
STATISTICS, OPTIMIZATION AND INFORMATION COMPUTING
Stat., Optim. Inf. Comput., Vol. 4, March 2016, pp 84–98.
Published online in International Academic Press (www.IAPress.org)

An improved partial bundle method for linearly constrained minimax
problems

Chunming Tang 1, Huangyue Chen 1, Jinbao Jian 2,∗

1College of Mathematics and Information Science, Guangxi University, Nanning 530004, P. R. China.
2College of Mathematics and Information Science, Yulin Normal University; Guangxi Colleges and Universities Key Lab of Complex

System Optimization and Big Data Processing, Yulin 537000, P. R. China.

(Received: 21 February 2016; Accepted: 26 February 2016)

Abstract In this paper, we propose an improved partial bundle method for solving linearly constrained minimax problems.
In order to reduce the number of component function evaluations, we utilize a partial cutting-planes model to substitute
for the traditional one. At each iteration, only one quadratic programming subproblem needs to be solved to obtain a new
trial point. An improved descent test criterion is introduced to simplify the algorithm. The method produces a sequence of
feasible trial points, and ensures that the objective function is monotonically decreasing on the sequence of stability centers.
Global convergence of the algorithm is established. Moreover, we utilize the subgradient aggregation strategy to control the
size of the bundle and therefore overcome the difficulty of computation and storage. Finally, some preliminary numerical
results show that the proposed method is effective.
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1. Introduction

We consider the linearly constrained minimax problem

min
x∈Rn

f(x)

s.t. ⟨ai, x⟩ ≤ bi, i ∈ I = {1, . . . , p},
(1)

where the objective function f(x) = max{fj(x), j ∈ J} with J = {1, . . . ,m}, the component functions fj (j ∈
J) : Rn → R are convex but not necessarily differentiable, and ai(i ∈ I) ∈ Rn, bi(i ∈ I) ∈ R. Denote by ⟨x, y⟩ =
xT y the inner product of vectors x and y. The feasible set of problem (1) is denoted by X = {x ∈ Rn : ⟨ai, x⟩ ≤
bi, i ∈ I}.

Minimax problems are a special and important class of nonsmooth optimization problems, whose essence is to
make an “optimal” decision under the “worst” case. They widely appear in many fields, such as location problems
[1], portfolio strategy [23], optimizing energy consumption [2], etc. Furthermore, many mathematical problems
can be transformed to minimax problems, such as ℓ1 and ℓ∞ approximation [21], system of nonlinear equations
[26].

∗Correspondence to: Jinbao Jian (Email: jianjb@gxu.edu.cn). College of Mathematics and Information Science, Yulin Normal University.
299 Education Middle Road, Yulin, Guangxi, P. R. China (537000).

ISSN 2310-5070 (online) ISSN 2311-004X (print)
Copyright c⃝ 2016 International Academic Press



C. TANG, H. CHEN AND J. JIAN 85

The case where the component functions fi (i ∈ I) are all continuously differentiable is well studied, see e.g.,
[17, 24, 25]. In what follows, we particularly concern the case where the component functions are not necessarily
differentiable. In order to reduce the number of component function evaluations, Gaudioso et al. [6] proposed an
incremental bundle method for solving convex unconstrained minimax problems, in which a partial cutting-planes
model of the objective function f is introduced. Hare & Macklem [7] and Hare & Nutini [8] proposed a derivative-
free gradient sampling method for solving unconstrained minimax problems by applying the gradient sampling idea
of Burke et al. [4]. Liuzzi et al. [18] presented a derivative-free method for linearly constrained minimax problems
by using a smoothing technique based on an exponential penalty function. Jian et al. [9] proposed a feasible descent
bundle method for general inequality constrained minimax problems by using the partial cutting-planes model
of [6]. Tang et al. [22] proposed a proximal-projection partial bundle method for convex constrained minimax
problems by combining the partial cutting-planes model of [6] with the proximal-projection idea of [13, 15].

In this paper, we propose an improved partial bundle method for solving linearly constrained minimax problem
(1). Its main interesting features are summarized as follows.

(i) Our method not only extends the method of [6] to linearly constrained case, but also improves the descent
test criterion used in [6] and [9] (see Remark 1 for details).

(ii) Compared to [9], our method can easily deal with linear constraints, and guarantee that all the trial points are
feasible.

(iii) Compared to [22], at each iteration, only one quadratic programming (QP) subproblem needs to be solved
to obtain a new trial point, while two subproblems are required to solve in [22].

(iv) By making use of the partial cutting-planes model, the number of component function evaluations may be
reduced greatly. The objective function is monotonically decreasing on the sequence of stability centers.

(v) The subgradient aggregation strategy [11] is used to control the size of the bundle and therefore overcome
the difficulty of computation and storage.

(vi) Global convergence of the algorithm is established, and some preliminary numerical results show that our
method is effective.

The paper is organized as follows. In section 2, we review some previous methods which are closely related to
our method. In section 3, we present the details of our algorithm and discuss its properties. Global convergence
of the algorithm is established in section 4. Improvement of the algorithm by subgradient aggregation is given in
Section 5. Preliminary numerical results are reported in sections 6. Conclusions are presented in section 7. We
denote by ∥ · ∥ the Euclidean norm in Rn. The subdifferential (in convex analysis) of a function f at any point x is
denoted by ∂f(x), and each element g ∈ ∂f(x) is called a subgradient.

2. Preliminaries

In this section, we review briefly the cutting-planes method, partial cutting-planes model and bundle methods. For
simplicity, we consider momentarily the following unconstrained problem

min {f(x) : x ∈ Rn},

where f : Rn → R is convex but not necessarily differentiable.

2.1. Cutting-planes method and partial cutting-planes model

Let k be the current iteration index, and yl, l ∈ Lk := {1, · · · , k} be given points (generated in previous iterations)
with subgradients gl ∈ ∂f(yl). The linearizations of f(x) at yl are given by

f̄ l(y) = f(yl) + ⟨gl, y − yl⟩, l ∈ Lk.

The cutting-planes method [5, 10] uses the following cutting-planes (piecewise affine) model of f at the k-th
iteration:

f̌k
cp(y) = max

l∈Lk
{f(yl) + ⟨gl, y − yl⟩},
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which is a lower approximation to f by convexity, i.e., f̌k
cp(x) ≤ f(x).

The new point yk+1 is generated by solving

min
y∈Rn

f̌k
cp(y),

which is equivalent to the linear programming

min
v∈R, y∈Rn

v

s.t. f(yl) + ⟨gl, y − yl⟩ ≤ v, l ∈ Lk.

If the cutting-planes method is applied directly to the objective function of problem (1), then at each point yl,
we need to calculate the objective value f(yl), and therefore we have to evaluate all the values of the component
functions fj (j ∈ J) at yl. This is time-consuming if the number of the component functions is large.

In order to reduce the number of component function evaluations, Gaudioso et al. [6] proposed that at each
point yl just evaluate one of the component functions, say fjl(y

l), for some jl ∈ J , along with a subgradient
gljl ∈ ∂fjl(y

l), and then define the linearizations:

f̄jl(y) = fjl(y
l) + ⟨gljl , y − yl⟩, l ∈ Lk. (2)

Therefore, the so-called partial cutting-planes model is defined by

f̌k
pcp(y) = max

l∈Lk
{fjl(yl) + ⟨gljl , y − yl⟩}. (3)

It also holds that f̌k
pcp(x) ≤ f(x).

2.2. Bundle methods

Bundle methods [16, 27, 3] can be considered stabilized variants of cutting-planes method. Let yl, l ∈ Lk be
trial points generated in past iterations. Bundle methods keep memory of these points, their function values and
subgradients in a bundle of information:

Bk = {(yl, f(yl), gl), l ∈ Lk}, (4)

and a point xk (called stability center) which has the “best” objective value obtained so far.
Proximal bundle methods [12, 14] are a typical class of bundle methods, which generate a new trial point yk+1

by solving

min
l∈Lk

f̌k
B(y) +

1

2tk
∥y − xk∥2,

where f̌k
B built on the information in Bk is a piecewise affine model of f , and tk > 0 is proximal parameter that

controls the distance from xk to yk+1.
If the function f achieves sufficient decrease at yk+1 compared to f(xk), then a descent step is declared, and the

stability center is updated by xk+1 = yk+1; otherwise a null step is declared, and set xk+1 = xk.

3. The algorithm

In this section, combining the partial cutting-planes model and the idea of proximal bundle methods, we propose
an improved partial bundle method for problem (1). The partial cutting-planes model (3) would be applied to the
objective function of problem (1).

Let xk ∈ X be the current stability center. Define the linearization errors:

αk
l := f(xk)− f̄jl(x

k) = f(xk)− [fjl(y
l) + ⟨gljl , x

k − yl⟩], l ∈ Lk, (5)
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which are nonnegative by convexity. The bundle set (4) can be rewritten as

Bk := {(yl, fjl(yl), gljl , α
k
l ), l ∈ Lk}.

From (3) and (5), we have

f̌k
pcp(y) = max

l∈Lk
{fjl(yl) + ⟨gljl , y − yl⟩}

= max
l∈Lk

{f(xk)− αk
l − ⟨gljl , x

k − yl⟩+ ⟨gljl , y − yl⟩}

= f(xk) + max
l∈Lk

{−αk
l + ⟨gljl , y − xk⟩}.

(6)

We consider the following subproblem

yk+1 := argmin

{
f̌k
pcp(y) +

1

2tk
∥y − xk∥2, y ∈ X

}
, (7)

where tk > 0 is proximal parameter. From (6), we know that the solution yk+1 of (7) is also the solution to

min

{
max
l∈Lk

{−αk
l + ⟨gljl , y − xk⟩}+ 1

2tk
∥y − xk∥2, y ∈ X

}
.

Letting d = y − xk, we can equivalently consider the following QP subproblem

QP(Bk)

min
v∈R, d∈Rn

v + 1
2tk

∥d∥2

s.t. −αk
l + ⟨gljl , d⟩ ≤ v, l ∈ Lk,

⟨ai, xk + d⟩ ≤ bi, i ∈ I.

It is obvious that (z, d) = (0, 0) is a feasible solution of QP(Bk). Moreover, QP(Bk) has a unique optimal solution,
denoted by (vk, d

k). Therefore, we have yk+1 = xk + dk.
The Lagrangian dual problem of QP(Bk) has the form

DP(Bk)
min

λ∈R|Lk|, µ∈R|I|

1
2 tk

∥∥∥∥∥ ∑
l∈Lk

λlg
l
jl
+

∑
i∈I

µiai

∥∥∥∥∥
2

+
∑
l∈Lk

λlα
k
l −

∑
i∈I

µi(⟨ai, xk⟩ − bi),

s.t. λl ≥ 0, l ∈ Lk, µi ≥ 0, i ∈ I,
∑
l∈Lk

λl = 1.

Let (λk, µk) be the optimal solution of DP(Bk). It is not difficult to verify the following relations:

dk = −tkg
k,

vk = −tk∥gk∥2 − ϵk ≤ 0, (8)

where
gk :=

∑
l∈Lk

λk
l g

l
jl
+
∑
i∈I

µk
i ai, (9)

ϵk :=
∑
l∈Lk

λk
l α

k
l −

∑
i∈I

µk
i (⟨ai, xk⟩ − bi). (10)

Now we present the details of our algorithm.
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Algorithm 1

Step 0. Initialization. Select y1 ∈ X , and set x1 = y1, L1 = {1}, the initial bundle B1 =
{(y1, f(y1), g1, 0)} with g1 ∈ ∂f(y1). Select ϵ > 0, σ > 1, η > 0, β ∈ (0, 1), t̄ > 0. Set t1 = t̄, k := 1.

Step 1. Proximal point finding. Solve QP(Bk) (or DP(Bk)) to obtain (vk, d
k) and (λk, µk). Set

yk+1 = xk + dk, and calculate gk and ϵk by (9) and (10), respectively.

Step 2. Stopping criterion.
If ∥gk∥ ≤ η, ϵk ≤ ϵ, STOP (approximate optimality achieved);
else if ∥gk∥ ≤ η, ϵk > ϵ, go to Step 3;
else ∥gk∥ > η, go to Step 4.

Step 3. Bundle reset. Set xk+1 := xk, yk+1 := xk, Lk+1 = {k + 1}, and make a bundle reset

Bk+1 = {(yk+1, f(yk+1), gk+1, 0)},

where gk+1 ∈ ∂f(yk+1). Set tk+1 = tk/σ, k := k + 1, and return to Step 1.

Step 4. Descent test. Extract any index h from the function index set J . If

fh(y
k+1)− f(xk) > βvk, (11)

then set xk+1 := xk (null step), Lk+1 = Lk ∪ {k + 1}, and update the bundle by

Bk+1 = Bk ∪ {(yk+1, fh(y
k+1), gk+1

h , αk+1
k+1)},

where
gk+1
h ∈ ∂fh(y

k+1), αk+1
k+1 = f(xk+1)− [fh(y

k+1) + ⟨gk+1
h , xk+1 − yk+1⟩].

Restore the function index set by setting J = {1, . . . ,m}. Let tk+1 = tk, k := k + 1, and return to Step 1.

Step 5. Index removing. Set J := J \ {h}. If J ̸= ∅, then return to Step 4.

Step 6. Updating. Set xk+1 := yk+1 (descent step), Lk+1 = Lk ∪ {k + 1}, and update the bundle by

Bk+1 = {(yl, fjl(yl), gljl , α
k+1
l ), l ∈ Lk} ∪ {(yk+1, f(yk+1), gk+1, 0)},

where gk+1 ∈ ∂f(yk+1) and

αk+1
l = αk

l + f(xk+1)− f(xk)− ⟨gljl , x
k+1 − xk⟩, l ∈ Lk.

Restore the function index set by setting J = {1, . . . ,m}, let tk+1 = t̄, k := k + 1, and return to Step 1.

Before giving some comments on Algorithm 1, we first present three lemmas as follows.

Lemma 1
Let xk, dk, gk and ϵk be generated by Algorithm 1. Then

f(xk) ≤ f(x) + ∥gk∥∥x− xk∥+ ϵk, ∀x ∈ X.

Proof
From (2) and (5), we have

f(x) ≥ f̄jl(x) = fjl(y
l) + ⟨gljl , x− yl⟩

= fjl(y
l) + f(xk)− f(xk) + ⟨gljl , x

k − yl⟩+ ⟨gljl , x− xk⟩
= −αk

l + f(xk) + ⟨gljl , x− xk⟩.
(12)
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On the other hand, for x ∈ X , we have

0 ≥ ⟨ai, x⟩ − bi = ⟨ai, x− xk⟩+ ⟨ai, xk⟩ − bi. (13)

Multiplying both sides of (12) and (13) by λk
l and µk

i , respectively, and summing up for l ∈ Lk and i ∈ I , we have

f(x) ≥ −
∑
l∈Lk

λk
l α

k
l + f(xk) +

∑
l∈Lk

λk
l ⟨gljl , x− xk⟩+

∑
i∈I

µk
i ⟨ai, x− xk⟩+

∑
i∈I

µk
i (⟨ai, xk⟩ − bi)

= f(xk) + ⟨gk, x− xk⟩ − ϵk, ∀x ∈ X.

This together with Cauchy-Schwarz inequality proves the lemma.

Lemma 2
(Cut Property). Suppose that yk+1 = xk + dk and xk+1 = xk. If there exists an index h ∈ J such that

fh(y
k+1)− f(xk) > βvk, (14)

and the bundle is modified by

Bk+1 = Bk ∪ {(yk+1, fh(y
k+1), gk+1

h , αk+1
k+1)}, Lk+1 = Lk ∪ {k + 1},

where
gk+1
h ∈ ∂fh(y

k+1), αk+1
k+1 = f(xk+1)− [fh(y

k+1) + ⟨gk+1
h , xk+1 − yk+1⟩],

then (vk, d
k) is not feasible for subproblem QP(Bk+1).

Proof
From the construction of Bk+1, we know that subproblem QP(Bk+1) has a constraint of the form

−αk+1
k+1 + ⟨gk+1

h , d⟩ ≤ v.

However, from (14), it follows

−αk+1
k+1 + ⟨gk+1

h , dk⟩ = [fh(y
k+1) + ⟨gk+1

h , xk+1 − yk+1⟩]− f(xk+1) + ⟨gk+1
h , dk⟩

= fh(y
k+1)− f(xk) > βvk > vk.

So (vk, d
k) is not feasible for QP(Bk+1), and the proof is complete.

Lemma 3
(Feasible descent property). If Algorithm 1 enters Step 6, then xk+1 ∈ X and

f(xk+1)− f(xk) ≤ −βtkη
2 < 0.

Proof
If Algorithm 1 enters Step 6, then

∥gk∥ > η, (15)

fj(x
k+1)− f(xk) ≤ βvk, ∀j ∈ J. (16)

From (16) and (8), we have

f(xk+1)− f(xk) = max
j∈J

{
fj(x

k+1)− f(xk)
}
≤ βvk

= −β(ϵk + tk∥gk∥2)
≤ −βtk∥gk∥2.

(17)

This together with (15) shows the lemma.
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Based on the lemmas above, we give some comments on Algorithm 1.

Remark 1
(1) In Step 2, if both ∥gk∥ and ϵk are “sufficiently small”, then from Lemma 1, Algorithm 1 can stop, and we

accept the current stability center xk as an approximate optimal solution. If ∥gk∥ is small but ϵk is large, then we
consider that the partial cutting-planes model is “bad”, and therefore a bundle reset is made. If ∥gk∥ is not small,
then we accept yk+1 as a new trial point.

(2) In Step 3, a bundle reset implies that the model is not reliable enough, so we decrease the proximal parameter
such that a “closer” trial point is obtained.

(3) In Step 4, the rule of selecting the index h ∈ J dose not affect the theoretical analysis, but suitable rules are
helpful to improve the numerical performance (see [6, 22] for more detailed discussion).

(4) The descent test criterion (11) is proposed in [22], which is simpler than the one of [6] in the sense that it
does not contain a problem-data-independent parameter. In fact, [6] (essentially) used the following criterion

fi(y
k+1)− f(xk) > vk + θk, (18)

where θk > 0 is a problem-data-independent parameter satisfying θk/tk < η2. This is somewhat restricted such
that it may be not easy to choose the parameters θk and tk numerically. Furthermore, the constant β in (11) is
very helpful to improve numerical performance. The numerical results in [22] show that the criterion (11) performs
better than (18).

(5) In Step 4, if there exists an index h such that (11) holds, then a new cutting-plane built on the component
function fh at yk+1 is added, which can improve the model significantly (see Lemma 2).

(6) In Step 5, if J = ∅, then Algorithm 1 enters Step 6. From Lemma 3, we know that the new trial point yk+1

satisfies the feasible descent property, so the stability center is updated by this point.

4. Global convergence

In this section, we establish the global convergence of Algorithm 1. The following basic assumption is required.

Assumption 1
The level set Γ := {x ∈ X : f(x) ≤ f(x1)} for problem (1) is bounded.

From Lemma 3, we know that the sequence {f(xk)} is monotonically decreasing. So the sequence {xk} of
stability centers belongs to the level set Γ.

Algorithm 1 must take only one of the following two cases.

(1) The algorithm loops between Step 1 and Step 5, generates null steps, and the stability center does not
change;
(2) The algorithm enters Step 6, generates a descent step, and the stability center is updated.

In what follows, we will show that Algorithm 1 is well defined, i.e., the number of loops between Step 1 and
Step 5 is finite, and therefore Algorithm 1 must enters Step 6 after a finite number of iterations. In particular, we
will show that the following claims hold when the stability center does not change.

(a) The algorithm passes finitely many times through Step 3;
(b) The algorithm passes finitely many times through Step 5;
(c) The number of loops between Step 1 and Step 4 is finite.

The following lemma provides an upper bound for the number of bundle resets, and therefore claim (a) holds.

Lemma 4
Suppose that Algorithm 1 reaches a certain stability center xk̄ which remains unchanged. Then Algorithm 1 passes
finitely many times through Step 3. In particular, let Nk̄ be the number of times passing through Step 3, then there
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exists a positive constant M such that

Nk̄ ≤

⌈
ln t̄M2

ϵ

lnσ

⌉
, (19)

where notation ⌈A⌉ rounds A to the nearest integer greater than or equal to A.

Proof
From the statement of the lemma, we know that xk ≡ xk̄, ∀k ≥ k̄. Denote kr (≥ k̄) the r-th time the algorithm
enters Step 3. After entering Step 3, the bundle is reset by

Bkr+1 = {(xk̄, f(xk̄), gk̄, 0)},

where gk̄ ∈ ∂f(xk̄), and the proximal parameter is updated by

tkr+1 = t̄/σr.

For kr + 1 ≤ k < kr+1, from (8) we have

vk = −tk∥gk∥2 − ϵk ≤ −tk∥gk∥2 = −∥dk∥2/tk = −σr∥dk∥2/t̄. (20)

On the other hand, by the constraints of QP(Bk), we have

vk ≥ ⟨gk̄, dk⟩ ≥ −∥dk∥∥gk̄∥,

which together with (20) shows that

−∥dk∥∥gk̄∥ ≤ vk ≤ −σr∥dk∥2/t̄.

Thus
∥dk∥ ≤ t̄

σr
∥gk̄∥. (21)

Combining (20) with (21), we have

vk ≥ − t̄

σr
∥gk̄∥2. (22)

In addition, by Assumption 1, there exists a positive constant M such that ∥gk̄∥ ≤ M , so from (8) and (22), we
have

ϵk ≤ −vk ≤ t̄M2

σr
.

Hence, if

r ≥
ln t̄M2

ϵ

lnσ
,

then
ϵk ≤ ϵ.

This means that (19) holds.

In order to prove (b) and (c), we first prove the following lemma. From Lemma 4, in what follows, we may
assume that the bundle reset does not occur.

Lemma 5
Suppose that Algorithm 1 reaches a certain stability center xk̄ which keeps unchanged, and the bundle reset does not
occur. Let p, q be two iteration indices with p > q ≥ k̄. Let (vp, dp), wp and (vq, d

q), wq be the optimal solutions
and optimal values of QP(Bp) and QP(Bq), respectively, then

(i) wp ≥ wq + ∥dp − dq∥2/2t̄;
(ii) ∥dp − dq∥ → 0, vp − vq → 0, as q → ∞.
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Proof
(i) Since (vp, d

p) is feasible for subproblem QP(Bq), we have

− αq
l + ⟨gljl , d

p⟩ ≤ vp, l ∈ Lq; (23)

⟨ai, xk̄ + dp⟩ ≤ bi, i ∈ I. (24)

Multiplying both sides of (23) and (24) by λq
l and µq

i , respectively, and summing up, we have

−
∑
l∈Lq

λq
lα

q
l +

∑
l∈Lq

λq
l ⟨g

l
jl
, dp⟩+

∑
i∈I

µq
i ⟨ai, x

k̄ + dp⟩ ≤
∑
l∈Lq

λq
l vp +

∑
i∈I

µq
i bi,

thus
− ϵq + ⟨gq, dp⟩ ≤ vp. (25)

By (8), we have
− ϵq + ⟨gq, dq⟩ = vq. (26)

Combining (25) and (26), we have
⟨gq, dp − dq⟩ ≤ vp − vq. (27)

Since the bundle reset does not occur, then it follows tq = tp = t̄. This together with (27) shows that

wp = vp + ∥dp∥2/2t̄ = vp + vq − vq + ∥dp + dq − dq∥2/2t̄
= vq + ∥dq∥2/2t̄+ vp − vq + ∥dp − dq∥2/2t̄+ ⟨dp − dq, dq⟩/t̄
= wq + ∥dp − dq∥2/2t̄+ vp − vq − ⟨gq, dp − dq⟩
≥ wq + ∥dp − dq∥2/2t̄.

Hence, part (i) holds.
(ii) From (i) and wk ≤ 0, we know that the sequence {wk}k≥k̄ is monotonic nondecreasing and bounded above,

so it converges, and therefore
∥dp − dq∥ → 0, as q → ∞.

Moreover, we have
∥dp∥2 − ∥dq∥2 → 0, as q → ∞.

Since
wp − wq =

1

2t̄
(∥dp∥2 − ∥dq∥2) + vp − vq,

we obtain
vp − vq → 0, as q → ∞.

Based on Lemma 5, we now prove the claims (b) and (c).

Lemma 6
Suppose that Algorithm 1 reaches a certain stability center xk̄ which keeps unchanged. Then Algorithm 1 passes
finitely many times through Step 5, and the number of loops between Step 1 and Step 4 is finite.

Proof
Suppose by contradiction that one of the following cases occur:

(i) infinitely many times through Step 5;
(ii) the number of loops between Step 1 and Step 4 is infinite.
Notice that both cases imply that

∥gk∥ > η, ∀k ≥ k̄, (28)
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but at the same time there exists an index jk+1 ∈ J generated in Step 4 such that

fjk+1
(yk+1)− f(xk) > βvk, ∀k ≥ k̄.

Hence, for any p > q ≥ k̄, it follows

vp ≥ ⟨gq+1
jq+1

, dp⟩ − αq+1
q+1

= ⟨gq+1
jq+1

, dp⟩ − f(xq+1) + fjq+1(y
q+1) + ⟨gq+1

jq+1
, xq+1 − yq+1⟩

= ⟨gq+1
jq+1

, dp⟩ − f(xq) + fjq+1(y
q+1) + ⟨gq+1

jq+1
, xq − yq+1⟩

= ⟨gq+1
jq+1

, dp − dq⟩+ fjq+1(y
q+1)− f(xq)

> ⟨gq+1
jq+1

, dp − dq⟩+ βvq.

This further implies
vp − vq > ⟨gq+1

jq+1
, dp − dq⟩+ (β − 1)vq.

Passing to the limit as q → ∞, and combining Lemma 5 and Assumption 1, we have

vq → 0,

which contradicts (28), so the lemma holds.

From Lemma 4 and Lemma 6, the following theorem holds immediately.

Theorem 1
Algorithm 1 is well defined, i.e., the stability center must be updated after a finite number of iterations.

Now we prove the global convergence of Algorithm 1.

Theorem 2
For any ϵ > 0 and η > 0, Algorithm 1 stops after a finite number of iterations at a point satisfying the approximate
optimality condition

∥gk∗∥ ≤ η and ϵk∗ ≤ ϵ,

where k∗ is the index for the last iteration. Furthermore, xk∗ ∈ X can serve as an approximately optimal solution
of problem (1).

Proof
Suppose by contradiction that Algorithm 1 cannot stop finitely. Then from Theorem 1, we know that the stability
centers are updated infinitely many times. Let ks (s = 1, 2, . . . ) be the indices of stability centers. From Lemma 3,
we have

f(xks+1)− f(xks) = f(xks+1)− f(xks+1−1) ≤ −βtks+1−1η
2. (29)

Let Nks be the number of bundle resets from xks to xks+1 , then it follows

tks+1−1 =
t̄

σNks
. (30)

Combining (29) and (30), we have

f(xks+1)− f(xks) ≤ 1

σNks
(−βt̄η2),

which further implies

f(xks+1)− f(xk1) ≤ −τ

s∑
l=1

1

σNkl

, (31)
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where τ = βt̄η2 > 0.
On the other hand, from Lemma 4, we know that

Nkl
≤ N̄ :=

⌈
ln t̄M2

ϵ

lnσ

⌉
.

This together with (31) shows that

f(xks+1)− f(xk1) ≤ −τ

s∑
l=1

1

σN̄
.

Passing to the limit as s → ∞, we have

lim
s→∞

(
f(xks+1)− f(xk1)

)
≤ −∞,

which contradicts Assumption 1, so the theorem holds.

5. Improvement by subgradient aggregation

In order to control the bundle size and meanwhile keep the theoretical convergence, we utilize the subgradient
aggregation strategy [11] to improve Algorithm 1.

Algorithm 2
(Improved version of Algorithm 1)

Step 0. Initialization. Select y1 ∈ X , and set x1 = y1, L1 = {1}, the initial bundle B1 =
{(y1, f(y1), g1, 0)} with g1 ∈ ∂f(y1), and α1

P = 0, P 0 = g1. Select ϵ > 0, σ > 1, η > 0, β ∈ (0, 1), t̄ > 0. Set
t1 = t̄, BR = ∅, k := 1.

Step 1. Proximal point finding. Solve the subproblem

AQP(Bk)

min
v∈R, d∈Rn

v + 1
2tk

∥d∥2

s.t. −αk
l + ⟨gljl , d⟩ ≤ v, l ∈ Lk,

−αk
P + ⟨P k−1, d⟩ ≤ v,

⟨ai, xk + d⟩ ≤ bi, i ∈ I

to obtain the optimal solution (vk, d
k) and its multipliers (λk, λk

P , µ
k). Let yk+1 = xk + dk, and compute

gk =
∑
l∈Lk

λk
l g

l
jl
+ λk

PP
k−1 +

∑
i∈I

µk
i ai,

ϵk =
∑
l∈Lk

λk
l α

k
l + λk

Pα
k
P −

∑
i∈I

µk
i (⟨ai, xk⟩ − bi),

(P k, α̃k
P ) =

∑
l∈Lk

λk
l (g

l
jl
, αk

l ) + λk
P (P

k−1, αk
P ).

Step 2. Stopping criterion.
If ∥gk∥ ≤ η, ϵk ≤ ϵ, STOP (approximate optimality achieved);
else if ∥gk∥ ≤ η, ϵk > ϵ, go to Step 3;
else ∥gk∥ > η, go to Step 4.

Step 3. Bundle reset. Set xk+1 := xk, yk+1 := xk, Lk+1 = {k + 1}, BR = {k + 1}, and make a bundle
reset

Bk+1 = {(yk+1, f(yk+1), gk+1, 0)} with gk+1 ∈ ∂f(yk+1).
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Set αk+1
P = 0, P k = gk+1, tk+1 = tk/σ, k := k + 1, and return to Step 1.

Step 4. Descent test. Extract any index h from the function index set J . If

fh(y
k+1)− f(xk) > βvk, (1)

then set xk+1 := xk (null step). Select a subset L̂k satisfying BR ⊆ L̂k ⊆ Lk, and generate its corresponding
bundle B̂k ⊆ Bk, set Lk+1 = L̂k ∪ {k + 1}, and update the bundle by

Bk+1 = B̂k ∪ {(yk+1, fh(y
k+1), gk+1

h , αk+1
k+1)},

where
gk+1
h ∈ ∂fh(y

k+1), αk+1
k+1 = f(xk+1)− [fh(y

k+1) + ⟨gk+1
h , xk+1 − yk+1⟩].

Set αk+1
P = α̃k

P . Restore the function index set by setting J = {1, . . . ,m}, and let tk+1 := tk, k := k + 1, and
return to Step 1.

Step 5. Index removing. Set J := J \ {h}. If J ̸= ∅, then return to Step 4.

Step 6. Updating. Set xk+1 := yk+1 (serious step). Select L̂k ⊆ Lk, generate its corresponding bundle
B̂k ⊆ Bk, and update the elements αk

l (l ∈ L̂k) in B̂k by

αk
l := αk

l + f(xk+1)− f(xk)− ⟨gljl , x
k+1 − xk⟩, l ∈ L̂k.

Set Lk+1 = L̂k ∪ {k + 1}, and update the bundle by

Bk+1 = B̂k ∪ {(yk+1, f(yk+1), gk+1, 0)} with gk+1 ∈ ∂f(yk+1).

Set
αk+1
P = α̃k

P + f(xk+1)− f(xk)− ⟨P k, xk+1 − xk⟩.
Restore the function index set by setting J = {1, . . . ,m}, let tk+1 := t̄, BR = ∅, k := k + 1, and return to Step 1.

Remark 2
The choice of subset L̂k is very flexible, since theoretically speaking, L̂k can be a singleton or even an empty set.
In practice, we can delete some elements from the bundle when its size reaches a preset maximum value, see e.g.
[3].

6. Numerical results

In this section, we aim to test the practical effectiveness of Algorithm 2. We tested a set of 15 constrained
minimax problems, in which problems Wong 2 and Wong 3 are taken from [19], and the other 13 problems
are modifications of the corresponding problems in [19] by imposing box constraints of the form ℓ ≤ x ≤ u (see
Table I for detailed data, and see [22] for detailed explanations of the data). For simplicity, we may use some
MATLAB notations: mod(x,y) finds the remainder after division of x by y; ones(p,q) and zeros(p,q)
are p-by-q matrices of ones and zeros, respectively.

All numerical experiments were implemented by using MATLAB R2011b, and on a PC with Intel 3.2GHz CPU,
4GB RAM, Windows 7 platform. The subproblem AQP(Bk) is solved by the well-known software MOSEK [20].

The parameters are selected as: ϵ = 0.001, σ = 4, η = 0.01; t̄ = 1 and β = 0.3 for the first 8 problems in Table
I and Maxl; t̄ = 0.001 and β = 0.5 for Wong 2 and Maxquad; t̄ = 100/11 and β = 0.4 for Wong 3; t̄ = 10/3
and β = 0.3 for Maxq, Goffin and MXHILB. The update of tk is slightly more sophisticated than stated in the
algorithm, since a heuristic procedure similar to the one in [12] is applied. The index h in Step 4 is selected basically
in order 1, . . . ,m, but we first test the indices that violate (i.e. (1) holds) in previous iterations, since they are more
likely to violate at this time. In addition, we set a maximum value M = min{10n, 50} for the bundle sizes.

The numerical results for problems Wong 2 and Wong 3 are reported in Table II, and the other results are
reported in Table III. The notations are: the number of iterations “NI”; the number of descent steps “ND”; the
number of component function evaluations “Nfi”; the approximate optimal value “f∗”; the number of equivalent
objective function evaluations “Neq

f ”, i.e., Neq
f =Nfi/m.
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Table I. The data for 13 test problems

Problem starting point y1 box constraints
CB2 (3, 3)T ℓ = (2, 2)T , u = (4, 4)T

CB3 (3, 3)T ℓ = (2, 0)T , u = (4, 3)T

DEM (0.5,−2.5)T ℓ = (0.1,−3)T , u = (1.1,−2)T

QL (2, 3)T ℓ = (1.3, 2.5)T , u = (2.3, 3.5)T

LQ (1, 1)T
ℓ = ( 1√

2
+ 0.1, 1√

2
+ 0.1)T ,

u = ( 1√
2
+ 1.1, 1√

2
+ 1.1)T

Mifflin1 (1.5, 0.5)T ℓ = (1.1, 0.1)T , u = (2.1, 1.1)T

Rosen-Suzuki (1, 2.1,−3,−0.9)T
ℓ = (−∞, 1.1,−∞,−0.9)T ,
u = (+∞, 2.1,+∞, 0.1)T

Shor 2ones(5,1)
ℓ = (−∞, 1.1,−∞, 1.1,−∞)T ,
u = (+∞, 2.1,+∞, 2.1,+∞)T

Maxquad zeros(10,1) ℓ = −2ones(10,1), u = 2ones(10,1)

Maxq

for j = 1, . . . , 10, if mod(j, 2)=0,
y1j = 1.1, else y1j = j;

for j = 11, . . . , 20, if mod(j, 2)=0,
y1j = 0.1, else y1j = −j

for j = 1, . . . , 20, if mod(j, 2)=0,
ℓj = 0.1, uj = 1.1,

else ℓj = −∞, uj = +∞

Maxl the same as Maxq the same as Maxq

Goffin
for j = 1, . . . , 25, y1j = 0,
for j = 26, . . . , 50, y1j = 3

for j = 1, . . . , 25, ℓj = −1, uj = 1
for j = 26, . . . , 50 ℓj = 2, uj = 4

MXHILB 0.1ones(50,1)
for j = 1, . . . , 50, if mod(j, 2)=0,

ℓj = 0.1, uj = 1.1,
else ℓj = −∞, uj = +∞

Table II. Numerical results for Wong 2 and Wong 3

Problem n m p NI ND Nfi f∗ Neq
f

Wong 2 10 6 3 27 10 102 24.306268 17
Wong 3 20 14 4 83 16 664 92.764791 47

7. Conclusions

In this paper, we have presented an improved partial bundle method for linearly constrained minimax problems.
By introducing the partial cutting-planes model and an improved descent test criterion, the number of component
function evaluations may be reduced greatly. At each iteration, only one QP subproblem is solved. The proposed
method produces a sequence of feasible trial points, and ensures that the objective function is monotonically
decreasing on the sequence of stability centers. Global convergence is proved, and limited numerical results show
that our method is promising.
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Table III. Numerical results for 13 problems

Problem n m p NI ND Nfi f∗ Neq
f

CB2 2 3 4 2 2 6 20.000000 2
CB3 2 3 4 2 2 6 16.000000 2
DEM 2 3 4 2 2 6 −2.500000 2
QL 2 3 4 2 2 6 7.940000 2
LQ 2 2 4 2 2 4 −1.311371 2

Mifflin1 2 2 4 2 2 4 3.300000 2
Rosen_Suzulki 4 4 4 23 6 54 −43.853040 14

Shor 5 10 4 40 11 189 23.418955 19
Maxquad 10 5 20 33 9 121 −0.841170 24
Maxq 20 20 20 51 14 496 0.010176 25
Maxl 20 20 20 18 11 269 0.100361 13

Goffin 50 50 100 27 3 1074 25.000000 21
MXHILB 50 50 50 34 11 567 0.001698 11
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