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Abstract We decompose a matrix Y into a sum of rank one bilinear forms in a stepwise manner, by considering Y as
a mapping from the finite dimensional space lnr to the space lmp . We provide transition formulas, and represent them in a
duality diagram, thus generalizing the well known duality diagram in the french school of data analysis. As an application,
we introduce a family of Euclidean multidimensional scaling models.
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1. Introduction

Matrix factorization, named also decomposition, in data analysis is at the core of factor analysis; and one of its
principal aims, as clearly stated by Hubert et al. (2000), is to visualize geometrically the statistical association
existing among the rows or the columns of the matrix. So the way that we factorize a matrix is of fundamental
interest and concern in statistics. What is surprising is that the oldest method, the centroid factorization, see Burt
(1917) and Thurstone (1931), has been rediscovered recently many times, see for instance proposal 1 in McCoy and
Tropp (2011). Singular value decomposition (SVD) is the most used matrix decomposition method in statistics; the
aim of this paper is to present in a coherent way the theory of SVD-like matrix factorizations based on subordinate
or induced norms; and at the same time, review the existing literature. This presentation generalizes the SVD
by embedding it in a larger family: It belongs to the class of optimal biconjugate decompositions; biconjugate
decompositions are based on Wedderburn rank-one reduction theorem as described by Chu et al. (1995). Other
alternative generalization of SVD, GSVD, is presented by Hubert et al. (2000), and which forms the basis of the
french school of data analysis as reviewed recently by Holmes (2008) and De La Cruz and Holmes (2011). We also
incorporate the GSVD in our representation.

This paper is organized as follows: Section 2 presents the preliminaries concerning induced or subordinate matrix
norms; section 3 presents the matrix factorizations based on induced norms; section 4 presents an overview of the
french school of data analysis, and we conclude in section 5.

2. Preliminaries on real Banach spaces lnp

We start with some preliminaries and at the same time introduce notation. We note: lnp := (R n, ||.||p) is a finite
dimensional Banach space; that is, R n is n-dimensional complete vector space with the p-norm, ||.||p, for p ≥ 1.
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2 MATRIX FACTORIZATIONS BASED ON INDUCED NORMS

For an x ∈ R n, its p-norm is defined as ||x||1 =
∑n

i=1 |xi| for p = 1, ||x||p = (
∑n

i=1 |xi|p)1/p for p > 1, and
||x||∞ = maxni=1 |xi| for p =∞.

The norm ||x||p has the following four properties

(N1) ||x||p ≥ 0
(N2) ||x||p = 0 iff x = 0
(N3) ||αx||p = |α| ||x||p for α ∈ R
(N4) ||x+ y||p ≤ ||x||p + ||y||p

(N4) implies: | ||x||p − ||y||p | ≤ ||x− y||p, from which we deduce that the p-norm is a continuous mapping of
R n into R.

The proof of (N4) is based on Hölder and Minkowski inequalities.
We define the unit sphere to be

Sn
p = {x ∈ R n : ||x||p = 1},

and (p, p1) designate the conjugate pair, that is, 1
p + 1

p1
= 1 for p ≥ 1 and p1 ≥ 1.

Hölder inequality:
< x∗,x > ≤ ||x∗||p1 ||x||p for x∗ ∈ lnp1

and x ∈ lnp

or
< x∗,x > ≤ ||x||p for x∗ ∈ Sn

p1
and x ∈ lnp ,

or
< x∗,x > ≤ 1 for x∗ ∈ Sn

p1
and x ∈ Sn

p .

Note that < x∗,x > =
∑n

i=1 x
∗
i xi = (x∗)′x = x′x∗, where x′ is the transpose of the row vector x; further,

< x∗,x > represents a scalar product only when the conjugate pair (p, p1) = (2, 2). The next result is an application
of Hölder inequality.

Lemma 1: Let x ∈ lnp , then there exists a norming functional φ(x) ∈ Sn
p1

such that < φ(x),x > = ||x||p =
max < x∗,x > subject to x∗ ∈ Sn

p1
.

Proof: Explicitly we have:

φ(x) = (vj = sgn(xj) ) for p = 1

= (vj = sgn(xj) |
xj

||x||p
|p−1) for p > 1

= eα sgn(xα) for p =∞,

where {eβ : β = 1, ..., n} designates the canonical basis and xα = argmaxnβ=1 |xβ |. It is easy to show that
φ(x) ∈ Sn

p1
for any x ∈ lnp and x ̸= 0; that is, ||φ(x)||p1 = 1.

Remark: In more general settings, Lemma 1 is proven as a corollary to the famous Hahn-Banach theorem, see
for instance Kreyszig (1978, p.223).

Example 1: Consider the vector x
′
= (1 2 − 1 − 2).

a) If x ∈ l42, then ||x||2 = 101/2 and φ(x) = x
101/2

∈ S4
2 and < φ(x),x > = 101/2. Explicitly φ(x)′ = (1 2 −

1 − 2)/101/2.
b) If x ∈ l41, then ||x||1 = 6 and φ(x) = sgn(x) ∈ S4

∞ and < φ(x),x > = 6. Explicitly φ(x)′ = (1 1 − 1 −
1).

c) If x ∈ l4∞, then ||x||∞ = 2 and φ(x) = −e4 ∈ S4
1 and < φ(x),x > = 2. Explicitly φ(x)′ = (0 0 0 − 1).

Another value is: φ(x)′ = (0 1 0 0).
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V. CHOULAKIAN 3

d) If x ∈ l43, then ||x||3 = 181/3 and φ(x) = (vj =
x2
j

182/3
sgn(xj)) ∈ S4

1.5 and < φ(x),x > = 181/3. Explicitly
φ(x)′ = (1 4 − 1 − 4)/182/3.

Let B(lnr , l
m
p ) be the set of bounded linear maps (operators) from lnr to lmp , which we identify with the set of

m× n real matrices in the usual way. A given matrix A can be interpreted in three different ways as an operator:
A ∈ B(lnr , l

m
p ) or A′ ∈ B(lmp1

, lnr1) or A ∈ B(lnr×m
p1
,R). For A ∈ B(lnr , l

m
p ) its induced or subordinate norm is

defined to be

||A||r→p = max{||Au||p : u ∈ Sn
r }

= ||Au1||p for u1 ∈ Sn
r (1)

= ||a1||p for a1 ∈ lmp .

Similarly, for A′ ∈ B(lmp1
, lnr1) its induced or subordinate norm is

||A′||p1→r1 = max{||A′v||r1 : v ∈ Sm
p1
}

= ||A′v1||r1 for v1 ∈ Sm
p1

(2)
= ||b1||r1 for b1 ∈ lnr1 .

Finally, for A ∈ B(lnr×m
p1
,R) as a bilinear functional its induced or subordinate norm is

λ1 = max{v′Au : u ∈ Sn
r and v ∈ Sm

p1
}. (3)

In (1, 2 and 3), the maximum values are attained; for further details see for instance Kreyszig (1978, section 2.5).
Essentially, we are computing the quintuplet (a1,b1,u1,v1, λ1), and the next theorem is a central result which
shows the relations among the elements of the quintuplet.

Theorem 1:

||A||r→p = ||A′||p1→r1 = λ1

= v′
1a1 = b′

1u1,

where
Au1 = a1 and v1 = φ(a1) (4)

and
A′v1= b1 and u1 = φ(b1); (5)

the last two equations are known as transition formulas.

Proof: For u ∈ Sn
r and v ∈ Sm

p1
, we consider the bilinear form

λ(u,v) = v′Au

≤ ||Au||p by Hölder inequality for Au ∈ lnp

≤ max
u∈Sn

r

||Au||p = ||A||r→p by (1) (6)

= ||Au1||p = v′
1Au1 where v1 = φ(Au1) = φ(a1) (7)

= max
v∈Sm

p1

v′Au1 by Lemma 1

= max
v∈Sm

p1

max
u∈Sn

r

v′Au.
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4 MATRIX FACTORIZATIONS BASED ON INDUCED NORMS

Now using (6 and 7) and replacing A by A′ we have

||A||r→p = v′
1Au1

= u′
1A

′v1 where u1 = φ(A′v1) = φ(b1)

= ||A′||p1→r1 ,

which is the required result.

The transition formulas (4 and 5) can be represented by the following duality diagram
A

Sn
r −→ lmp

φ ↑ ↓ φ
lnr1 ←− Sm

p1

A′

Remark 1:
a) The geometrical-statistical interpretation of Theorem 1 is that λ1 is the largest dispersion value by which the

operator A stretches an element of u ∈ Sn
r ; u1 is called the first principal axis of the rows of A, and a1 represents

the projected values of the rows of A on u1, and we name it the first projected row factor or the first principal
component. And by duality, we also have λ1 is the largest dispersion value by which the operator A′ stretches an
element of v ∈ Sm

p1
; v1 is called the first principal axis of the columns of A, and b1 is the first column projected

factor which represents the projected values of the columns of A on v1.
b) The vectors a1,b1,u1 and v1 belong to four different spaces: a1 ∈ lmp , b1 ∈ lnr1 , u1 ∈ Sn

r ⊂ lnr and
v1 ∈ Sm

p1
⊂ lmp1

.
c) The transition formulas provide us an iterative algorithm to compute a maximum of {||Au||p : u ∈ Sn

r };
this maximum value can be a relative maximum. The norm ||A||r→p corresponds to the absolute maximum. The
algorithm is named the power method for lp norm by Boyd (1974); Wold’s (1966) NIPALS (nonlinear iterative
partial alternating least squares) algorithm, named also criss-cross regression by Gabriel and Zamir (1979), is a
particular case. The algorithm can be summarized in the following way, where b is a starting value:

Step 1: u =φ(b), a = Au and λ(a) = ||a||p ;
Step 2: v =φ(a), b = A′v and λ(b) = ||b||r1 ;
Step 3: If λ(b)−λ(a) > ϵ fixed value, go to Step 1; otherwise, stop.

The proof of the convergence of the algorithm is based on application of Hölder inequality twice: Let u(k), v(k)

and λ(k) for k ≥ 1 represent the kth iteration values, then:

λ(k) = v(k)′Au(k)

≤ (v(k)′A)φ(A
′
v(k)) by Hölder inequality

= v(k)′Au(k+1)

≤ φ(Au(k+1))′(Au(k+1)) by Hölder inequality

= v(k+1)′Au(k+1) = λ(k+1).

The rows or the columns of A can be used as starting values for a or b.

2.1. Particular norms

Let A ∈ B(lnr , l
m
p ), then A′ ∈ B(lmp1

, lnr1). In general the conjugate pairs (r, r1) and (p1, p) are not equal, which
implies that the geometry of the rows is different from the geometry of the columns. If (r, r1) = (p1, p) = (r, p),
then the geometric structure defined on the rows of A is identical to the geometric structure defined on the columns
of A; this class is named transposition invariant by Choulakian (2005a).
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V. CHOULAKIAN 5

For two particular values of the conjugate pairs (r, r1), explicit formulas are available; however, the spectral
norm is the most well known, which is transposition invariant.

Proposition 1: For (r, r1) = (∞, 1), then

||A||∞→p = ||A′||p1→1 by Theorem 1
= max

u
||Au||p subject to u ∈ {−1,+1}n .

The proof is based on Hölder inequality: For any v ∈ Sm
p1

consider

||A′v||1 = u′A′v for u =sgn(A
′
v) ∈ {−1,+1}n by Lemma 1,

≤ ||Au||p for u ∈ {−1,+1}n by Hölder inequality,

≤ max ||Au||p for u ∈ {−1,+1}n

= ||Au1||p where u1 = argmax ||Au||p subject to u ∈ {−1,+1}n .

By Lemma 1, if v =φ(Au1), then ||A′||p1→1 = max{||A′v||1 : v ∈ Sm
p1
} = maxu ||Au||p subject to u ∈

{−1,+1}n, which is the required result.

Proposition 2: For (r, r1) = (1,∞), then

||A||1→p = ||A′||p1→∞ by Theorem 1

=
m

max
α=1
||A∗α||p,

where A∗α is the αth column of A.
The proof is similar to the proof in Proposition 1. For any v ∈ Sm

p1
consider

||A′v||∞ = u′A′v for u = eα sgn(xα) and xα = arg
n

max
β=1
|A′v| by Lemma 1,

≤ ||Au||p for u = eα sgn(xα) and xα = arg
n

max
β=1
|A′v| by Hölder inequality,

≤ ||Au1||p for u1 = argmax
u
||Aeα||p,

=
m

max
α=1
||A∗α||p.

By Theorem 1, if v =φ(Au1), then max{||A′v||∞ : v ∈ Sm
p1
} = maxmα=1 ||A∗α||p = maxu ||Au||p subject to

u = eα for α = 1, ..., n, which is the required result.

Proposition 3: For (r, r1) = (2, 2), then

||A||2→2 = ||A′||2→2

=

√
λmax(AA′)

=
√

λmax(A′A),

where λmax is the greatest eigenvalue of AA′ or A′A, and it is named spectral norm.
Drakakis and Pearlmutter (2009) and Lewis (2010) discuss the following nine cases of ||A||r→p for r, p = 1, 2, 3,

which can be easily deduced from the above results.
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6 MATRIX FACTORIZATIONS BASED ON INDUCED NORMS

3. Matrix factorizations

Let X ∈ B(lnr , l
m
p ). Let (a1,b1) be the first projected factors associated with λ1. We repeat the above procedure on

the residual dataset

X(1) = X− a1b
′
1/λ1 (8)

= (Im −Pa1)X

= X(In −Pb1),

where Pa1 = a1v
′
1/λ1 is the projection operator on a1 ∈ lmp , because P2

a1
= Pa1 . Similarly, Pb1 = b1u

′
1/λ1 is

the projection operator on b1 ∈ lnr1 . We note that the rank(X(1)) = rank(X)−1, because

X(1)u1 = 0 and X(1)′v1 = 0; (9)

which implies that

u′
1b2 = 0 and v′

1a2 = 0, (10)

where b2 and a2 are the vectors b and a relative to matrix X(1) respectively. Equations (8,9,10) are known as
Wedderburn’s rank one reduction formula, see Chu, Funderlic and Golub (1995). By repeating the above procedure
we get the data reconstitution formula for the matrix X as a function of the projected row and column factor
coordinates (aα,bα) associated with the dispersion values λα, for α = 1, ..., k, and k = rank(X),

X =

k∑
α=1

aαb
′
α/λα (11)

or elementwise

xij =

k∑
α=1

aα(i)bα(j)/λα.

Equation (11) represents the decomposition of X based on lnr → lmp induced norm.

3.1. The case of X symmetric

When the matrix X is symmetric, we can have a symmetric decomposition or a nonsymmetric factorization.
a) If the norms are transposition invariant, that is, the conjugate pairs (r, r1) = (p1, p) = (r, p), then

X =

k∑
α=1

aαa
′
α/λα,

for the geometric structure defined on the rows of X is identical to the geometric structure defined on the columns
of X.

b) If the norms are not transposition invariant, that is, the conjugate pairs (r, r1) ̸= (p1, p), then

X =

k∑
α=1

aαb
′
α/λα,

for the geometric structure defined on the rows of X is different from the geometric structure defined on the
columns of X.
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V. CHOULAKIAN 7

3.2. A review

Here, we review published discussed cases in the statistical literature.
a) The centroid decomposition based on ||A||∞→2 = ||A′||2→1; its transition formulas are

Au1 = a1 and v1 = a1/
√

a′1a1

and
A′v1= b1 and u1 = sgn(b1);

it is the oldest to our knowledge. First used by Burt (1917), then by Thurstone (1931) to factorize covariance
matrices, and used extensively in the psychometric literature before the advent of the computers, see for instance
Thurstone (1947), Horst (1965) and Harman (1967). Burt-Thurstone formulation was based on the following
criterion:

maxu′A′Au subject to u ∈ {−1,+1}n ; (12)

its relationship with the matrix norm formulation was shown by Choulakian (2003). In different, but related
contexts, it is discussed by Galpin and Hawkins (1987), Chu and Funderlic (2002), Choulakian (2005b), Kwak
(2008), McCoy and Tropp (2011). Further, Choulakian (2012) considered it as a particular MAXBET procedure
which takes into account the block structure of the variables.

b) ||A||1→1 = ||A′||∞→∞ is used by Galpin and Hawkins (1987); its transition formulas are

Au1 = a1 and v1 = sgn(a1)

and
A′v1= b1 and u1 = eα such that α = argmax

j
|b1j | = argmax

j
||A∗j || .

c) The taxicab decomposition is based on ||A||∞→1 = ||A′||∞→1; its transition formulas are

Au1 = a1 and v1 = sgn(a1)

and
A′v1= b1 and u1 = sgn(b1).

It is the most robust among all the transposition invariant induced norms considered in this paper, and is used
extensively by Choulakian and coworkers in developing taxicab correspondence analysis: Choulakian (2004,
2006a, 2008a, 2008b, 2013, 2014), Choulakian et al. (2006, 2013a, 2013b, 2014). We also note that the taxicab
decomposition of a covariance matrix is equivalent to the centroid decomposition of the centred dataset. The taxicab
norm was first considered by Grothendieck, see the interesting story of the Grothhendieck theorem and its many
versions by Pisier (2012). Here, we cite this remarkable result

Grothendieck Inequality: Let A = (aij) be a real matrix of size m× n; then for i = 1, ..,m and j = 1, ..., n

||A||∞→1 = max
si,tj

m∑
i=1

n∑
j=1

aijsitj subject to (si, tj) ∈ {−1, 1}2

= max
si,tj

m∑
i=1

n∑
j=1

aij < si, tj > subject to (si, tj) ∈ S1
2 × S1

2

≤ Kd max
si,tj

m∑
i=1

n∑
j=1

aij < si, tj > subject to (si, tj) ∈ Sd
2 × Sd

2 , (13)

where Kd is the smallest universal constant that depends on d for d = 2, 3, ..., but does not depend on m and n. By
defining K1 = 1, we see that Kd ≥ Kd−1 for d = 2, 3, .... The open problem is that there exists a universal constant
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8 MATRIX FACTORIZATIONS BASED ON INDUCED NORMS

KG such that
KG = inf

d
Kd such that the inequality in (13) is true.

It is conjectured that
1.67695 ≤ KG ≤

π

2 log(1 +
√
2)

= 1.78221.

An elementary proof of the inequality is given by Blei (1987) or Jameson (1987). A randomization algorithm
to compute ||A||∞→1 via the Grothendieck inequality is studied by Alon and Naor (2006), and a similar
randomization algorithm is used by McCoy and Tropp (2011) to compute (12). Rohn (2000) shows that the
computation of ||A||∞→1 is NP-hard.

d) The singular value decomposition, SVD, is the standard decomposition, the most used and studied; it is based
on ||A||2→2 = ||A′||2→2, see Horn and Johnson (1990) and Golub and Van Loan (1996). Its transition formulas
are

Au1 = a1 and v1 = a1/
√

a′1a1

and
A′v1= b1 and u1 = b1/

√
b′
1b1.

Example 2: Let us compute a few decompositions to the following matrix

X =

 1 −2
−2 4
0 2

 (14)

a) Taxicab decomposition: ||X||∞→1 is attained at one of the axes: u′ = (1 1) or (1 − 1). For u′ = (1 1),
(Xu)′ = (−1 2 2), and ∥Xu∥1 = 5 u′ = (1 − 1), (Xu)′ = (3 − 6 − 2), and ∥Xu∥1 = 11 So, u′

1 = (1 − 1),
a′1 = (3 − 6 − 2), v′

1 = sgn(a′1) = (1 − 1 − 1), b′
1 = (X′v1)

′ = (3 − 8), λ1 = 11 = ||a1||1 = a′1v1 =
||b1||1 = b′

1u1. Note that u1 = sgn(b1). Now the residual matrix, X(1)= X− a1b
′
1/λ1, is

X(1) =

 2 2
−4 −4
6 6

 /11,

which is of rank 1. Repeating the above calculations on X(1), we find u′
2 = (1 1), a′2 = (1 − 2 3) 4/11,

v′
2 = sgn(a′2) = (1 − 1 1), b′

2 = (X′v2)
′ = (1 1) 12/11, λ2 = 24/11 = ||a2||1 = a′2v2 = ||b2||1 = b′

2u2. Note
that u2 = sgn(b2). Now the residual matrix, X(2)= X(1)−a2b′

2/λ2 = 0. So we have the following decomposition

X = (3 − 6 − 2)′(3 − 8)/11 + (1 − 2 3)′(1 1)2/11. (15)

b) Centroid decomposition: ||X||∞→2 is attained at one of the axes: u′ = (1 1) or (1 − 1). For u′ = (1 1),
(Xu)′ = (−1 2 2), and ∥Xu∥2 =

√
(9) For u′ = (1 − 1), (Xu)′ = (3 − 6 − 2), and ∥Xu∥2 = 7 So,

u′
1 = (1 − 1), a′1 = (3 − 6 − 2), v′

1 = a′1/λ1 = (3 − 6 − 2)/7, b′
1 = (X′v1)

′ = (15 − 34)/7, λ1 = 7 =
||a1||2 = a′1v1 = ||b1||1 = b′

1u1. Note that u1 = sgn(b1). Now the residual matrix, X(1)= X− a1b
′
1/λ1, is

X(1) =

 4 4
−8 −8
30 30

 /49,

which is of rank 1. Repeating the above calculations on X(1), we find u′
2 = (1 1), a′2 = (2 − 4 15) 4/49,

v′
2 = a′2/||a2||2 = (2 − 4 15) /(7

√
5), b′

2 = (X′v2)
′ = (1 1) 2

√
5/7, λ2 = 4

√
5/7 = ||a2||2 = a′2v2 = ||b2||1 =

b′
2u2. Note that u2 = sgn(b2). Now the residual matrix, X(2)= X(1)−a2b′

2/λ2 = 0. So we have the following

Stat., Optim. Inf. Comput. Vol. 4, March 2016
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decomposition
X = (3 − 6 − 2)′(15 − 34)/49 + (2 − 4 15)′(1 1)2/49. (16)

c) Extreme decomposition: ||X||1→∞ is attained on one of the canonical basis vectors: e′1 = (1 0) or
e′2 = (0 1). For u = e1, (Xu)′ = (1 − 2 0), and ∥Xu∥∞ = 2 For u = e2, (Xu)′ = (−2 4 2), and ∥Xu∥∞ = 4
So,u1 = e2, a1 = X∗2 the second column of X, v′

1 = (0 1 0), b′
1 = (X′v1)

′ = (−2 4), λ1 = 4 = ||a1||∞ =
a′1v1 = ||b1||∞ = b′

1u1. Note that u1 = e2 sgn(b12). Now the residual matrix, X(1)= X− a1b
′
1/λ1, is

X(1) =

 0 0
0 0
1 0

 /11,

which is of rank 1. Repeating the above calculations on X(1), we find u2 = e1, a′2 = (0 0 1), v2 = a2,
b′
2 = (X′v2)

′ = (1 0), λ2 = 1 = ||a2||∞ = a′2v2 = ||b2||∞ = b′
2u2. Note that u2 = e1sgn(b21). Now the residual

matrix, X(2)= X(1)−a2b′
2/λ2 = 0. So we have the following decomposition

X = (− 2 4 2)
′
(−2 4)/4 + (0 0 1)′(1 0). (17)

d) Singular value decomposition: It is based on the singular values and singular vectors of X: λ1 = 5.3191,
v′
1 = (−0.4197 0.8393 0.3455), a1 = λ1v1, u1 = (−0.3945 0.9189) and b1 = λ1u1; λ2 = 0.8408, v′

2 =
(−0.1545 0.3090 − 0.9384), a2 = λ2v2, u2 = (−0.9189 − 0.3945) and b2 = λ2u2. So we have the following
decomposition

X = (−0.4197 0.8393 0.3455)′(−0.3945 0.9189)5.3191 +

(−0.1545 0.3090 − 0.9384)′(−0.9189 − 0.3945)0.8408. (18)

Remark 2:
a) We note that the factors (aα,bα) are determined up to proportionality, and the four decompositions in

equations (15) through (18) of the data set X given in (14) are essentially different. This is a much discussed and
important topic, named factor indeterminacy problem; see for instance Mulaik (1987). We can recast or reformulate
the factor indeterminacy problem within a geometric setting: If Rank(X) ≥ 2, then there are infinite number of
different factorizations depending on the values of r ≥ 1 and p ≥ 1 for X ∈ B(lnr , l

m
p ).

b) The decomposition of X is essentially unique (up to proportionality) if and only if rank(X) = 1.
c) Conditions for essential uniqueness of decompositions for three-way arrays or tensors is an active area of

research; and Kruskal’s sufficiency theorem is the most famous general result, see Rhodes (2010). For an overview
of the literature on tensor decomposition, see the interesting review by Ten Berge (2011); for some computational
numerical results concerning the typical ranks of three-way arrays over the real field, see Choulakian (2010).

3.3. A family of Euclidean multidimensional scaling models

Let ∆ = (δij) be a symmetric n× n matrix with nonnegative elements and zeros on the diagonal, representing the
dissimilarities of n objects. The aim of multidimensional scaling (MDS) techniques is to find a configuration of
the n points, which best match the original dissimilarities as much as possible. We shall consider the framework of
the classical MDS, named also principle coordinate analysis, where we suppose that the dissimilarities represent
Euclidean distances, which implies that there exists a set of n centered points in a Euclidean space, denoted by
{fi : i = 1, ..., n}, such that

δ2ij = ||fi − fj ||22 .

We thus have the following well known relationship

Q = −1

2
(H∆∗H)

= F′F,
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where, ∆∗ = (δ2ij), F = [f1, ..., fn] and H = In − 1n1
′
n/n is the centering matrix, In the identity matrix and 1n

the vector of ones. So the matrix Q is positive semi-definite, and it is equal to F′F, where F is unknown. Now
suppose that F ∈ B(lnr , l

m
p ). Then

||F||r→p = max{||Fu||p : u ∈ Sn
r }

can be expressed as a linear function of Q if p = 2 and r ≥ 1; that is

||F||2r→2 = u′F′Fu subject to u ∈ Sn
r

= u′Qu subject to u ∈ Sn
r . (19)

Factorizing Q into F′F by (19), we obtain a family of Euclidean multidimensional scaling (MDS) models as a
function of r ≥ 1. Three particular cases are worthy of mention:

a) For r = 2, we obtain the classical MDS, see for instance Torgerson (1952) and Gower (1966). Each fα is an
eigenvector of Q; see also Proposition 3.

b) For r =∞, we get the centroid MDS, where we maximize the Burt-Thurstone criterion (11), see also
Proposition 1.

c) For r = 1, we get the dominant MDS; its computation is extremely simple and fast, see Proposition 2.

Example 3: We consider the Facial Expressions data found in Borg and Groenen (2005, p. 76) of dimension
13× 13, where n = 13 is the number of person’s facial expressions. The aim of the study is the correct identification
of intended emotional message from a person’s facial expression. Furthermore, Table 4.3, p. 75 in Borg and
Groenen, provide Schlosberg empirical scale values that classify the facial expressions into three classes: pleasant-
unpleasant (PU), attention-rejection (AR) and tension-sleep (TS). Borg and Groenen (2005, subsection 4.3) found
that the first two dimensions of ordinal MDS reproduced quite accurately the three classes: the first dimension
representing PU and the second dimension representing AR and TS, because the correlations between the first two
calculated dimensions and the Schlosberg empirical scale values are quite high for ordinal MDS. Table 1 compares
the correlation values obtained by four MDS approaches; the ordinal MDS correlation values are reproduced from
Borg and Groenen (2005, p.77, Table 4.6): The centroid MDS produced results as good as the ordinal MDS.

Table 1: Facial Expressions Data: Correlation values.
MDS corr(DIM1,PU) corr(DIM2,AR) corr(DIM2,TS)
ordinal 0.94 0.86 0.87
classical 0.91 0.80 0.83
centroid 0.93 0.86 0.89
dominant 0.91 0.78 0.70

4. The French school of data analysis

Benzécri (1973a), who was a pure mathematician in geometry in the 1950s, is considered the father of the french
school of data analysis; he developed a geometric generalized Euclidean framework for multidimensional data
analysis by introducing two metric matrices (square and positive definite) M and N, thus defining two Euclidean
quadratic normed spaces ln2 (N) et lm2 (M).

Definition: Let ln2 (N) := (R n, ||.||N), where we define the following scalar product
for x ∈ R nand y ∈ R n, < y,x >N = y′Nx;

and the quadratic norm based on it
for x ∈ R n, ||x||N = (x′Nx)1/2 .

The ||x||N represents a generalized distance of the vector x ∈ R n with respect to the origin, and it satisfies the
four properties of a norm, N1 to N4 listed in section 2.

We define: a) The unit sphere to be

Sn
p (N) = {x ∈ R n : ||x||N = 1}.
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b) The normed functional of x ∈ R n to be

φN(x) = Nx/||x||N ∈ Sn
2 (N)∗,

for

||x||N =
√
< x,x >N

= < φN(x),x > .

Note that, for the particular value of N = In, φN(x) = φ2(x), and the framework of the Euclidean quadratic
normed space ln2 (N), becomes equivalent to the framework of the ordinary Euclidean normed space ln2 = ln2 (I);
thus for A ∈ B(ln2 (N), lm2 (M)) its duality diagram and its transition formulas can be obtained by replacing φ2(x)
by φN(x) in the duality diagram described in section 2. That is, for A ∈ B(ln2 (N), lm2 (M)) its duality diagram is

A
Sn
2 (N)∗ −→ lm2 (M)

φN ↑ ↓ φM

ln2 (N) ←− Sm
2 (M)∗

A′

which represents the following transition formulas

Au1 = a1 and v1 = φM(a1) = Ma1/ ||a1||M = Ma1/ λ1

and

A′v1= b1 and u1 = φN(b1) = Nb1/ ||b1||N = Nb1/ λ1.

The solution of the last two equations can be reexpressed as a generalized eigenvalue-eigenvector problem in the
following way: From the last two equations we get

a1 = Au1

= ANb1/λ1

M−1v1λ1 = ANA′v1/λ1,

from which one gets

MANA′v1 = λ2
1v1;

and similarly

NA′MAu1 = λ2
1u1.

In the last two equations the eigenequations are functions of principal axes u1 and v1. However, one can reexpress
them as functions of projected factor scores

ANA′Ma1 = λ2
1a1;

and similarly

A′MANb1 = λ2
1b1.
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5. Conclusion

We embedded the ordinary SVD into a larger family based on induced matrix norms, and provided the transition
formulas and a simple criss-cross iterative procedure to compute the principal axes and principal factor scores.
Given that there are infinite number of SVD like decompositions, depending on the underlying induced norms, one
is tempted to ask which is the best?

It is quite ironic that the centroid decomposition, the oldest method, was recently rediscovered and restudied
as a robust method, see Choulakian (2005b), Kwak (2008), McCoy and Tropp (2011), after being dumped almost
sixty years ago for the following reason given in Hubert et al. (2000, p.76) ”Comments in Guttman (1944) and
elsewhere (e.g., Horst (1965) and Harman (1967)) with regard to this centroid strategy generally considered it a
poor approximation to what could be generated from Hotelling’s method that would choose successive unit length
vectors to produce a rank reduction by identifying (through an iterative strategy) the eigenvector associated with
the largest eigenvalue for each of the residual matrices successively obtained. At the time, however, the centroid
method was computationally much less demanding than Hotelling’s iterative (or power) method for obtaining each
of the principal components (again, one-at-a-time and reducing rank at each iteration); for this reason alone, the
centroid method was a very common factorization strategy until electronic computing capabilities became more
widely available”. This comment shows that the centroid method was a victim of the habit of using mathematical
methods in statistics based on optimal criteria, as if optimality is a guarantee of efficiency.

The arguments advanced by Benzécri on the advantages of the Euclidean geometry over the taxicab geometry
for multidimensional data analysis are both computational and metaphysical. On the use of L1 distance in data
analysis, Benzécri (1977, page 13) commented in the following way ” elle (L1) ne permet pas d’utiliser la géométrie
euclidienne multidimensionnelle; elle donnera des résultats qui qualitativement ressembleront à ceux obtenus par la
distance...quadratique; mais au prix de calculs plus compliqués et sous une forme moins commode. Sans permettre
à l’outil mathématique de défigurer le réel, on doit lui concéder que la transmission à l’esprit humain d’un vaste
ensemble de données synthétisé (résumé; rendu perceptible par le calcul) ait ses lois propres. (On se souvient que le
primat de la géométrie euclidienne est admis par Torgerson)”. The ease of computation argument is very similar to
Gauss’s argument in the adoption of least squares criterion in the linear regression model. While the metaphysical
argument, if my understanding is correct, is that: the transmission to the human spirit of a synthesis of a collection
of data has its proper laws, which are based on the Euclidean geometry.

Ten Berge (2005, personal communication) thought that the centroid method produced good results, but it was
not mathematically well understood during the last century. Benzécri (1973b, page 1 in Avant-propos) considered
data analysis an experimental science, and that he has a predeliction for the case studies in his books. A similar
thought is also found in Tukey: ”The test of a good procedure is how well it works, not how well it is understood”.

As to the question asked which decomposition is the best? Mathematically, the SVD is the best and the reference,
but quite sensitive to outlying observations: So, we suggest the joint use of SVD and the taxicab decomposition, or,
the SVD and the centroid decomposition. For an example, concerning the joint use of correspondence analysis and
taxicab correspondence analysis, where the two methods produced completely different results, see for instance
among others, Choulakian et al. (2006) and Gauthier and Choulakian (2015).
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