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Abstract This paper presents a procedure for coefficient estimation in a multivariate regression model of reduced rank
in the presence of multicollinearity. The procedure permits the prediction of the dependent variables taking advantage of
both Partial Least Squares (PLS) and Singular Value Decomposition (SVD) methods, which is denoted by PLSSVD. Global
variability indices and prediction error sums are used to compare the results obtained by classical regression with reduced
rank (OLSSVD) and the PLSSVD procedure when applied to examples with different grades of multicollinearity (severe,
moderate and low). In addition, simulations to compare the methods were performed with different sample sizes under four
scenarios. The new PLSSVD method is shown to be more effective when the multicollinearity is severe and especially for
small sample sizes.
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1. Introduction

A new procedure for regression coefficient estimation under reduced rank conditions is developed using partial
least squares (PLS) and compared with classical methods which use ordinary least squares (OLS). Hoskuldsson
[11] asks the question, “What situations are typical of those where PLS methods can be expected to be good for
modelling purposes?” and gives the reply “They are the ones where there are many variables but not necessarily
many samples or observations. This is a common situation in many laboratories. Typically it may take a lot of
time to get a new sample, but each sample may give a large amount of information (variables).” He also replies to
another important question, “Why can one expect PLS regression methods to perform better than multiple linear
regression, ridge regression and other well known regression techniques?”. The answer involves the increased
stability of predictors derived from PLS methods. It turns out that the essential criteria for the predictability of
models is to keep the number of variables as low as possible. In PLS, components are selected that give ’maximal’
reduction in the covariance XTY of the data. In that sense PLS will give the minimum number of necessary
variables.

Xu et al [30] also note that principal component regression (PCR) is similar to PLS in constructing new variables
(components): each new component is a linear combination of x1, x2, ..., xm, where xi is the ith column of data
matrix X . Both of them shrink the estimated coefficient vector by leaving some of the components out of the
model. The major difference between PCR and PLS is that PCR’s components are determined only by X , whereas
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PLS’s components are determined for both X and Y . Thus PLS takes into account all of the available data. In
this paper these observations have been taken into account in that we have restricted the discussion to OLS and
PLS regression methods, singular value decomposition, use only small real life samples and include simulations
involving small sample sizes.

A summary of recent procedures for coefficient estimation under reduced rank regression (RRR) was given in the
article of Heinen and Rengifo [9]. We present for our purposes in this introduction only that of Davies and Tso[5],
a pioneer work which relates reduced rank regression with redundancy analysis and an important modification of
their work by Ter Braak and Looman [21] which involves the biplots theory of Gabriel [7]. It provides the classical
regression procedure with reduced rank referred to here as OLSSVD as it combines OLS with Singular Value
Decomposition (SVD) methods. In section 2, a new procedure PLSSVD is presented based on PLS regression and
SVD. Section 3 uses global variability indices and prediction error sums to compare the OLSSVD and PLSSVD
procedures when applied to examples taken from the literature having different grades of multicollinearity: severe,
moderate and low. Also a brief simulation study uses the mean square error to compare the two procedures using
simulated data. The conclusion of the study, described in the final section, is that the new PLSSVD procedure is
more stable than OLSSVD and is most effective when multicollinearity is severe.

1.1. The Basic Model

Multivariate regression with reduced Rank (RRR), a special case of the classic multivariate regression model
derived from the works of Anderson [4], Izenman [12] and Davies and Tso[5], is based on the model:

Y = XΘ+ E (1)

in which Y is a (n× q) matrix, X is a (n× p) matrix, Θ is a (p× q) matrix of parameters or regression coefficients
and E is the (n× q) matrix of errors or random perturbations.

1.2. Reduced Rank Regression Procedure of Davies and Tso (1982)

Davies and Tso (1982) [5] base their procedure on the reduced rank regression model Y = XΘ+ E assuming
r = rank (Θ ), with r ≤ p, The essential steps of their procedure are:

1. Form data matrices X (n× p) and Y (n× q) containing values for regressor and response variable on n
samples. Scale each response variable and subtract sample means from each variable.

2. Determine the unconstrained least-squares estimate Θ̂ by Θ̂ = X+Y where X+ is the Moore-Penrose
generalized inverse of X (see, for example, Graybill, 1969 [8], Theorem 7.4.1 or Davies and Tso, 1982, p.245
[5]). When X has full column rank this is equivalent to use the standard formula: Θ̂OLS = (X

′
X)−1X

′
Y

3. Form the corresponding matrix of fitted values Ŷ = XΘ̂
4. Perform Singular Value Decomposition of Ŷ , that is, Ŷ =

∑τ
i=1 λiuiv

′

i = UDV
′
( where U is a matrix of

order n× q whose columns are the eigenvectors associated with the nonzero eigenvalues of the matrix Ŷ Ŷ
′
;

D is a diagonal matrix of order q which contains the square roots of the nonzero eigenvalues of Ŷ Ŷ
′

or Ŷ
′
Ŷ

and V is an orthogonal matrix of order q whose columns are the eigenvectors of Ŷ
′
Ŷ . The matrices U and V

satisfy the properties U ′U = I and V ′V = I , and τ is rank of (Ŷ )). Evaluate the matrix Ps =
∑s

i=1 λiviv
′

i(Ps

is projection matrix de rank s, with s < τ )
5. Evaluate the reduced-rank fitted values Y ∗

s = Ŷs = XΘ̂Ps

6. Compute the reduced rank matrix of coefficients given by Θ∗ = Θ̂Ps

This procedure by Davies and Tso has been the object of much subsequent research. For example, Anderson [3]
compared the asymptotic distribution of the coefficient matrix with complete rank with that of reduced rank. The
estimation model with reduced rank was shown to be superior in general. The same author in 2002 studied the
influence of the rank in both models finding that the model with reduced rank is most efficient when the rank is
small. In the next section a different approach based on Ter Braak and Looman (1994) [21] which uses a biplot of
reduced rank regression is presented. The need to factor the regression coefficient matrix using the techniques of
Gabriel (1971) [7] obliged them to develop reduced rank regression using OLS and SVD.
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1.3. The Reduced Rank Regression Procedure of Ter Braak and Looman (OLSSVD)

Just as Davies and Tso did in 1982[5], Ter Braak and Looman in 1994 [21] based their reduced rank regression
model on the classical linear regression model Y = XΘ+ E, under the assumption that the matrix Θ of order
(p× q) and rank r does not have complete column rank, that is, r < q. It is thus possible to factor:

Θ = AB
′

(2)

where A and B are matrices of order (p× r) and (q × r) respectively. Inserting (2) in (1) we have:

Y = XAB
′
+ E (3)

This model can be written as in factorial analysis (see Mardia et.al, 1979 [15]) as:

Y = GB
′
+ E (4)

where G = XA is a matrix of order (n× r) that contains the scores of the factors and B the matrix that contains
the factorial weights (Ter Braak and Looman, 1994 [21]).

As in Davies and Tso [5], we have assumed errors in the matrix E to be uncorrelated for different samples
(i.e. across rows), but correlation between the errors in responses measured on the same sample may need to
be considered. If the errors are distributed normally with unknown covariance matrix, it has been shown that
canonical correlation analysis is applicable (Tso, 1981 [23]). Given an independent estimate covariance matrix Σ,
then maximum-likelihood estimation of Θ requires only a slight modification of the given least-squares procedure.

Let Σ have eigenanalysis Σ = V D2V ′ = ΓΓ ′, say, where Γ = V D−1 and D is understood to have positive
elements along its main diagonal. Ter Braak and Looman (1994)[21] take this into consideration and replace the
criteria for least squares by:

tr(Y −XΘ)Σ−1(Y −XΘ)
′
= tr(Y −XΘ)ΓΓ

′
(Y −XΘ)

′
= ∥(Y −XΘ)Γ∥2. (5)

The consequence of this observation is the following. If in (5), Γ is a conveniently chosen symmetric positive
definite matrix, the principal component analysis (PCA) and canonical correlation analysis (CCA) can be derived
from RRR as shown by Izenman [12]. The estimation in regression with reduced rank takes into account the
observation when (3) is introduced in (5) to obtain the orthogonal sum:

∥(Y −XAB
′
)Γ∥2 = ∥(Y − Ŷ )Γ∥2 + ∥(Ŷ −XΘ)Γ∥2 (6)

where Ŷ is the matrix of values adjusted by separate multiple regressions (equivalent to an adjustment by
multivariate regression for each of the p independent variables) and Γ a symmetric positive definite matrix selected
conveniently according to the context. Considering (4), we obtain:

∥(Y −XAB
′
)Γ∥2 = ∥(Y − Ŷ )Γ∥2 + ∥(Ŷ −GB

′
)Γ∥2. (7)

According to the decomposition (6), in order to do the estimation in reduced rank regression it is necessary to find
the minimum of ∥(Y −XAB

′
)Γ∥2. The solution by least squares is thus obtained by minimizing the right hand

term of (7) using singular value decomposition (SVD), (see Eckart and Young [6]). In other words:

Ŷ Γ = UDV
′

(8)

where U and V are orthogonal matrices of order (n× t) and (q × t) respectively, where t = min(n, q), that contain
the singular values of Ŷ Γ (Ŷ Γ )

′
and (Ŷ Γ )

′
(Ŷ Γ ) respectively, and D is a diagonal matrix of order q formed by the

eigenvalues of these matrices in non-increasing order (λ1 ≥ λ2 ≥ ... ≥ λt ≥ 0). Remember also that Γ is a positive
definite matrix.

The minimum of (7), when the rank of Y is r < q, is the sum of the eigenvalues obtained by singular value
decomposition: λ2

r+1 + ...+ λ2
t using

Ĝ = Ur and B̂SV D = Γ−1[V D]r (9)
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where the matrices Ur and [V D]r contain only the first r columns of the matrices U and V D of (8), respectively. By
(4), G = XA and by (9), Ĝ = Ur, so that it is possible to estimate A by ordinary least squares using the regression
Ĝ = XA which gives:

ÂOLS = (X
′
X)−1XĜ. (10)

The matrix of regression coefficients in the model (3) is thus:

Θ̂OLS−SV D = ÂOLSB̂
′

SV D. (11)

Observe that the matrix of regression coefficients is thus obtained by a procedure that combines ordinary least
squares estimation and singular value decomposition. The steps of this OLSSVD procedure for the RRR model
Y = XΘ+ E can be summarized as follows, Ter Braak and Looman (1994) [21]:

1. Centralize or standardize the matrices X (n× p) and Y (n× q).
2. Express the multivariate regression model of (1) as: Y = XAB

′
+ E, where Θ = AB

′
.

3. Denote G = XA and express Y = GB
′
+ E.

4. Minimize ∥(Ŷ −GB
′
)Γ∥ by singular value decomposition Ŷ = UDV

′
.

5. Assign Ĝ = Ur and B̂SV D = Γ−1[V D]r.
6. As G = XA and Ĝ = Ur estimate A by ordinary least squares by Â−1

OLS = (X ′X)−1X ′Ĝ

7. Θ̂OLS−SV D = ÂOLSB̂
′

SV D.
8. Perform the estimations using ŶOLS−SV D = XΘ̂OLS−SV D.

This algorithm is very important since by factorizing the matrix of regression coefficients with reduced rank
as Θ̂OLS−SV D = ÂOLSB̂

′

SV D it is possible to interpret graphically by means of a biplot following the ideas of
Ter Braak and Looman [21] (see for example Alvarez and Cardenas [1]). Ter Braak and Looman also note that
in this algorithm, if Γ = I , the solutions can be obtained by a principal components analysis of the values Ŷ .
Reduced-rank regression inherits from multiple regression the property that it is invariant for linear rescaling of the
regressors, but from principal components analysis we know that it is not invariant for rescaling of the response
variables (Jollife [14]). There are three methods to overcame this latter problem:

1. Standardize each response variable to zero mean and unit variance and use Γ = I .
2. Weight responses variables with the inverse of the error covariance matrix Σ̂p, estimated by multivariate

regression, i.e., use Σ̂
−1/2
p .

3. Weight each response variable with the inverse of its error variance Σ̂p(σ̂2
k, k = 1, 2, ..., q), estimated by

multiple regression,i.e., use Γ = diag(σ̂2
1 , σ̂

2
2 , ..., σ̂

2
q ).

Method (1) leads to redundancy analysis (Van den Wollenberg, 1977 [25]), whereas method (2) leads to canonical
correlation analysis as was first noted by Velu et. al. (1986)[27] . Method (3) was proposed by Ter Braak (1990)[22]
as an intermediate between redundancy analysis and canonical correlation.

2. Estimation in Multivariate Reduced Rank Regression using Partial Least Squares and Singular Value
Decomposition

It was shown above that the coefficient matrix in reduced rank regression is given by Θ̂OLS−SV D = ÂOLSB̂
′

SV D.
ÂOLS and B̂SV D can be expanded using (9) and (10) to obtain

Θ̂OLS−SV D = (X
′
X)−1XUrDrV

′

rΓ
−1. (12)

When multicollinearity exists, if it is perfect then it is mathematically impossible to estimate Θ̂ since (X ′X)−1

does not exist. If the multicollinearity is not perfect but strong, the estimations obtained will have high standard
errors which result in values far from reality. Remember that, in the presence of multicollinearity, the variance, the
covariance and the absolute values of the regression coefficients are very large.
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2.1. PLS Regression

Partial Least Squares (PLS) methods were introduced by Wold H. [28] and PLS regression by Wold S., Martens
H. and Wold H. (1983) [29]. Since then many algorithms and applications have been proposed, chiefly in the fields
of chemometrics, medicine, biology, petroleum, agriculture and continuous industrial processes. PLS regression
(PLSR) is a technique that generalizes and combines the characteristics of principal component analysis and
multivariate regression. It is particularly useful when it is necessary to predict a set of dependent variables in
terms of a set of independent variables.

As noted previously, the classical multivariate regression procedures have serious stability problems in the
presence of severe or strong multicollinearity. PLS regression is a good alternative in such circumstances since
it uses basic interactive concepts to adjust bilinear models in several blocks of variables giving a solution to
multivariate statistics in the presence of many collinear variables in the data and a modest number of observations.
The stability problems in identification and convergence as described by Martens et al in [16] can be thus avoided.

2.2. The PLS Regression Model

Many estimation algorithms have been developed for this type of regression as noted for example in Wold et al
[29]. One of the most simple algorithms is that of Hoskuldsson [11] described in high level as follows in terms
of the weights of the independent variables wh, the weights of the dependent variables ch, the score vectors of
the independent variables th, the score vectors of the dependent variables uh and also the weight vectors ph and
ch. These vectors resulting from the algorithm give the PLS estimation. We base the calculations on the modified
PLSR algorithm described in Tenenhaus (1998) [20] and emphasize that our objective is centered on calculating the
matrix of PLS regression coefficients. Before showing the modified algorithm, we show the NIPALS (Nonlinear
iterative Partial Least Squares) algorithm which is the basis for PLSR. It begins by standardizing the sets X and Y .

1. Stage 1: X0 = X ; Y0 = Y .
2. Stage 2: for h = 1, 2, ..., a :
3. Stage 2.1: uh = the first column of Yh−1

4. Stage 2.2: Repeat until convergence of wh:
5. Stage 2.2.1: wh = X ′

h−1uh/(u
′
huh).

6. Stage 2.2.2: Scale wh to be of length one.
7. Stage 2.2.3: th = Xh−1wh/(w

′
hwh).

8. Stage 2.2.4: ch = Y ′
h−1th/(t

′
hth).

9. Stage 2.2.5: uh = Yh−1ch/(c
′
hch).

10. Stage 2.3: ph = X ′
h−1th/(t

′
hth).

11. Stage 2.4: Xh = Xh−1 − thp
′
h

12. Stage 2.5: Yh = Yh−1 − thc
′
h

In Tenenhaus (1998)[20], it is shown that the weight vectors, wh and ch, and the latent variables th and uh are
obtained as solutions of the following equations associated with the highest common eigenvalue λh

(
1

n− 1
X ′

h−1Yh−1)(
1

n− 1
Y ′
h−1Xh−1)wh = λhwh

(
1

n− 1
Xh−1X

′
h−1)(

1

n− 1
Yh−1Y

′
h−1)th = λhth

(
1

n− 1
Y ′
h−1Xh−1)(

1

n− 1
X ′

h−1Yh−1)ch = λhch

(
1

n− 1
Yh−1Y

′
h−1)(

1

n− 1
Xh−1X

′
h−1)uh = λhuh

The PLS regression principle can be summarized as obtaining the components th = Xh−1wh/(w
′
hwh) and

uh = Yh−1ch/(c
′
hch) of the h-t́h step beginning with the first stage. One of the interesting properties of the previous
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algorithm is that the components th are orthogonal which implies that the matrices Xh and Yh are the respective
residuals of the regressions of X and Y on the components t1, t2, ..., th. The following modifications give origin to
the PLS regression algorithm:

wh = X ′
h−1Y ch/∥X ′

h−1Y ch∥

ch = Y ′th/t
′
hth

ph = X ′th/t
′
hth

The calculation of Yh residues is unnecessary for the determination of PLS components. Rather, these residues
are used for choosing the number of components. Let us therefore look at the modified version of the PLS
regression algorithm leading to the same vector wh, th, ch and ph as the classical algorithm. The components
uh = Yh−1ch/c

′
hch are replaced by the components ũh = Y ch/c

′
hch. The modified PLS algorithms is as follows:

1. Stage 1: X0 = X ; Y0 = Y .
2. Stage 2: for h = 1, 2, ..., a :
3. Stage 2.1: ũh = the first column of Y
4. Stage 2.2: Repeat until convergence of wh:
5. Stage 2.2.1: wh = X ′

h−1ũh/(ũ
′
hũh).

6. Stage 2.2.2: Scale wh to be of length one.
7. Stage 2.2.3: th = Xh−1wh/(w

′
hwh).

8. Stage 2.2.4: ch = Y ′th/(t
′
hth).

9. Stage 2.2.5: ũh = Y ch/(c
′
hch).

10. Stage 2.3: ph = X ′th/(t
′
hth).

11. Stage 2.4: Xh = Xh−1 − thp
′
h.

12. Stage 2.5: Yh = Yh−1 − thc
′
h.

The latent variables th and uh are obtained as solutions of the following equations associated with the greatest
common eigenvalue λh

(
1

n− 1
X ′

h−1Y )(
1

n− 1
Y ′Xh−1)wh = λhwh

(
1

n− 1
Xh−1X

′
h−1)(

1

n− 1
Y Y ′)th = λhth

(
1

n− 1
Y ′Xh−1)(

1

n− 1
X ′

h−1Y )ch = λhch

(
1

n− 1
Y Y ′)(

1

n− 1
Xh−1X

′
h−1)ũh = λhũh.

The solution of each stage permits the construction of the following matrices

Th = [t1, ..., th]

Wh = [w1, ..., wh]

Ph = [p1, ..., ph]

W̃h = [w̃1, ..., w̃h]

To obtain the regression coefficient matrix and the regression equation we use the following mathematical
expression relating Th and W̃h:

Th = XW̃h

W̃h = Wh(P
′
hWh)

−1.

To express the regression of Y on the PLS components t1, .., tH on variables X

Y = t1c
′
1 + t2c

′
2 + ...+ tHc′H + YH (13)
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we can define CH as
CH = [c1, c2, ..., cH ]

and the regression equation becomes
Y = THC ′

H + YH

which in turn can be expressed as

Y = THC ′
H + YH = XW̃HC ′

H + YH . (14)

Finally, we can write the equation for the regression coefficient matrix ΘPLS as

ΘPLS = W̃HC ′
H . (15)

The matrix of regression coefficients of (15) is determined from the components th which are mutually
orthogonal thus assuring that the multicollinearity does not effect this matrix of parameters contrasting with the
estimation of regression coefficients using ordinary least squares. The idea to take advantage of this fact will now
be presented.

2.3. Reduced Rank Regression Procedure PLSSVD

As a contribution to reduced rank regression in the presence of multicollinearity the estimation procedure denoted
by PLSSVD is now presented. It is an integration of the PLS method and the procedure of Ter Braak and Looman
(1994) [21]. The integrated procedure assures that the estimation of the regression coefficients are affected as little
as possible by problems of multicollinearity.
The procedure consists of the following steps:

1. Begin with the multivariate regression model (with the variables of the two sets X and Y centered or
standardized):

Y = XΘ+ E.

2. Factor the coefficient matrix as Θ = AB′ so that the multivariate reduced rank regression model becomes

Y = XAB′ + E.

As in the equation (3), it is then possible to express the model as Y = GB′ + E, where G = XA.
3. Minimize ∥(Y −XAB

′
)Γ∥2 = ∥(Y − Ŷ )Γ∥2 + ∥(Ŷ −GB

′
)Γ∥2 using as an initial estimation for Y that

obtained by SVD as was done in the equation (8) obtaining

Ŷ Γ = UDV ′

where U and V are orthogonal matrices of order (n× t) and (q × t) with t = min(n, q), that contain the
eigenvectors of (Ŷ Γ )(Ŷ Γ )′ and (Ŷ Γ )′(Ŷ Γ ) respectively; D is a diagonal matrix of order q containing the
eigenvalues of these matrices in non-increasing order (λ1 ≥ λ2 ≥ ... ≥ λt ≥ 0); and Γ is a positive definite
matrix.

4. Since Ĝ = U = XA , it is possible to make a comparison with the regression model with U representing
the matrix of dependent variables, X the matrix of independent variables and A the matrix of regression
coefficients. Suppose that the matrix of independent variables presents high multicollinearity so that it is not
convenient to do the estimation using the OLS model and that the application of the PLS estimation for A is
proposed. According to the described PLS method, the estimation given in the equation (15) is

ÂPLS = W̃C ′.

5. The matrix of regression coefficients is obtained by combining the PLS estimation of A with the estimation
of B given by SVD so that the reduced rank regression coefficient matrix given by PLSSVD is

Θ̂PLS−SV D = ÂPLSB̂
′
SV D.
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6. Finally, the estimations of Y are given by

ŶPLS−SV D = XΘ̂PLS−SV D = XÂPLSB̂
′
SV D.

Note that the calculation of (X ′X)−1 is not present in the PLSSVD procedure so that multicollinearity does
not affect the estimation of the coefficient matrix.

3. Comparison of the Procedures

In this section, comparisons are made between the reduced rank regression estimation procedure of Ter Braak and
Looman [21], called hereafter OLSSVD, and the estimation procedure proposed in this article called PLSSVD.
The comparison is done using data already studied by other authors. Following the classification by condition
index given in Montgomery and Peck [17], three scenarios are presented according to the grade of multicollinearity
found in the data: severe multicollinearity, moderate to strong multicollinearity and light multicollinearity (see
Table 1). All the analysis is performed using standardized data and weight matrices Γ = I and Γ = R

1/2
yy .

Table 1. Condition Indices for the three data sets

Data Set Condition Index Grade of Multicollinearity
Hervé Abdi (2003)[10] 5.2298 ∗ 1016 Severe

Alvin Rencher (2002)[19] 224.1492 Moderate to Strong
Valencia et. al.(2004)[24] 59.5997 Light

The estimations are evaluated using indices which measure the global variability of the residual matrix as
explained by Peña (2002,p.77) [18]. The first index is the trace of the covariance matrix of the residual matrix (T );
however, realizing that this measure does not take into account the dependence structure among the variables, a
second index called generalized variance, (GV), defined as the determinant of the covariance matrix of the residuals
is also used. A third index, called generalized standard deviation (GSD), is obtained by taking the square root of
the generalized variance. A fourth and last index called the effective variance (EV) is defined as the generalized
variance elevated to the 1/q. The mathematical expressions of each of these index measures are found in Table 2.

Table 2. Global Variability Measures for the covariance matrix of the residuals

Measure of global variability INDEX
Traza (T ) T = tr(S)
Generalized Variance (GV) GV = det(S)

Generalized Standard Deviation(GSD) GSD = [det(S)]1/2

Effective Variance (EV) EV = [det(S)]1/q

S = cov(Ê);Ê=matrix of residuals generated by the estimation procedure

3.1. Data with Severe Multicollinearity

The first set of variables, taken from Hervé Abdi (2003, p.3 [10]), consists of measurements of five types of
wine considering price (x1), quantity of sugar (x2), alcohol (x3) and acidity (x4) as independent variables and
classification by experts indicating the pleasure received in drinking them and categorizing them in 3 groups
(y1:Pleasure, y2: Meat and y3: Dessert) according to their use in parties or to accompany meat or desserts. Table 1
shows that this data presents severe multicollinearity.
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3.2. Data with Moderate to Strong Multicollinearity

The second set of data is given by 19 observations of an experiment involving a chemical reaction (Box and Youle
in Rencher Alvin, 2002 p. 340 [19]). As shown in Table 1, this data presents moderate to strong multicollinearity.
The variables are identified as follows: Percentage of the initial material preserved or unchanged (x1), Percentage
converted to the desired product (x2), Percentage of flawed product (x3), Temperature (y1), Concentration (y2),
Time (y3).

3.3. Data with light Multicollinearity

The third and last set of data (Table 1) taken from Valencia et. al. (2004, p.73 [24]), consists of three dependent
variables (y1, y2, y3), three independent variables (x1, x2, x3) and seven observations. The condition index of this
data, (see Table 1), shows that the independent variables do not present serious problems of multicollinearity so
that the data set is said to have light multicollinearity.

3.4. Comparison of the PLSSVD and OLSSVD procedures using the weight matrices Γ = I and Γ = R
−1/2
yy

Table 3 shows the correlations of the independent variables of the three sets of data. In the data with severe
multicollinearity, the variable price (x1) has a strong negative correlation with variables alcohol and acidity (x3

and x4) and a positive correlation of 0.32 with the quantity of sugar (x2). The quantity of sugar has no relation
with the other variables. Regarding the data with moderate multicollinearity, x1 and x3 have the highest correlation
among the independent variables followed by a moderate correlation between x1 and x2 and lastly x2 and x3 present
a very low correlation. The data with light multicollinearity presents independent variables with high correlations.

Table 3. Correlation of the Independent variables of the three data sets

Severe M. Moderate to Stronge M. Light M.
x1 x2 x3 x4

1 0.32 −0.9 −0.95
0.32 1 0 0
−0.9 0 1 0.95
−0.95 0 0.95 1

x1 x2 x3

1 −0.61 −0.88
−0.61 1 0.18
−0.88 0.18 1

x1 x2 x3

1 0.86 −0.95
0.86 1 −0.84
−0.95 −0.84 1

M.= Multicollinearity

Table 4 gives the global variability measures already described for the matrix of residuals obtained by each of
the procedures and for each of the two weight matrices. These measures show that both procedures give exactly the
same results for light and moderate to strong multicollinearity whereas for severe multicollinearity the PLSSVD
procedure provides residuals with much less global variability than the OLSSVD procedure for both weight
matrices. For both procedures the variability indices are greater when Γ = R

−1/2
yy than when Γ = I .

Table 4. Global Variability Indices of the residuals for the three data sets

Severe M. Moderate to Strong M. Light M.
Method
PLSSVD
OLSSVD
PLSSVD
OLSSVD

T GV ED EV
0.31 0 0 0
42.82 0.63 0.79 0.86
5.32 0.603 0.78 0.84
67.02 8.46 2.91 2.04

T GV ED EV
39.1 46.5 6.8 3.6
39.1 46.5 6.8 3.6
39.7 78.20 8.84 4.28
39.7 78.20 8.84 4.28

T GV ED EV
5.1 0.06 0.24 0.39
5.1 0.06 0.24 0.39
17 12.9 3.59 2.34
17 12.9 3.59 2.34

Γ
I
I
Ryy

−1

Ryy
−1

M.= Multicollinearity
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3.5. Comparison of the predictive power of the two procedures for the given data

Another important aspect to consider is the predictive power of the two procedures. In order to compare the
predictive power, the sum of squares of the prediction errors (PRESS) was calculated for each dependent variable
and as the variables were standardized, the sum of the Press (Total Press) was also calculated to provide a single
measure for the global predictive power of each procedure for each data set following the ideas of Valencia et.al.
(2004). These indices were calculated for each of the three situations or data sets. The PLSSVD method has higher
predictive power than the OLSSVD method when the data presents severe multicollinearity as evidenced by the
fact that for Γ = I , Total PRESS PLSSVD is 82.59 against Total PRESS OLSSVD equal to 253.18. For the other
two grades of multicollinearity the OLSSVD procedure performs better. Similar results are seen for Γ = R

−1/2
yy .

3.6. Comparison of the predictive power of the two procedures for simulated data

(a) Γ = I and standardized data (b) Γ = I and centralized data

(c) Γ = R
−1/2
yy and standardized data (d) Γ = R

−1/2
yy and centralized data

Figure 1. Simulations of severe collinearity

The mean square error (MSE) was used to compare the OLSSVD and PLSSVD procedures for simulated data
with severe multicollinearity. Multiple samples of different sizes, from 5 to 500, were compared in four different
scenarios. The first using Γ = I and standardized data (Figure 1(a)); the second using Γ = I and centralized data
(Figure 1(b)); the third using Γ = R

−1/2
yy and standardized data (Figure 1(c)) and the fourth using Γ = R

−1/2
yy and

centralized data (Figure 1(d)). The results for each of the simulations are shown in the following figures. In the
first simulation (Figure 1(a)), the PLSSVD procedure is seen to have lower MSE than the OLSSVD procedure.
Furthermore, the OLSSVD procedure in some cases is not able to make estimates due to the multicollinearity and
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although OLSSVD improves somewhat for large samples, it is not stable. In the second scenario, (Figure 1(b)), the
MSE for PLSSVD is again observed to be lower than those of OLSSVD for sample sizes less than 100 whereas the
behavior of the two procedures is similar for larger sample sizes. For the third and fourth scenarios (Figures 1(c)
and 1(d)), similar behavior including the instability of OLSSVD is again observed.

4. Conclusions

The comparisons of the PLSSVD and OLSSVD procedures show that in the presence of severe multicollinearity
of the independent variables, the PLSSVD estimation procedure results in lower residual values than the OLSSVD
procedure however when the multicollinearity of the independent variables decreases, the opposite is true. For both
Γ = I and Γ = R

−1/2
yy and for both the real data and simulated data, the PLSSVD has better predictive power

than OLSSVD when the data presents severe multicollinearity. Even though in some cases the OLSSVD procedure
presents good estimations, it is not consistently stable in the presence of severe multicollinearity.
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