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1. Introduction

An arcwise connected function defined on an arcwise connected set is the generalization of a convex function.
Ortega and Rheinboldt [8] introduced such type of functions. Later on Mukherjee [7] introduce arcwise connected
functions over cones. After that authors studied different types of arcwise connected functions like Suneja and
Sharma [11] introduced arcwise connected d-type I functions and its generalizations over cones and proved
optimality and duality results for vector optimization problem over cones involving these functions and their
generalizations. Recently, Chaudhary and Kapoor [1] introduced a new class of arcwise connected functions called
arcwise ρ-K-connected functions and its generalizations. They established necessary and sufficient optimality
conditions for a vector optimization problem over cones by involving these functions. Wolfe type dual and Mond-
Weir type duals are formulated and corresponding duality results are also proved using these functions. The aim
of this paper is to introduce second order cone arcwise connected function and its generalizations and use these
functions in proving second order duality results.

The second order duality has a significant importance due to the computational advantage over first order duality
as it provides tighter bounds for the value of the objective function when approximations are used. This type
of duality was firstly formulated by Mangasarian [5] that involved second order derivatives of the functions
constituting the primal problem and derived the duality results. Later on authors like Mishra [6] and Srivastava
and Govil [9] defined different types of second order type I functions and their generalizations and applied
these functions to obtain second order duality results for several mathematical programming problems. Ivanov
[2] defined new first and second-order duals of the nonlinear programming problem with inequality constraints.
He further derived that the first-order duality results are satisfied in the second-order case. Suneja et al. [10, 12]
formulated second order Mond-Weir type dual and proved the duality results for a vector optimization problem
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over cones using second-order cone convex functions involving twice differentiable functions and second-order
cone convex functions involving second-order directional derivatives and their generalizations. Further Dash and
Dalai [4] introduced several kinds of second order invexity and duality problems in non-linear programming
problem. Recently, Zhang and Lin [13] formulated second order and higher order duals for a mathematical program
with complimentarity constraints (MPCC). They then proposed several duality theorems for second and higher
order duality in MPCC problems under suitable generalized convexity assumptions. Kassem and Alshanbari [3]
established and studied six new types of higher-order duality models and programs for multiple objective nonlinear
programming problems and proved several duality theorems under generalized higher-order type-I functions and
higher-order psuedo convexity type-I functions.

In this paper, second order cone arcwise connected, second order cone arcwise pseudoconnected, second order
strongly cone arcwise pseudoconnected and second order cone arcwise quasiconnected functions are introduced.
The relations among these functions are discussed. Further Mond-Weir type second order dual for a vector
minimization problem over cones is formulated to obtain weak and strong duality theorems under these new
concepts of second order cone arcwise connected functions and its generalizations.

2. Definitions and Preliminaries

Let X be a nonempty subset of Rn and K ⊆ Rm be a closed convex pointed cone with nonempty interior. The
positive dual cone K+ of K is defined as

K+ = {y∗ ∈ Rm : xT y∗ ≥ 0, for all x ∈ K}

The interior of K is denoted by intK

Definition 2.1 ([8]). A subset X ⊆ Rn is said to be an arcwise connected set if for every x̄, x ∈ X , there exists a
continuous vector valued function

Hx̄,x : [0, 1]→ X

called an arc such that
Hx̄,x(0) = x̄ and Hx̄,x(1) = x .

Definition 2.2 ([8]). Let f be a real valued function defined on an arcwise connected set X ⊆ Rn. Then f is said
to be arcwise connected function if for every x̄, x ∈ X , there exists an arc Hx̄,x such that

f(Hx̄,x(θ)) ≤ (1− θ)f(x̄) + θf(x), for all 0 ≤ θ ≤ 1.

The function f is called arcwise connected function at x̄ on X if the above inequality holds for all x ∈ X .
If f is differentiable function on an open convex set X ⊆ Rn, then f is said to be arcwise connected function iff

for all x̄, x ∈ X
f(x)− f(x̄) ≥ (x− x̄)T∇f(Hx̄,x(0)).

We now introduce the definitions of second order cone arcwise connected fucntions and their generalizations. Let
fi, i = 1, 2, . . . ,m be twice continuously differentiable real valued functions defined on an arcwise connected set
X of Rn and f = (f1, f2, . . . , fm) be a vector valued function defined on an arcwise connected set X ⊆ Rn.

Definition 2.3. f is said to be second order K-arcwise connected (SKACN) at x̄ ∈ X with respect to p ∈ Rn if for
every x ∈ X[

f1(x)− f1(x̄)− (x− x̄)T (∇f1(Hx̄,x(0)) +∇2f1(Hx̄,x(0))p) +
1

2
pT∇2f1(Hx̄,x(0))p, . . . , fm(x)− fm(x̄)

− (x− x̄)T (∇fm(Hx̄,x(0)) +∇2fm(Hx̄,x(0))p) +
1

2
pT∇2fm(Hx̄,x(0))p

]
∈ K .

We now give an example of a second order K-arcwise connected function.
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Example 2.4. Let K = {(x1, x2)|x1 ≥ 0, x2 ≤ x1} be a cone in R2.
Define X ⊆ R2 as

X = {(x1, x2)
T : x2

1 + x2
2 ≥ 1, x1 > 0, x2 > 0} .

Then X is an arcwise connected set with respect to an arc Hx̄,x : [0, 1]→ X given by

Hx̄,x(θ) = (((1− θ)x̄2
1 + θx2

1)
1
2 , ((1− θ)x̄2

2 + θx2
2)

1
2 ), for all θ ∈ [0, 1]

where x̄ = (x̄1, x̄2)
T , x = (x1, x2)

T .
Define f : X → R2 as f = (f1, f2) where

f1(x1, x2) =

{
x2
1 + x2

2, if x1 > 1, x2 > 1,

2, otherwise,

f2(x1, x2) =

{
−x2

1, if x1 > 1, x2 > 1,

−1, otherwise.

Let x̄ = (2, 2)T . Then f1(Hx̄,x(0)) = 8, f2(Hx̄,x(0)) = −4.

∇f1 =



(
2x1

2x2

)
, if x1 > 1, x2 > 1(

0

0

)
, otherwise

∇2f1 =



(
2 0

0 2

)
, if x1 > 1, x2 > 1(

0 0

0 0

)
, otherwise

∇f2 =



(
−2x1

0

)
, if x1 > 1, x2 > 1(

0

0

)
, otherwise

∇2f2 =



(
−2 0

0 0

)
, if x1 > 1, x2 > 1(

0 0

0 0

)
, otherwise

Then f is second order K-arcwise connected at x̄ = (2, 2) and p = (p1, p2) = (−2,−2) because[
f1(x)− f1(x̄)− (x− x̄)T ∇f1(Hx̄,x(0))− (x− x̄)T∇2f1(Hx̄,x(0))p

+
1

2
pT∇2f1(Hx̄,x(0))p, f2(x)− f2(x̄)− (x− x̄)T∇f2(Hx̄,x(0))

− (x− x̄)T∇2f2(Hx̄,x(0))p+
1

2
pT∇2f2(Hx̄,x(0))p

]
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= [(x1 − 2)2 + (x2 − 2)2 + (p1 + 2)2 + (p2 + 2)2 − 2p1x1 − 2p2x2 − 8,

− (x1 − 2)2 − (p1 + 2)2 + 2p1x1 + 4] ∈ K.

Definition 2.5. f is said to be second order K-arcwise pseudoconnected (SKAPCN) at x̄ ∈ X with respect to
p ∈ Rn if for every x ∈ X

[−(x− x̄)T (∇f1(Hx̄,x(0)) +∇2f1(Hx̄,x(0))p), . . . ,

− (x− x̄)T (∇fm(Hx̄,x(0)) +∇2fm(Hx̄,x(0))p)] /∈ intK

⇒

[
− (f1(x)− f1(x̄) +

1

2
pT ∇2f1(Hx̄,x(0))p), . . . ,

− (fm(x)− fm(x̄) +
1

2
pT∇2fm(Hx̄,x(0))p)

]
/∈ intK .

Remark 2.6. Every second order K-arcwise connected function at a point is second order K-arcwise
pseudoconnected at the same point. But the converse is not true as can be seen from the following example.

Example 2.7. Let K = {(x1, x2) | x2 ≤ 0, x1 ≥ x2} be a cone in R2.
Define X ⊆ R2 as X = {(x1, x2)

T : x2
1 + x2

2 ≥ 1, x1 > 0, x2 > 0}.
Then X is an arcwise connected set with respect to an arc Hx̄,x : [0, 1]→ X given by

Hx̄,x(θ) = (((1− θ)x̄2
1 + θx2

1)
1
2 , ((1− θ)x̄2

2 + θx2
2)

1
2 ), for all θ ∈ [0, 1]

where x̄ = (x̄1, x̄2)
T , x = (x1, x2)

T .
Define f : X → R2 as f = (f1, f2) where

f1(x1, x2) =

{
−x3

1, if x1 > 1, x2 > 1,

1, otherwise,

f2(x1, x2) =

{
−x3

1 − x2, if x1 > 1, x2 > 1,

1, otherwise.

Let x̄ = (2, 2)T . Then f1(Hx̄,x(0)) = −8, f2(Hx̄,x(0)) = −10.

∇f1 =



(
−3x2

1

0

)
, if x1 > 1, x2 > 1,(

0

0

)
, otherwise,

∇2f1 =



(
−6x1 0

0 0

)
, if x1 > 1, x2 > 1,(

0 0

0 0

)
, otherwise,

∇f2 =



(
−3x2

1

−1

)
, if x1 > 1, x2 > 1,(

0

0

)
, otherwise,
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∇2f2 =



(
−6x1 0

0 0

)
, if x1 > 1, x2 > 1,(

0 0

0 0

)
, otherwise.

The f is second order K-arcwise pseudoconnected at x̄ = (2, 2) for any p = (p1, p2) ∈ R2. But f is not second
order K-arcwise connected at x̄ = (2, 2), because for x = (1, 1)[

f1(x)− f1(x̄)− (x− x̄)T (∇f1(Hx̄,x(0)) +∇2f1(Hx̄,x(0))p) +
1

2
pT∇2f1(Hx̄,x(0))p,

f2(x)− f2(x̄)− (x− x̄)T (∇f2(Hx̄,x(0)) +∇2f2(Hx̄,x(0))p) +
1

2
pT∇2f2(Hx̄,x(0))p

]
= (9, 11) /∈ K .

Definition 2.8. f is said to be second order strongly K-arcwise pseudoconnected (SSKAPCN) at x̄ ∈ X with
respect to p ∈ Rn if for every x ∈ X

[−(x− x̄)T (∇f1(Hx̄,x(0)) +∇2f1(Hx̄,x(0))p), . . . ,

− (x− x̄)T (∇fm(Hx̄,x(0)) +∇2fm(Hx̄,x(0))p)] /∈ intK

⇒

[
f1(x)− f1(x̄) +

1

2
pT∇2f1(Hx̄,x(0))p, . . . , fm(x)− fm(x̄) +

1

2
pT∇2fm(Hx̄,x(0))p

]
∈ K

Remark 2.9. Every second order strongly K-arcwise pseudoconnected function at a point is second order K-
arcwise pseudoconnected at the same point. But the converse is not true as can be seen from Example 2.7, where f is
second order K-arcwise pseudoconnected at x̄ = (2, 2) but not second order strongly K-arcwise pseudoconnected
at x̄ = (2, 2) because for x = (1, 1)

[−(x− x̄)T (∇f1(Hx̄,x(0)) +∇2f1(Hx̄,x(0))p),−(x− x̄)T (∇f2(Hx̄,x(0)) +∇2f2(Hx̄,x(0))p)]

= (0, 0) /∈ intK

and [
f1(x)− f1(x̄) +

1

2
pT∇2f1(Hx̄,x(0))p, f2(x)− f2(x̄) +

1

2
pT∇2f2(Hx̄,x(0))p

]
= (9, 11) /∈ K.

Definition 2.10. f is said to be second order K-arcwise quasiconnected (SKAQCN) at x̄ ∈ X with respect to
p ∈ Rn if for every x ∈ X[

f1(x)− f1(x̄) +
1

2
pT∇2f1(Hx̄,x(0))p, . . . , fm(x)− fm(x̄) +

1

2
pT∇2fm(Hx̄,x(0))p

]
/∈ intK

⇒ [−(x− x̄)T (∇f1(Hx̄,x(0)) +∇2f1(Hx̄,x(0))p), . . .

− (x− x̄)T (∇fm(Hx̄,x(0)) +∇2fm(Hx̄,x(0))p)] ∈ K

Remark 2.11. Every second order K-arcwise connected function at a point may not be second order K-arcwise
quasiconnected at the same point. Also there exist functions which are second order K-arcwise quaisconnected at
a point but not second order K-arcwise connected at the same point, as can be seen from the following example.
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Example 2.12. Let K = {(x1, x2) | x1 ≤ 0, x1 ≤ x2}.
Define X ⊆ R2 as X = {(x1, x2)

T : x2
1 + x2

2 ≥ 1, x1 > 0, x2 > 0}.
Then X is an arcwise connected set with respect to an arc Hx̄,x : [0, 1]→ X as defined in Example 2.7.
Define f : X → R2 as f = (f1, f2) where

f1(x1, x2) =

{
x2
1x

2
2, if x1 > 1, x2 > 1,

1, otherwise,

f2(x1, x2) =

{
x2
2, if x1 > 1, x2 > 1,

1, otherwise.

Let x̄ = (1, 1)T . Then f1(Hx̄,x(0)) = 1 = f2(Hx̄,x(0))

∇f1 =



(
2x1x

2
2

2x2
1x2

)
, if x1 > 1, x2 > 1,(

0

0

)
, otherwise,

∇2f1 =



(
2x2

2 4x1x2

4x1x2 2x2
1

)
, if x1 > 1, x2 > 1,(

0 0

0 0

)
, otherwise,

∇f2 =



(
0

2x2

)
, if x1 > 1, x2 > 1,(

0

0

)
, otherwise,

∇2f2 =



(
0 0

0 2

)
, if x1 > 1, x2 > 1,(

0 0

0 0

)
, otherwise.

Then f is second order K-arcwise quasiconnected at x̄ = (1, 1) for any p = (p1, p2) ∈ R2. But f is not second
order K-arcwise connected at x̄ = (1, 1), because for x = (3, 3)[

f1(x)− f1(x̄)− (x− x̄)T (∇f1(Hx̄,x(0)) +∇2f1(Hx̄,x(0))p) +
1

2
pT∇2f1(Hx̄,x(0))p,

f2(x)− f2(x̄)− (x− x̄)T (∇f2(Hx̄,x(0)) +∇2f2(Hx̄,x(0))p) +
1

2
pT∇2f2(Hx̄,x(0))p

]
= (80, 8) /∈ K .

Remark 2.13. There exists functions which are second order K-arcwise quasiconnected at a point but not second
order K-arcwise pseudoconnected at the same point. For example the function considered in Example 2.12 is
second order K-arcwise quasiconnected at x̄ = (1, 1) but f is not second order K-arcwise pseudoconnected at
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x̄ = (1, 1), because for x = (2, 2)

[−(x− x̄)T (∇f1(Hx̄,x(0)) +∇2f1(Hx̄,x(0))p),−(x− x̄)T (∇f2(Hx̄,x(0)) +∇2f2(Hx̄,x(0))p)]

= (0, 0) /∈ intK

and [
−
(
f1(x)− f1(x̄) +

1

2
pT∇2f1(Hx̄,x(0))p

)
,−
(
f2(x)− f2(x̄) +

1

2
pT∇2f2(Hx̄,x(0))p

)]
= (−15,−3) /∈ K.

Remark 2.14. Note that there exists functions which are second order K-arcwise pseudoconnected at a point but
not second order K-arcwise quasiconnected at the same point. For example the function considered in Example 2.7
is second order K-arcwise pseudoconnected at x̄ = (2, 2) but f is not second order K-arcwise quasiconnected at
x̄ = (2, 2), because for x = ( 32 , 3) and p = ( 13 , 1)[

f1(x)− f1(x̄) +
1

2
pT∇2f1(Hx̄,x(0))p, f2(x)− f2(x̄) +

1

2
pT∇2f2(Hx̄,x(0))p

]

=

(
95

24
,
71

24

)
/∈ intK

and

[−(x− x̄)T (∇f1(Hx̄,x(0)) +∇2f1(Hx̄,x(0))p),−(x− x̄)T (∇f2(Hx̄,x(0)) +∇2f2(Hx̄,x(0))p)]

= (−20,−19) /∈ K

Interrelations between second order K-arcwise connected functions and its generalizations.

SKACN
↙−↗ −↖−↘

SKAPCN −̸→
↚− SKAQCN

−↘↖
SSKAPCN

Remark 2.15.

(i) If Hx̄,x = x̄, then the definition of second order K-arcwise connected function at x̄ reduces to second order
K-convex at x̄ given by Suneja et al. [10]. Similarly, we have the notions of second order K-pseudoconvex,
second order strongly K-pseudoconvex and second order K-quasiconvex at x̄ if Hx̄,x = x̄, in the definitions
of SKAPCN, SSKAPCN and SKAQCN respectively.

(ii) If p = 0, then a second order K-arcwise connected function at x̄ reduces to arcwise connected function over
cones at x̄ given by Mukherjee [7].

3. Duality

Consider the following vector optimization problem

(VP) K-minimize f(x)

subject to − g(x) ∈ Q

Stat., Optim. Inf. Comput. Vol. 12, November 2024
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where fi, gj , i = 1, . . . ,m, j = 1, . . . , ℓ are real valued twice differentiable functions defined on an arcwise
connected set X of Rn, with respect to the arc Hx̄,x : [0, 1]→ X , where x̄ ∈ X , x ∈ X and f = (f1, f2, . . . , fm)
and g = (g1, g2, . . . , gl). K and Q are closed convex pointed cones with non empty interiors in Rm and Rℓ

respectively. Let X0 = {x ∈ X| − g(x) ∈ Q} denote the feasible set of (VP).
We associate the following second order dual problem with (VP)

(SD) K-maximize

(
f1(u)−

1

2
pT∇2f1(Hu,x(0))p, . . . , fm(u)− 1

2
pT∇2fm(Hu,x(0))p

)
subject to (x− u)T∇(τT f(Hu,x(0)) + λT g(Hu,x(0)))

+ (x− u)T∇2(τT f(Hu,x(0)) + λT g(Hu,x(0)))p ≥ 0,

for all x ∈ X0 (3.1)

λT g(u)− 1

2
pT∇2(λT g)(Hu,x(0))p ≥ 0 (3.2)

where 0 ̸= τ ∈ K+, λ ∈ Q+, p ∈ Rn, u ∈ X .
Now, we will establish the weak duality relation between feasible points of the primal (VP) and the second order

dual (SD).

Theorem 3.1 (Weak Dualtiy)
If x is feasible for (VP) and (u, τ, λ, p) is feasible for (SD), f is second order K-arcwise connected at u ∈ X and g
is second order Q-arcwise connected at u ∈ X , with respect to the same arc Hu,x, for every x ∈ X , then[

f1(u)−
1

2
pT∇2f1(Hu,x(0))p− f1(x), . . . , fm(u)− 1

2
pT∇2fm(Hu,x(0))p− fm(x)

]
/∈ intK.

Proof
Suppose that[

f1(u)−
1

2
pT∇2f1(Hu,x(0))p− f1(x), . . . , fm(u)− 1

2
pT∇2fm(Hu,x(0))p− fm(x)

]
∈ intK. (3.3)

Since f is second order K-arcwise connected and g is second order Q-arcwise connected at u ∈ X , we get[
f1(x)− f1(u)− (x− u)T (∇f1(Hu,x(0)) +∇2f1(Hu,x(0))p)

+
1

2
pT∇2f1(Hu,x(0))p, . . . , fm(x)− fm(u)− (x− u)T (∇fm(Hu,x(0)) +∇2fm(Hu,x(0))p)

+
1

2
pT∇2fm(Hu,x(0))p

]
∈ K (3.4)

and [
g1(x)− g1(u)− (x− u)T (∇g1(Hu,x(0)) +∇2g1(Hu,x(0))p)

+
1

2
pT∇2g1(Hu,x(0))p, . . . , gℓ(x)− gℓ(x)− (x− u)T (∇gℓ(Hu,x(0)) +∇2gℓ(Hu,x(0))p)

+
1

2
pT∇2gℓ(Hu,x(0))p

]
∈ Q (3.5)
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Adding (3.3) and (3.4), we get

[−(x− u)T (∇f1(Hu,x(0)) +∇2f1(Hu,x(0))p), . . . ,

(x− u)T (∇fm(Hu,x(0)) +∇2fm(Hu,x(0))p)] ∈ intK

Since 0 ̸= τ ∈ K+, we get

(x− u)T∇(τT f)(Hu,x(0)) + (x− u)T∇2(τT f)(Hu,x(0))p < 0.

Now feasibility of (u, τ, λ, p) for (SD) gives

(x− u)T∇(λT g)(Hu,x(0)) + (x− u)T∇2(λT g)(Hu,x(0))p > 0 (3.6)

From (3.5), since λ ∈ Q+, we get

λT g(x)− λT g(u)− (x− u)T (∇(λT g)(Hu,x(0))

+∇2(λT g)(Hu,x(0))p) +
1

2
pT∇2(λT g)(Hu,x(0))p ≥ 0 (3.7)

Adding (3.6) and (3.7), we get

λT g(x)− λT g(u) +
1

2
pT∇2(λT g)(Hu,x(0))p > 0

which is equivalent to

λT g(u)− 1

2
pT∇2(λT g)(Hu,x(0))p < λT g(x) ≤ 0

This contradicts (3.2). Hence[
f1(u)−

1

2
pT∇2f1(Hu,x(0))p− f1(x), . . . , fm(u)− 1

2
pT∇2fm(Hu,x(0))p− fm(x)

]
/∈ intK.

Theorem 3.2 (Weak Duality)
If x is feasible for (VP) and (u, τ, λ, p) is feasible for (SD) and f is second order K-arcwise pseudoconnected at
u ∈ X and g is second order Q-arcwise quasiconnected at u ∈ X , then[

f1(u)−
1

2
pT∇2f1(Hu,x(0))p− f1(x), . . . , fm(u)− 1

2
pT∇2fm(Hu,x(0))p− fm(x)

]
/∈ intK.

Proof
Since x is feasible for (VP) and (u, τ, λ, p) is feaisble for (SD), we get

λT g(x)− λT g(u) +
1

2
pT∇2(λT g)(Hu,x(0))p ≤ 0 (3.8)

Now we claim that

(x− u)T (∇(λT g)(Hu,x(0)) +∇2(λT g)(Hu,x(0))p) ≤ 0 (3.9)

If λ = 0, then (3.9) trivially holds. If λ ̸= 0, then from (3.8), we get[
g1(x)− g1(u) +

1

2
pT∇2g1(Hu,x(0))p, . . . , gℓ(u)− gℓ(u) +

1

2
pT∇2gℓ(Hu,x(0))p

]
/∈ intQ
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Now g is second order Q-arcwise quasiconnected at u ∈ X , therefore we get

[−(x− u)T (∇g1(Hu,x(0)) +∇2g1(Hu,x(0))p), . . . ,−(x− u)T (∇gℓ(Hu,x(0)) +∇2gℓ(Hu,x(0))p)] ∈ Q

which implies that (3.9) holds. On using (3.1) and (3.9), we get

(x− u)T (∇(τT f)(Hu,x(0)) +∇2(τT f)(Hu,x(0))p) ≥ 0

Now 0 ̸= τ ∈ K+ gives that

[−(x− u)T (∇f1(Hu,x(0)) +∇2f1(Hu,x(0))p), . . .

− (x− u)T (∇fm(Hu,x(0)) +∇2fm(Hu,x(0))p)] /∈ intK

Since f is second order K-arcwise pseudoconnected at u ∈ X , therefore it follows that[
f1(u)− f1(x)−

1

2
pT∇2f1(Hu,x(0))p, . . . , fm(u)− fm(x)− 1

2
pT∇2fm(Hu,x(0))p)

]
/∈ intK.

We shall be using the following constraint qualifications given by Suneja et al. [10] for proving the Strong
Duality Theorems for (SD).

Definition 3.3. The function g is said to satisfy the Slater type constraint qualification at x̄.

(CQ1) if g is Q-convex at x̄ and there exists x∗ ∈ X such that −g(x∗) ∈ intQ.
(CQ2) if g is strongly Q-pseudoconvex at x̄ and there exists x∗ ∈ X such that −g(x∗) ∈ intQ.

The following lemma gives generalized form of Fritz John optimality conditions for a point to be a weak
minimum of (VP), established by Suneja et al. [10].

Lemma 3.4
If x̄ is a weak minimum of (VP), then there exist τ̄ ∈ K+, λ̄ ∈ Q+ not both zero such that

(x− x̄)T (τ̄T∇f(Hx̄,x(0)) + λ̄T∇g(Hx̄,x(0))) ≥ 0, for all x ∈ X (3.10)

and

λ̄T g(x̄) = 0. (3.11)

In order to prove the strong duality theorem, we shall now prove generalized form of Kuhn-Tucker type necessary
optimality condition for (VP).

Theorem 3.5
If x̄ is a weak minimum of (VP), then there exist τ̄ ∈ K+, λ̄ ∈ Q+ not both zero such that conditions (3.10) and
(3.11) of Lemma 3.4 hold. If Slater’s type constraint qualification (CQ1) holds at x̄ then τ̄ ̸= 0.

Proof
We claim that τ̄ ̸= 0. On the contrary suppose that τ̄ = 0, then λ̄ ̸= 0 and from (3.10), we get

(x− x̄)T (λ̄T∇g(Hx̄,x(0))) ≥ 0, for all x ∈ X. (3.12)

Since the Slater type constraint qualification (CQ1) is satisfied, it follows that there exists x∗ ∈ X such that

−g(x∗) ∈ intQ
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Now 0 ̸= λ̄ ∈ Q+ gives that

λ̄T g(x∗) < 0 (3.13)

Also since g is Q-convex at x̄, we get

[g1(x)− g1(x̄)− (x− x̄)T∇g1(Hx̄,x(0)), . . . , gℓ(x)− gℓ(x̄)

− (x− x̄)T∇gℓ(Hx̄,x(0))] ∈ Q, for all x ∈ X

Since λ̄ ∈ Q+, we get

λ̄T g(x)− λ̄T g(x̄)− (x− x̄)T λ̄T∇g(Hx̄,x(0)) ≥ 0, for all x ∈ X

Using (3.11) and (3.12), we obtain
λ̄T g(x) ≥ 0, for all x ∈ X .

In particular for x = x∗

λ̄T g(x∗) ≥ 0

which contradicts (3.13). Hence τ̄ ̸= 0.

Theorem 3.6
If x̄ is a weak minimum of (VP), then there exist τ̄ ∈ K+, λ̄ ∈ Q+ not both zero such that conditions (3.10) and
(3.11) of Lemma 3.4 hold. If Slater’s type constraint qualification (CQ2) holds at x̄ then τ̄ ̸= 0.

Proof
We assert that τ̄ ̸= 0. On the contrary suppose that τ̄ = 0, then λ̄ ̸= 0 and from (3.10), we get

(x− x̄)T (λ̄T∇g(Hx̄,x(0))) ≥ 0, for all x ∈ X.

Since 0 ̸= λ̄ ∈ Q+, we get

[−(x− x̄)T∇g1(Hx̄,x(0)), . . . ,−(x− x̄)T∇gℓ(Hx̄,x(0))] /∈ intQ, for all x ∈ X.

Now since Slater type constraint qualification (CQ2) holds, therefore g is strongly Q-pseudoconvex at x̄, so we get

g(x)− g(x̄) ∈ Q, for all x ∈ X,

which gives that

λ̄T (g(x)− g(x̄)) ≥ 0, for all x ∈ X. (3.14)

Since the Slater type constraint qualification (CQ2) is satisfied at x̄, it follows that there exists x∗ ∈ X such that

−g(x∗) ∈ intQ

which gives that
λ̄T g(x∗) < 0.

Using (3.11), we get
λ̄T (g(x∗)− g(x̄)) < 0

which contradicts (3.14). Hence τ̄ ̸= 0.

Theorem 3.7 (Strong Duality)
Let x̄ be a weak minimum for (VP) at which the Slater type constraint qualification (CQ1) is satisfied. Then there
exist 0 ̸= τ̄ ∈ K+ and λ̄ ∈ Q+ such that (x̄, p̄ = 0, τ̄ , λ̄) is feasible for the second order dual problem (SD) and
the values of both the objective functions are equal. Moreover, if f is second order K-arcwise connected and g is
second order Q-arcwise connected on X , then (x̄, p̄ = 0, τ̄ , λ̄) is weak maximum for (SD).
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Proof
Since all the conditions of Theorem 3.5 hold, there exist 0 ̸= τ̄ ∈ K+, λ̄ ∈ Q+ such that (3.10) and (3.11) hold.

Hence we get that (x̄, p̄ = 0, τ̄ , λ̄) is a feasible solution for (SD). Both the objective functions coincide as p̄ = 0.
Suppose that (x̄, p̄ = 0, τ̄ , λ̄) is not a weak maximum for (SD), then there exists a feasible solution (u, p, τ, λ) of
(SD) such that [

f1(u)−
1

2
pT∇2f1(Hu,x(0))p− f1(x̄) +

1

2
p̄T∇2f1(Hx̄,x(0))p̄, . . . ,

fm(u)− 1

2
pT∇2fm(Hu,x(0))p− fm(x̄) +

1

2
p̄T∇2fm(Hx̄,x(0))p̄

]
∈ intK

Since p̄ = 0, we get[
f1(u)−

1

2
pT∇2f1(Hu,x(0))p− f1(x̄), . . . , fm(u)− 1

2
pT∇2fm(Hu,x(0))p− fm(x̄)

]
∈ intK

which contradicts Weak Duality Theorem 3.1, for the feasible solution x̄ of (VP) and (u, p, τ, λ) of (SD). Hence
(x̄, p̄ = 0, τ̄ , λ̄) is a weak maximum for (SD).

Theorem 3.8 (Strong Duality)
Let x̄ be a weak minimum for (VP) at which the Slater type constraint qualification (CQ2) is satisfied. Then there
exist 0 ̸= τ̄ ∈ K+ and λ̄ ∈ Q+ such that (x̄, p̄ = 0, τ̄ , λ̄) is feasible for the second order dual problem (SD) and
both the objective functions are equal. Moreover, if f is second order K-arcwise pseudoconnected and g is second
order Q-arcwise quasiconnected on X , then (x̄, p̄ = 0, τ̄ , λ̄) is weak maximum for (SD).

Proof
Since all the conditions of Theorem 3.6 hold, there exist 0 ̸= τ̄ ∈ K+, λ̄ ∈ Q+ such that (3.10) and (3.11) hold.

Rest of the proof is on the lines of Theorem 3.7 except that we use Weak Duality Theorem 3.2 instead of
Theorem 3.1.

4. Conclusion

In this paper, we investigate the sufficient optimality conditions for the vector optimization problem (VP) over
cones using second order cone arcwise connected functions and their generalizations. We also examined Mond-
Weir type dual and demonstrate the duality results for weak minimum between the primal problem (VP) and the
corresponding dual problem (SD).
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