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Morgenstern type bivariate Lindley distribution
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Abstract In this paper, a bivariate Lindley distribution using Morgenstern approach is proposed which can be used
for modeling bivariate life time data. Some characteristics of the distribution like moment generating function, joint
moments, Pearson correlation coefficient, survival function, hazard rate function, mean residual life function, vitality function
and stress-strength parameter R = Pr(Y < X), are derived. The conditions under which the proposed distribution is an
increasing (decreasing) failure rate distribution and positive (negative) quadrant dependent is discussed. Also, the method
of estimating model parameters and stress-strength parameter by maximum likelihood is elucidated. Numerical illustration
using simulated data is carried out to access the estimates in terms of mean squared error and relative absolute bias.
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1. Introduction

In statistical literature, normal distribution and its associated forms have been studied extensively than any other
distribution. One reason for this is the flexibility of the distribution to mathematical treatments. This makes it
a preferred choice to model random phenomena. However, when the underlying process generates skewed data
or the happening of the event of interest is rare, one has to necessarily use non-normal distributions. Some
examples to this kind of situation include modeling medical and economic data. Thus, the construction and
study of skewed distributions (univariate and multivariate) is an active field of research in statistics. A detailed
review on construction of multivariate distributions using different approaches can be found in [23]. Methods of
constructing bivariate distributions under discrete and continuous set up are available in [16] and [17] respectively.
One simple method of constructing bivariate family of distributions using marginals was proposed by Morgenstern
[20]. A primary advantage of this method is that the resulting form of the distribution function is less complex
and is amenable to mathematical treatments. Also, this method can be used when information about marginals
and their dependence structure is available. A generalization of Morgenstern method was proposed by [9], which
is known as Farlie-Gumbel-Morgenstern (FGM) family of distributions. There are lots of works available in
literature on Morgenstern type distributions. [7] introduced a Morgenstern type bivariate gamma distribution and
studied its moments and correlation structure. [12] derived the distribution of product and quotient of variates from
Morgenstern type bivariate gamma distribution. [24] derived distribution of concomitant of order statistics arising
from Morgenstern family. Estimation of parameters in Morgenstern type bivariate logistic, exponential and uniform
distributions using ranked set sampling have been carried out by [4], [5] and [26] respectively.
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The cumulative distribution function (c.d.f) of Morgenstern system of bivariate distributions is of the form

F(X,Y )(x, y) = FX(x) FY (y)(1 + α(1− FX(x))(1− FY (y)), −1 ≤ α ≤ 1 (1)

where FX and FY denote the marginal c.d.f’s and α denote the dependence parameter that indicate the degree
of association between X and Y . It can be seen that when α = 0, X and Y are independent. The corresponding
probability density function (p.d.f) is given by

f(X,Y )(x, y) = fX(x) fY (y) (1 + α(1− 2 FX(x))(1− 2 FY (x)), −1 ≤ α ≤ 1 (2)

where fX and fY are the marginal p.d.f’s of X and Y . For properties and extensions of Morgenstern family of
distributions, one may refer to [15].

Life time distributions have been studied extensively in literature due to its medical and engineering applications.
One such distribution which is an alternative to exponential distribution for lifetime data analysis is Lindley
distribution proposed by [19]. The c.d.f of this distribution is

F (x) = 1− 1 + θ + θx

1 + θ
e−θx, x ≥ 0, θ ≥ 0. (3)

The corresponding p.d.f is

f(x) =
θ2

1 + θ
(1 + x) e−θx, x ≥ 0, θ ≥ 0. (4)

The above p.d.f can be expressed as

f(x) =
θ

θ + 1
f1(x) +

1

θ + 1
f2(x), (5)

where f1(x) = θe−θx and f2(x) = θ2xe−θx. Thus, Lindley distribution is a mixture of exponential(θ) and
gamma(θ, 2) distributions with mixing proportions θ

θ+1 and 1
θ+1 respectively. From (5), it can be observed that

Lindley distribution approaches exponential distribution for large values of θ. The mode of the distribution is
attained at (1−θ)

θ for θ < 1 and zero for θ ≥ 1. A plot of the p.d.f at θ = 0.3 and 1.3 is given in Figure 1 and Figure
2 respectively.

Figure 1. Plot of Lindley density function for θ = 0.3

The hazard rate function of Lindley distribution is given by

h(x) =
θ2(1 + x)

θ + θx+ 1
. (6)

Since this is an increasing function in both x and θ, Lindley distribution is an increasing failure rate (IFR)
distribution. As IFR⇒IFRA⇒NBU⇒NBUE, where IFRA, NBU and NBUE denote respectively increasing failure
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134 MORGENSTERN TYPE BIVARIATE LINDLEY DISTRIBUTION

Figure 2. Plot of Lindley density function for θ = 1.3

rate average, new better than used and new better than used in expectation class of distributions, Lindley distribution
also belongs to IFRA, NBU and NBUE family.

Properties and inferential aspects of Lindley distribution have been studied by [10]. [27] introduced a three
parameter generalization of Lindley distribution that include exponential and gamma distributions as special cases.
[21] developed another generalization of Lindley distribution that has monotone, constant and bathtub shape hazard
rate functions. A weighted two parameter Lindley distribution having increasing and bathtub shape hazard rate
function is proposed by [11]. [2] introduced an extended version of Lindley distribution to make it more flexible in
terms of shape of hazard rate function. [8] introduced beta generalized power Lindley distribution and studied its
properties. More recent generalization of Lindley distribution is given by [1]. Though different forms of univariate
Lindley distributions are available, not much work has been attempted under bivariate setup. A bivariate extension
of generalized Lindley distribution is proposed by [27] by considering two vectors, (V1, V2) and (W1,W2) of
independent random variables distributed according to gamma (α, θ) and gamma(α+ 1, θ) respectively. Apart from
this, no other bivariate extension of Lindley distribution is available in the literature. This stands as a motivation
to propose an alternate yet simple method of obtaining bivariate Lindley distribution using Morgenstern approach
and study some of its properties. The proposed Morgenstern Type Bivariate Lindley Distribution (MTBLD) can
be used to model life time of coherent system with dependent components. Another application is that it can
be used in analyzing competing risk data arising in clinical trails and epidemiological studies. Also, the joint
distribution of two adjacent intervals in a Markov dependent point process can be modelled using MTBLD. The
paper is organized as follows. Section 2 gives the definition of MTBLD. The corresponding moment generating
function (m.g.f), joint moments and correlation coefficient are derived in Section 3. Section 4 discusses positive
(negative) quadrant dependence property of MTBLD. In Section 5, the expression for stress-strength parameter
of the proposed bivariate distribution is derived. Section 6 deals with obtaining different reliability measures for
MTBLD. In Section 7, estimation of the parameters in MTBLD by maximum likelihood (ML) method is explained.
Numerical illustration using simulated data is given in Section 8. Concluding remarks are given in Section 9.

2. Definition

Let X and Y be two random variables each having Lindley distribution with respective parameters θ1 and θ2. Let
FX , GY denote the corresponding c.d.f’s and fX , gY be the corresponding p.d.f’s. Using (1), (2), (3) and (4), the
c.d.f and p.d.f of MTBLD are obtained as

FXY (x, y) =(1− 1 + θ1 + θ1x

1 + θ1
e−θ1x)(1− 1 + θ2 + θ2y

1 + θ2
e−θ2y)

(1 + α
(1 + θ1 + θ1x) (1 + θ2 + θ2y)

(1 + θ1) (1 + θ2)
e−θ1x−θ2y), θ1 > 0, θ2 > 0,−1 ≤ α ≤ 1 (7)
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and

fXY (x, y) =
(e−θ1x−θ2y (1 + x) (1 + y) θ21 θ22)

(1 + θ1) (1 + θ2)
(1 + α(1− 2 (1 + θ1 + θ1x)

1 + θ1
e−θ1x)

(1− 2 (1 + θ2 + θ2y)

1 + θ2
e−θ2y)), θ1 > 0, θ2 > 0,−1 ≤ α ≤ 1. (8)

A plot of the density function for different choices of parameters is given in Figure 3 and Figure 4.

Figure 3. Plot of p.d.f of MTBLD for α = −0.8, θ1 = 0.5 and θ2 = 0.5

Figure 4. Plot of p.d.f of MTBLD for α = 0.5, θ1 = 2 and θ2 = 3
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The conditional density of Y given X = x for Morgenstern family is defined as

fY |X(y|x) = fY [1 + α(1− 2FX)(1− 2FY )] , −1 ≤ α ≤ 1. (9)

Using (9), the conditional density of Y given X = x in MTBLD is obtained as

fY |X(y|x) = θ22
θ2 + 1

(1 + y)e−θ2y

[
1 + α(1− 2(1− e−θ1x

1 + θ1 + θ1x

θ1
)(1− 2(1− e−θ2y

1 + θ2 + θ2y

θ2
)

]
. (10)

In a similar manner the conditional density of X given Y = y can also be obtained. Survival function of
Morgenstern family is of the form

S(x, y) = (1− FX(x)) (1−GY (y)) [1 + αFX(x)GY (y)] . (11)

Using (3) and (11), survival function of MTBLD is found to be

S(x, y) =e−θ1x−θ2y(1 + θ1 + θ1x)(1 + θ2 + θ2y)

1 + α(1− e−θ1x(1+θ1+θ1x)
1+θ1

)(1− e−θ2y(1+θ2+θ2y)
1+θ2

)

(1 + θ1)(1 + θ2)

 . (12)

3. Moment Generating Function

In this section, m.g.f, joint moments and correlation coefficient of MTBLD are derived. The m.g.f of Morgenstern
family of distributions is defined as

MXY (t1, t2) =MX(t1)MY (t2) + α
(
MX(t1)− 2

∫ ∞

−∞
FXfXdx

)(
MY (t2)− 2

∫ ∞

−∞
FY fY dy

)
(13)

where MX(t1) and MY (t2) are marginal m.g.f’s. For Lindley distribution, m.g.f is given by

MX(t) =
θ2(θ − t+ 1)

(θ + 1)(θ − t)2
. (14)

Using (13) and (14), m.g.f of MTBLD is obtained as

MXY (t1, t2) =
θ21(θ1 − t1 + 1)

(θ1 + 1)(θ1 − t1)2
θ22(θ2 − t2 + 1)

(θ2 + 1)(θ2 − t2)2
+ α(

θ21(θ1 − t1 + 1)

(θ1 + 1)(θ1 − t1)2
− 2θ21

(1 + θ1)2(2θ1 − t1)3

A(θ1, t1))(
θ22(θ2 − t2 + 1)

(θ2 + 1)(θ2 − t2)2
− 2θ22

(1 + θ2)2(2θ2 − t2)3
A(θ2, t2)) (15)

where

A(θi, ti) = t2i (1 + θi)− ti(4θ
2
i + 8θi + 1) + 4θ3i + 12θ2i + 4θi, i = 1, 2.

From m.g.f, one can obtain the joint moments as

E(Xr Y s) =
∂r+sMXY (t1, t2)

∂tr1 ∂t
s
2

| t1 = 0, t2 = 0, r ≥ 1, s ≥ 1. (16)

Using (16), (r, s)th moment of MTBLD is given by

E(Xr Y s) =(
r!(θ1 + r + 1)

(θ1 + 1)θr1
)(
s!(θ2 + s+ 1)

(θ2 + 1)θs2
) + α(

r!

(1 + θ1)2 2r+2 θr1
((2r+2 − 4)θ21

+ (r2r+2 + 2r+3 − 4r − 8)θ1 + r2r+2 + 2r+2 − r2 − 5r − 4))((
s!

(1 + θ2)2 2s+2 θs2

((2s+2 − 4)θ22 + (s2s+2 + 2s+3 − 4s− 8)θ2 + s2s+2 + 2s+2 − s2 − 5s− 4))). (17)
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From (17), the covariance and correlation (ρ) between X and Y is obtained as

covariance(X,Y ) =α(
2θ21 + 6θ1 + 3

4θ1(1 + θ1)2
)(
2θ22 + 6θ2 + 3

4θ2(1 + θ2)2
) (18)

and

ρ(X,Y ) =
α(2θ21 + 6θ1 + 3) (2θ22 + 6θ2 + 3)

16(θ1 + 1)(θ2 + 1)
√

θ21 + 4θ1 + 2
√

θ22 + 4θ2 + 2
. (19)

Note that ρ = 0 ⇒ α=0 ⇒ X and Y are independent. Based on the conditional density of Y given X = x in (10),
the conditional expectation of Y given X = x in MTBLD is obtained as

E(Y |X = x) =

4
θ2+1 +

(θ2(2θ2(θ2+8)+25)+3)eθ1(−x)((θ1+1)eθ1x−2(θ1(x+1)+1))
θ1(θ2+1)(θ2

2+1)+1
+ 4

4θ2
. (20)

It can be seen that the above conditional expectation is non-linear in X . In a similar manner it can be shown that
conditional expectation of X given Y = y is also non-linear in Y .

4. Positive Quadrant Dependence

In this section, positive quadrant dependence property of MTBLD is discussed. Positive quadrant dependence is a
form of dependence between random variables introduced by [18]. Two random variables X and Y are said to be
positive quadrant dependent (PQD) if

Pr(X > x, Y > y) ≥ Pr(X > x)Pr(Y > y), ∀x, y. (21)

If inequality in (21) is reversed, then X and Y are said to be negative quadrant dependent (NQD). In the following
theorem, it is established that MTBLD is PQD(NQD) for positive(negative) values of α.

Theorem 1
MTBLD is PQD (NQD) for positive (negative) value of α.
Proof: Consider

Pr(X > x, Y > y)− Pr(X > x)Pr(Y > y) = SXY (x, y)− SX(x) SY (y)

= e−θ1x−θ2y(1 + θ1 + θ1x)(1 + θ2 + θ2y)

1 + α(1− e−θ1x(1+θ1+θ1x)
1+θ1

)(1− e−θ2y(1+θ2+θ2y)
1+θ2

)

(1 + θ1)(1 + θ2)


− (1 + θ1 + θ1x)(1 + θ2 + θ2y)

(1 + θ1)(1 + θ2)
e−θ1x−θ2y

=
(1 + θ1 + θ1x)(1 + θ2 + θ2y)

(1 + θ1)(1 + θ2)
e−θ1x−θ2y

[
α(1− e−θ1x(1 + θ1 + θ1x)

1 + θ1
)(1− e−θ2y(1 + θ2 + θ2y)

1 + θ2
)

]
= αβ(x, y),

where β(x, y) = (1+θ1+θ1x)(1+θ2+θ2y)
(1+θ1)(1+θ2)

e−θ1x−θ2y
[
(1− e−θ1x(1+θ1+θ1x)

1+θ1
)(1− e−θ2y(1+θ2+θ2y)

1+θ2
)
]
= SX(x)

SY (y)FX(x)FY (y), which is always non-negative for all values of x and y, since c.d.f and survival function takes
values from zero to one. Therefore, for positive values of α, αβ(x, y) ≥ 0 ∀x, y. This implies the condition given
in (21). Hence, MTBLD is PQD for positive values of α. Similarly, for negative values of α, αβ(x, y) ≤ 0 ∀x, y.
Therefore, inequality in (21) is reversed, hence MTBLD is NQD for negative values of α. �

Thus MTBLD possesses both positive and negative quadrant dependence, while the bivariate Lindley model
proposed by [27] is only PQD.
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5. Stress-Strength Parameter

In this section, stress-strength parameter R = Pr(Y < X) of MTBLD is derived. Stress-strength parameter plays
an important role in studies involving product reliability. In this context, R is considered as a measure of reliability
of the system and it gives the probability of strength (X) exceeding stress (Y ). Assuming that strength (X) and
stress (Y ) are jointly distributed according to MTBLD with dependence parameter α, R is obtained as

R =

∫∫
0<y<x

fXY (x, y)dxdy

=1−
(
θ32 + (2θ1 + 3) θ22 + (θ1 + 1) (θ1 + 3) θ2 + θ1 (θ1 + 1)

)
θ21

(θ1 + 1) (θ2 + 1) (θ1 + θ2) 3

−
θ21

(
− 24θ2

1

(2θ1+θ2)4
+ 6(1−4θ1)θ1

(2θ1+θ2)3
+ 2θ1 +

(3−4θ1)θ1+5
2θ1+θ2

+ 6(1−2θ1)θ1+5
(2θ1+θ2)2

+ 2
)

(θ1 + 1) 2 (θ2 + 1)
+

θ21
2 (θ1 + 1) (θ2 + 1)(

(5− 2θ1) (θ1 + θ2)
2 + (5− 4θ1) (θ1 + θ2)− 4θ1
(θ1 + θ2) 3

+ 2

)
− θ21

8 (θ1 + 1) 2 (θ2 + 1) 2(
2 (θ1 + 1)

(
32θ42 + 8 (5θ1 + 7) θ32 + 4 (θ1 (4θ1 + 11) + 9) θ22 + 2θ1 (θ1 + 1) (θ1 + 4) θ2 + θ21 (θ1 + 1)

)
(θ1 + 2θ2) 4

− 1

(θ1 + θ2) 5
(8 (θ1 + 1) θ52 + 2 (2θ1 (7θ1 + 12) + 7) θ42 + (2θ1 (θ1 (18θ1 + 43) + 31) + 9) θ32

+θ1 (2θ1 (θ1 (10θ1 + 31) + 34) + 29) θ22 + 2θ21 (θ1 + 1) 2 (2θ1 + 5) θ2 + 2θ31 (θ1 + 1) 2)
)

− θ21
(θ1 + 1) 2 (θ2 + 1)

(
(θ1 + 1)

(
θ32 + (2θ1 + 3) θ22 + (θ1 + 1) (θ1 + 3) θ2 + θ1 (θ1 + 1)

)
(θ1 + θ2) 3

− 2

(2θ1 + θ2) 4
(θ1 + 1) θ42 + (2θ1 (3θ1 + 5) + 3) θ32 + (2θ1 (3θ1 (2θ1 + 5) + 11) + 3) θ22

+8θ1 (θ1 + 1) 2 (θ1 + 2) θ2 + 8θ21 (θ1 + 1) 2
)
. (22)

Estimate of R can be obtained by substituting estimates of θ1 and θ2 in (22) for some specified value of dependence
parameter α.

6. Reliability Measures

In this section, reliability measures like hazard rate, mean residual life and vitality function in the context of
MTLBD are derived.

6.1. Hazard Rate Function

In statistical literature, bivariate hazard rate function is defined in different ways. One due to Basu [3] is given by

h(x, y) =
f(x, y)

S(x, y)
. (23)

Using the above definition, the hazard rate function of MTBLD is obtained as

h(x, y) =

(
θ21 θ22(1 + x)(1 + y)

(1 + θ1 + θ1x)(1 + θ2 + θ2y)

)
(1 + α(1− 2 (1+θ1+θ1x)

1+θ1
e−θ1x)(1− 2 (1+θ2+θ2y)

1+θ2
e−θ2y))

(1 + α(1− (1+θ1+θ1x)
1+θ1

e−θ1x)(1− (1+θ2+θ2y)
1+θ2

e−θ2y))
. (24)
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A primary limitation of Basu’s definition is that it is defined from ℜ2 → ℜ i.e. h(x, y) is not a vector quantity. To
overcome this limitation, [14] defined bivariate hazard rate function in vector form as follows:

h(x, y) = (
− ∂lnS(x, y)

∂x
,
− ∂lnS(x, y)

∂y
) (25)

where S(.) denotes the bivariate survival function. From (12), we get

− ∂lnS(x, y)

∂x
=

θ21(x+ 1)

θ1 + θ1x+ 1


1

1−

(θ1+1)eθ1x

 1

α

(
1− eθ2(−y)(θ2(y+1)+1)

θ2+1

)+1


θ1(x+1)+1

+ 1


, (26)

− ∂lnS(x, y)

∂y
=

θ22(y + 1)

θ2 + θ2y + 1


1

1−

(θ2+1)eθ2y

 1

α

(
1− eθ1(−x)(θ1(x+1)+1)

θ1+1

)+1


θ2(y+1)+1

+ 1


. (27)

Substituting the above expressions in (25) gives the vector hazrad rate function of MTBLD. This function is an
increasing (decreasing) function for positive (negative) values of α as proved in the following theorem.

Theorem 2
MTBLD is IHR (DHR) for positive (negative) values of α.
Proof: To prove MTBLD is IHR for positive values of α, it is sufficient to show that (26) and (27) are increasing
functions in x and y respectively. Consider

−∂lnS(x, y)

∂x
=− ∂

∂x
ln
(
FX GY [1 + αFXGY ]

)
,where F = 1− F

=− ∂

∂x
lnFX − ∂

∂x
lnGY − ∂

∂x
ln [1 + αFXGY ]

=hX

[
1− αFXGY

1 + αFXGY

]
=hX

[
1− FX

(αGY )−1 + (1− FX)

]
=hX

[
1− 1

FX
−1

[(αGY )−1 + 1]− 1

]

=hX

[
1−

(
FX

−1 [
(αGY )

−1 + 1
]
− 1
)−1

]
where hX is univariate hazard rate function which is of the form given in (6). Now for 0 ≤ α ≤ 1, α−1 ≥ 1 which

implies
(
(αGY )

−1 + 1
)
> 1, since (GY )

−1 ≥ 1. This implies that the term
[
1−

(
FX

−1 [
(αGY )

−1 + 1
]
− 1
)−1

]
is a positive increasing function in x since FX is an increasing function in x. Also, hX is a positive increasing
function in x. Thus −∂lnS(x,y)

∂x is an increasing function in x. Similarly it can be shown that −∂lnS(x,y)
∂y is an

increasing function in y. Thus for α positive, MTBLD is IHR. In a similar manner, it can be proved that MTBLD
is DHR for negative values of α.
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6.2. Mean Residual Life

Mean residual life (m.r.l) denotes the average remaining life of a unit after it has survived for a specified time t.
For vector valued random variables, [25] defined m.r.l as

m(x, y) = (m1(x, y),m2(x, y)), (28)

where

m1(x, y) = E(X − x|X ≥ x, Y ≥ y)

and

m2(x, y) = E(Y − y|X ≥ x, Y ≥ y).

The expressions for m1(x, y) and m2(x, y) in MTBLD is obtained as

m1(x, y) =
2θ1 + θ1x− eθ1(−x)(2θ1(x+1)(θ1+θ1x+3)+5)

16(θ1+1)θ1
+ α(θ1(x+2)+1)eθ2(−y)(θ2+θ2y+1)

θ2+1 + 1

θ1(θ1 + θ1x+ 1)
(
α
(
1− eθ1(−x)(θ1+θ1x+1)

θ1+1

)(
1− eθ2(−y)(θ2+θ2y+1)

θ2+1

)
+ 1
) , (29)

m2(x, y) =
2θ2 + θ2y − eθ2(−y)(2θ2(y+1)(θ2+θ2y+3)+5)

16(θ2+1)θ2
+ α(θ2(y+2)+1)eθ1(−x)(θ1+θ1x+1)

θ1+1 + 1

θ2(θ2 + θ2y + 1)
(
α
(
1− eθ2(−y)(θ2+θ2y+1)

θ2+1

)(
1− eθ1(−x)(θ1+θ1x+1)

θ1+1

)
+ 1
) . (30)

Substituting (29) and (30) in (28) gives the corresponding m.r.l of MTBLD.

6.3. Vitality Function

For a system with two components, [22] defined bivariate vitality function as

v(x, y) = (v1(x, y), v2(x, y)) (31)

where

v1(x, y) = E(X|X ≥ x, Y ≥ y),

v2(x, y) = E(Y |X ≥ x, Y ≥ y).

Also, vi(x, y) is related to mi(x, y) by

vi(x, y) = x+mi(x, y), i = 1, 2. (32)

Here v1(x, y) measures the expected life time of first component as the sum of present age x and the average life
time remaining to it, given that second component has survived beyond age y. v2(x, y) can be interpreted in similar
way. Using Equations (29), (30) in (32) we obtain v1(x, y) and v2(x, y) of MTBLD as

v1(x, y) = x+
2θ1 + θ1x− eθ1(−x)(2θ1(x+1)(θ1+θ1x+3)+5)

16(θ1+1)θ1
+ α(θ1(x+2)+1)eθ2(−y)(θ2+θ2y+1)

θ2+1 + 1

θ1(θ1 + θ1x+ 1)
(
α
(
1− eθ1(−x)(θ1+θ1x+1)

θ1+1

)(
1− eθ2(−y)(θ2+θ2y+1)

θ2+1

)
+ 1
) , (33)

v2(x, y) = y +
2θ2 + θ2y − eθ2(−y)(2θ2(y+1)(θ2+θ2y+3)+5)

16(θ2+1)θ2
+ α(θ2(y+2)+1)eθ1(−x)(θ1+θ1x+1)

θ1+1 + 1

θ2(θ2 + θ2y + 1)
(
α
(
1− eθ2(−y)(θ2+θ2y+1)

θ2+1

)(
1− eθ1(−x)(θ1+θ1x+1)

θ1+1

)
+ 1
) . (34)

From (33) and (34), vitality function of MTBLD can be obtained using (31).
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7. Maximum Likelihood Estimation

Let (xi, yi), i=1,2,...,n denote random samples from MTBLD with parameters θ1,θ2 and α. Using the density
function given in (8) , the log likelihood function lnL is obtained as

lnL =2n lnθ1 + 2n lnθ2 − n ln(1 + θ1)− n ln(1 + θ2)− θ1

n∑
i=1

xi − θ2

n∑
i=1

yi + lnC+

n∑
i=1

ln(1 + α (
2e−θ1xi(1 + θ1 + θ1xi)

1 + θ1
− 1)(

2e−θ2yi(1 + θ2 + θ2yi)

1 + θ2
− 1)) (35)

where C denotes constant term independent of θ1 and θ2. Differentiating lnL partially with respect to the
parameters θ1, θ2, α and equating them to zero, we get the following log likelihood equations.

∂lnL

∂θ1
=
2n

θ1
− n

1 + θ1
−

n∑
i=1

xi +

n∑
i=1

2α( 2e
−θ2yi (1+θ2+θ2yi)

1+θ2
− 1)(−θ1xie

−θ1xi (θ1+θ1xi+xi+2)
(θ1+1)2 )

(1 + α ( 2e
−θ1xi (1+θ1+θ1xi)

1+θ1
− 1)(2e

−θ2yi (1+θ2+θ2yi)
1+θ2

− 1))
= 0 (36)

∂lnL

∂θ2
=
2n

θ2
− n

1 + θ2
−

n∑
i=1

yi +

n∑
i=1

2α( 2e
−θ1xi (1+θ1+θ1xi)

1+θ1
− 1)(−θ2yie

−θ2yi (θ2+θ2yi+yi+2)
(θ2+1)2 )

(1 + α ( 2e
−θ2yi (1+θ2+θ2yi)

1+θ2
− 1)(2e

−θ1xi (1+θ1+θ1xi)
1+θ1

− 1))
= 0 (37)

∂lnL

∂α
=

n∑
i=1

( 2e
−θ1xi (1+θ1+θ1xi)

1+θ1
− 1)(2e

−θ2yi (1+θ2+θ2yi)
1+θ2

− 1)

1 + α ( 2e
−θ1xi (1+θ1+θ1xi)

1+θ1
− 1)( 2e

−θ2yi (1+θ2+θ2yi)
1+θ2

− 1)
= 0. (38)

It can be seen that the above equations are non-linear with respect to the parameters and hence obtaining closed
form expressions for the estimators is not possible. However, when the dependence parameter α is fixed at some
specified constant, using (36) and (37), the ML estimates (MLEs) of θ1 and θ2 can be obtained by using the method
given in [13] as fixed point solutions of the above equations. The method of obtaining estimates is explained below.
Define

h(θ1, θ2) =
(
h1(θ1, θ2), h2(θ1, θ2)

)
= (θ1, θ2), (39)

where

h1(θ1, θ2) =2n
[ n

1 + θ1
+

n∑
i=1

xi −
n∑

i=1

2α( 2e
−θ2yi (1+θ2+θ2yi)

1+θ2
− 1)(−θ1xie

−θ1xi (θ1+θ1xi+xi+2)
(θ1+1)2 )

(1 + α ( 2e
−θ1xi (1+θ1+θ1xi)

1+θ1
− 1)(2e

−θ2yi (1+θ2+θ2yi)
1+θ2

− 1))

]−1
, (40)

h2(θ1, θ2) =2n
[ n

1 + θ2
+

n∑
i=1

yi −
n∑

i=1

2α( 2e
−θ1xi (1+θ1+θ1xi)

1+θ1
− 1)(−θ2xie

−θ2yi (θ2+θ2yi+yi+2)
(θ2+1)2 )

(1 + α ( 2e
−θ2yi (1+θ2+θ2yi)

1+θ2
− 1)( 2e

−θ1xi (1+θ1+θ1xi)
1+θ1

− 1))

]−1
. (41)

If (θ̂1, θ̂2) is the MLE of (θ1, θ2), then (θ̂1, θ̂2) will be a fixed point solution of (39). The MLE of (θ1, θ2) can be
found by implementing the following iterative procedure.

• Let (θ10 , θ20) be the initial value of (θ1, θ2).
• Using initial value, obtain (θ1j+1 , θ2j+1) as a solution of

(θ1j+1 , θ2j+1) =
(
h1(θ1j , θ2j ), h2(θ1j , θ2j )

)
, j = 0, 1, 2, ... (42)
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The above process is continued till the difference between successive values of (θ1, θ2) is less than some
specified threshold limit. The solutions arrived at the final iteration are taken as estimates for the unknown
parameters. One may also use two-dimensional Newton-Raphson method or any root finding algorithm to obtain
solution to the system of non-linear equations given in (36)-(38).

Taking negative expectations of the second order partial derivatives and mixed partial derivative with respect to
θ1 and θ2, the Fisher information matrix F is given by

F =(Fij)2×2 (43)

where

Fij =− E

(
∂2

∂θiθj
lnL

)
i, j = 1, 2. (44)

From the log-likelihood function given in (35), second order partial derivatives are obtained as

∂2lnL

∂θ21
=

n∑
i=1

−α2
(

2(xi+1)eθ1(−xi)

θ1+1 − 2xie
θ1(−xi)(θ1+θ1xi+1)

θ1+1 − 2eθ1(−xi)(θ1+θ1xi+1)
(θ1+1)2

)
2
(

2eθ2(−yi)(θ2+θ2yi+1)
θ2+1 − 1

)
2(

α
(

2eθ1(−xi)(θ1+θ1xi+1)
θ1+1 − 1

)(
2eθ2(−yi)(θ2+θ2yi+1)

θ2+1 − 1
)
+ 1
)

2

+α

(
2x2

i e
θ1(−xi) (θ1 + θ1xi + 1)

θ1 + 1
+

4xie
θ1(−xi) (θ1 + θ1xi + 1)

(θ1 + 1) 2
− 4 (xi + 1)xie

θ1(−xi)

θ1 + 1

+
4eθ1(−xi) (θ1 + θ1xi + 1)

(θ1 + 1) 3
− 4 (xi + 1) eθ1(−xi)

(θ1 + 1) 2

)(
2eθ2(−yi) (θ2 + θ2yi + 1)

θ2 + 1
− 1

)
 1

α
(

2eθ1(−xi)(θ1+θ1xi+1)
θ1+1 − 1

)(
2eθ2(−yi)(θ2+θ2yi+1)

θ2+1 − 1
)
+ 1


+

n

(θ1 + 1) 2
− 2n

θ21

∂2lnL

∂θ22
=

n∑
i=1

−α2
(

2eθ1(−xi)(θ1+θ1xi+1)
θ1+1 − 1

)
2
(

2(yi+1)eθ2(−yi)

θ2+1 − 2yie
θ2(−yi)(θ2+θ2yi+1)

θ2+1 − 2eθ2(−yi)(θ2+θ2yi+1)
(θ2+1)2

)
2(

α
(

2eθ1(−xi)(θ1+θ1xi+1)
θ1+1 − 1

)(
2eθ2(−yi)(θ2+θ2yi+1)

θ2+1 − 1
)
+ 1
)

2

+α

(
2eθ1(−xi) (θ1 + θ1xi + 1)

θ1 + 1
− 1

)(
2y2i e

θ2(−yi) (θ2 + θ2yi + 1)

θ2 + 1
+

4yie
θ2(−yi) (θ2 + θ2yi + 1)

(θ2 + 1) 2

−4 (yi + 1) yie
θ2(−yi)

θ2 + 1
+

4eθ2(−yi) (θ2 + θ2yi + 1)

(θ2 + 1) 3
− 4 (yi + 1) eθ2(−yi)

(θ2 + 1) 2

)]
+

n

(θ2 + 1) 2
− 2n

θ22

∂2lnL

∂θ1θ2
=

n∑
i=1

(
4αθ1θ2xiyi (θ1 + (θ1 + 1)xi + 2) (θ2 + (θ2 + 1) yi + 2) eθ1xi+θ2yi

)
/
[
4α+ eθ1xi+θ2yi

−2αeθ1xi + αeθ1xi+θ2yi + θ2
(
4α− 2αeθ1xi − 2αyi

(
eθ1xi − 2

)
+ (α+ 1)eθ1xi+θ2yi − 2αeθ2yi

)
+θ1

(
4α− 2αeθ1xi + αeθ1xi+θ2yi − 2αxi

(
θ2
(
eθ2yi − 2yi − 2

)
+ eθ2yi − 2

)
+ θ2

(
4α− 2αeθ1xi

−2αyi
(
eθ1xi − 2

)
+ (α+ 1)eθ1xi+θ2yi − 2αeθ2yi

)
+ eθ1xi+θ2yi − 2αeθ2yi

)
− 2αeθ2yi

]2
.

Since the second order partial derivatives have complex expressions, finding expected values of the same is
difficult. Hence, the sample (observed) Fisher information matrix can be used instead which is given by

F̂ =
(
F̂ij

)
2×2

,
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where

F̂ij = −
(
∂2lnL

∂θiθj

)
|θ̂i, θ̂j , i, j = 1, 2.

8. Simulation Study

In order to access the performance of the proposed estimation procedure, a simulation study is carried out by
generating random samples from MTBLD. The results are evaluated in terms of mean squared error (MSE) and
relative absolute bias (RAB). The following procedure is adopted to generate samples (Xi, Yi), i = 1, 2, ..., n from
MTBLD with parameters θ1,θ2 and α.

1. Generate n bivariate observations (Ui, Vi), i = 1, 2, ..., n from Farlie-Gumbel-Morgenstern (FGM) copula for
given value of α .

2. For the specified values of θ1 and θ2, find Xi and Yi such that

Xi =
W
(
− (1− Ui) e

−θ1−1 (1 + θ1)
)
+ 1 + θ1

−θ1
, i = 1, 2, ..., n

Yi =
W
(
− (1− Vi) e

−θ2−1 (1 + θ2)
)
+ 1 + θ2

−θ2
, i = 1, 2, ..., n

where W (.) is the Lambert’s W function. For more details about Lambert’s W function refer [6].

In the simulation study, the following choices of parameter values namely, θ1 = 0.4, 1, 1.9, θ2 = 0.7, 1, 1.4 and
α = 0.9,−0.4 are considered. The number of Monte Carlo (MC) runs is taken to be 1000. For each MC run,
random samples of sizes n = 50 and n = 100 are simulated from MTBLD with the different parameter values.
Packages ’copula’ and ’gsl’ available in R are used for generating bivariate samples from FGM copula and
evaluating Lambert’s W function, respectively. The MLEs of parameters are determined using fixed point solution
method discussed in section 7 with initial values θ1 = 0.2 and θ2 = 0.4. Also for each MC run, the MLE of stress-
strength parameter R is calculated using the MLE of θ1 and θ2 in (22). Let Θ̂k = (θ̂1k, θ̂2k, R̂k) be the MLE of Θ,
Θ = (θ1, θ2, R) based on kth MC run, k = 1, 2, ..., 1000. Then average MLEs and respective MSEs and RABs are
computed as

Θ̂ =
1

r

r∑
k=1

Θ̂k

MSE(Θ̂) =
1

r

r∑
k=1

(
Θ̂k −Θ

)2
RAB(Θ̂) =

|Θ̂−Θ|
Θ

where r denotes the number of MC runs. The results are presented in Table 1 and Table 2.

From Table 1 and Table 2, it is observed that as sample size increases the MSEs and RABs of the estimates
decreases and tend towards zero. Also, the average MLEs are closer to their respective true parameter values. Thus,
the proposed method produces estimates that are consistent. Since the expected strength E(X) of the system is
inversely related to θ1 through E(X) = θ1+2

θ1(θ1+1) , as θ1 increases, E(X) decreases, resulting in a decrease in the
system reliability. Similarly as θ2 increases, expected stress E(Y ) decreases, resulting in an increase in R. The
same pattern is observed from the estimates of R given in Table 1 and Table 2 obtained by the proposed method.
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9. Conclusion

A Morgenstern type bivariate Lindley distribution is proposed in this paper and joint moments, correlation and
certain reliability characteristics of the same is obtained. It is shown that the proposed model satisfies positive
(negative) quadrant dependence property and is IFR (DFR) distribution for positive (negative) values of dependence
parameter. An explicit expression for the stress-strength parameter is also derived for the proposed distribution. A
method of obtaining MLE of the parameters using fixed point solution is also proposed. Numerical illustration
through simulation study reveal that the proposed method results in estimates that are consistent.

Table 1. MLEs of θ1, θ2 and R for α = 0.9

n 50 100

θ2 θ1 0.4 1 1.9 0.4 1 1.9

0.7

AV G(θ̂1) 0.4029 1.0178 1.9247 0.4018 1.0046 1.9187
MSE(θ̂1) 0.0017 0.0116 0.0492 0.0008 0.0057 0.0234
RAB(θ̂1) 0.0071 0.0178 0.0130 0.0046 0.0047 0.0098
AV G(θ̂2) 0.7081 0.7093 0.7129 0.7071 0.7049 0.7088
MSE(θ̂2) 0.0054 0.0058 0.0055 0.0027 0.0027 0.0027
RAB(θ̂2) 0.0115 0.0132 0.0184 0.0101 0.0069 0.0125
AV G(R̂) 0.6268 0.3030 0.1547 0.6278 0.3043 0.1531
MSE(R̂) 0.0020 0.0018 0.0007 0.0010 0.0009 0.0003
RAB(R̂) 0.0007 0.0013 0.0224 0.0022 0.0054 0.0117

1

AV G(θ1) 0.4067 1.0144 1.9231 0.4029 1.0065 1.9208
MSE(θ̂1) 0.0018 0.0116 0.0466 0.0008 0.0055 0.0236
RAB(θ̂1) 0.0168 0.0144 0.0121 0.0074 0.0065 0.0109
AV G(θ̂2) 1.0162 1.0124 1.0129 1.0031 1.0069 1.0079
MSE(θ̂2) 0.0124 0.0121 0.0110 0.0055 0.0052 0.0060
RAB(θ̂2) 0.0162 0.0124 0.0129 0.0031 0.0069 0.0079
AV G(R̂) 0.7413 0.4298 0.2425 0.7413 0.4305 0.2405
MSE(R̂) 0.0014 0.0022 0.0013 0.0007 0.0010 0.0006
RAB(R̂) 0.0029 0.0001 0.0101 0.0029 0.0014 0.0018

1.4

AV G(θ̂1) 0.4046 1.0132 1.9321 0.4029 1.0093 1.9188
MSE(θ̂1) 0.0018 0.0111 0.0489 0.0009 0.0059 0.0248
RAB(θ̂1) 0.0114 0.0132 0.0169 0.0072 0.0093 0.0099
AV G(θ̂2) 1.4229 1.4100 1.4284 1.4089 1.4101 1.4107
MSE(θ̂2) 0.0258 0.0221 0.0257 0.0133 0.0120 0.0117
RAB(θ̂2) 0.0164 0.0071 0.0203 0.0064 0.0072 0.0076
AV G(R̂) 0.8271 0.5514 0.3470 0.8268 0.5530 0.3444
MSE(R̂) 0.0008 0.0021 0.0019 0.0004 0.0011 0.0009
RAB(R̂) 0.0011 0.0046 0.0082 0.0015 0.0017 0.0008
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Table 2. MLEs of θ1, θ2 and R for α = −0.4

n 50 100

θ2 θ1 0.4 1 1.9 0.4 1 1.9

0.7

AV G(θ̂1) 0.4025 1.0092 1.9244 0.4023 1.0030 1.9189
MSE(θ̂1) 0.0017 0.0116 0.0535 0.0009 0.0059 0.0235
RAB(θ̂1) 0.0063 0.0092 0.0128 0.0056 0.0029 0.0100
AV G(θ̂2) 0.7079 0.7139 0.7058 0.7052 0.7059 0.7021
MSE(θ̂2) 0.0063 0.0062 0.0055 0.0030 0.0026 0.0026
RAB(θ̂2) 0.0113 0.0199 0.0083 0.0074 0.0084 0.0030
AV G(R̂) 0.7201 0.4156 0.2276 0.7206 0.4136 0.2255
MSE(R̂) 0.0021 0.0029 0.0016 0.0010 0.0014 0.0007
RAB(R̂) 0.0015 0.0106 0.0076 0.0009 0.0058 0.0017

1

AV G(θ̂1) 0.4043 1.0180 1.9234 0.4014 1.0063 1.9146
MSE(θ̂1) 0.0017 0.0129 0.0454 0.0008 0.0059 0.0257
RAB(θ̂1) 0.0107 0.0180 0.0123 0.0034 0.0063 0.0077
AV G(θ̂2) 1.0088 1.0077 1.0128 1.0033 1.0051 1.0065
MSE(θ̂2) 0.0130 0.0115 0.0125 0.0056 0.0052 0.0058
RAB(θ̂2) 0.0088 0.0077 0.0128 0.0033 0.0051 0.0065
AV G(R̂) 0.8065 0.5274 0.3251 0.8085 0.5307 0.3240
MSE(R̂) 0.0012 0.0030 0.0022 0.0006 0.0013 0.0011
RAB(R̂) 0.0038 0.0070 0.0058 0.0014 0.0009 0.0023

1.4

AV G(θ̂1) 0.4032 1.0078 1.9274 0.4019 1.0078 1.9118
MSE(θ̂1) 0.0019 0.0118 0.0561 0.0009 0.0063 0.0225
RAB(θ̂1) 0.0080 0.0078 0.0144 0.0047 0.0078 0.0062
AV G(θ̂2) 1.4113 1.4167 1.4134 1.4109 1.4127 1.4108
MSE(θ̂2) 0.0248 0.0242 0.0256 0.0114 0.0123 0.0116
RAB(θ̂2) 0.0080 0.0119 0.0095 0.0078 0.0091 0.0077
AV G(R̂) 0.8687 0.6376 0.4264 0.8703 0.6374 0.4277
MSE(R̂) 0.0007 0.0024 0.0029 0.0003 0.0013 0.0013
RAB(R̂) 0.0027 0.0004 0.0009 0.0008 0.0007 0.0021
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