics. 4. New York: Marcel Dekker, 1971.
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