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Abstract In this paper, we propose a two-step proximal gradient algorithm to solve nuclear norm regularized least squares
for the purpose of recovering low-rank data matrix from sampling of its entries. Each iteration generated by the proposed
algorithm is a combination of the latest three points, namely, the previous point, the current iterate, and its proximal gradient
point. This algorithm preserves the computational simplicity of classical proximal gradient algorithm where a singular value
decomposition in proximal operator is involved. Global convergence is followed directly in the literature. Numerical results
are reported to show the efficiency of the algorithm.
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1. Introduction

Over the past few years, finding low-rank matrix subject to some given constraints has attracted significant
attentions due to its wide range of engineering applications. The general rank minimization problem can be
expressed as

minX∈Rm×n Rank(X)
s.t. X ∈ C, (1)

where X ∈ Rm×n is a decision variable, and C is a convex set. As a special case, the affine rank minimization
problem can be expressed as follows:

minX∈Rm×n Rank(X)
s.t. A(X) = b,

(2)

where A : Rm×n → Rp is a closed linear operator and A∗ is its adjoint, and b ∈ Rp is a known observation value.
The rank minimization problem is generally known to be computationally intractable (NP-hard) [1, 2].

When the matrix variable is restricted to be diagonal, the problem (2) reduces to the linearly constrained
nonsmooth cardinality minimization problem. One common approach is to replace the cardinality term by ℓ1-
norm and then to solve a convex minimization problem. Similarly, to solve (2) via a tractable problem, it is natural
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and common to replace “Rank(X)” by the so-called nuclear norm ∥ · ∥∗, that is

minX∈Rm×n ∥X∥∗
s.t. A(X) = b,

(3)

where ∥X∥∗ is defined as the sum of its singular values. That is, assume that X has r positive singular values
of σ1 ≥ σ2 ≥ . . . ≥ σr > 0, then ∥X∥∗ =

∑r
i=1 σi. A frequent alternative to (3) is the following nuclear norm

regularized linear least squares problem

min
X∈Rm×n

1

2
∥A(X)− b∥2F + µ∥X∥∗, (4)

where ∥ · ∥F is the Frobenius norm induced by the standard trace inner product, and parameter µ > 0 is used to
trade off both terms for minimization. The nuclear norm is alternatively known as the Schatten ℓ1-norm and the Ky
Fan norm [2], and it is the best convex approximation of the rank function over the unit ball of matrices [3].

A particular category of (3) is the so-called matric completion problem: given a random subset of entries of
low-rank matrix, it would like to recover all the missing entries. Specially, according to Candès & Recht [4], it can
be formulated as

minX∈Rm×n ∥X∥∗
s.t. Xi,j = Mi,j , (i, j) ∈ Ω,

(5)

where M is the unknown matrix with some available sampled entries and Ω is a set of index pairs (i, j). Throughout
our discussion, the solution set of (5) is assumed to be nonempty. It is known that when the observations are
corrupted by Gaussian noise, the following nuclear norm regularized linear least squares problem is preferable,

min
X∈Rm×n

1

2
∥PΩ(X)− PΩ(M)∥2F + µ∥X∥∗, (6)

where PΩ(·) is defined as

PΩ(X)i,j =

{
Xi,j if (i, j) ∈ Ω,
0 otherwise. (7)

Over the past few years, the numerical approaches for solving the formulations (3) and its different variants have
been draw increasingly attention, e.g. [7, 8, 10]. Cai, Candès & Shen [3] proposed a singular value thresholding
algorithm and showed that if the parameter goes infinity, then the sequence of optimal solutions converges to the one
of (3) with minimum Frobenius norm. Ma, Goldfarb & Chen [11] introduced a fixed point continuation algorithm
(FPCA), which is a matrix extension of the fixed point continuation algorithm by Hale et al. [12]. Liu, Sun &
Toh [13] developed a proximal point algorithm from the primal, dual, and primal-dual forms, in which the inner
sub-problems are solved by gradient projection method or accelerated proximal gradient method. Toh and Yun
[5] extended Beck & Teboulle’s algorithm [6] to solve matrix completion problems and designed an accelerated
proximal gradient algorithm.

Due to its simplicity, the proximal gradient algorithm is popular to solve a closed proper convex optimization
problem. However, the classical proximal gradient algorithm has been regarded as a slower until the exciting
progress in recent years. The “accelerated” approaches mainly base on an extrapolation step which relies on not
only the current point, but also two or more previous computed iterations (e.g., [14, 15]). Other dramatic algorithms
can refer to Nesterov [16], Beck & Teboulle [6], Tseng [17], O’Donoghue & Candès [18], and references therein.

The main contribution of the paper is to further investigate the efficiency of the proximal gradient algorithms
in solving the matric completion problem (6). The distinguished characters of the proposed algorithm is that each
generated iteration is a combination of the previous point, the current point, and its proximal gradient point. As a
result, the combination improves the algorithm’s flexibility and practicability. The algorithm is also closely related
to the well-known two-step iterative shrinkage/thresholding algorithm (TwIST) of the Bioucas-Dias & Figueiredo’s
algorithm [14] for sparse signal recovering. In other words, the proposed algorithm can be regarded as an extension
or application of TwIST to solve nuclear norm regularized least squares for the purpose of testing its efficiency
to find low rank matrices. The proposed algorithm preserves the computational simplicity of classical proximal
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gradient algorithm and mainly involves a singular value decomposition in proximal operator. We give its global
convergence property without proof under some appropriate conditions. Finally, we test the algorithm to show its
numerical performance.

We organize the rest of this paper as follows. In Section 2, we summarize some preliminaries which are useful
for further analysis, and quickly review some closed related approaches in the literature. In Section 3, we develop a
two-step proximal gradient algorithm and present its convergence theorem. In Section 4, in order to investigate the
benefit of the proposed algorithm, we test the algorithm by a series of numerical experiments. Finally, we conclude
our paper in Section 5.

We summarize the notation used in this paper. Matrices are written as uppercase letters. Vectors are written as
lowercase letters. For matrix X ∈ Rm×n, its Frobenius norm is defined as ∥X∥F =

√∑m
i=1

∑n
j=1 x

2
i,j , where

xi,j is the (i, j)-th component of X . For any two matrices X,Y ∈ Rm×n, we define ⟨X,Y ⟩ = tr(X⊤Y ) (the
standard trace inner product), so that ∥X∥F =

√
⟨X,X⟩. For any x ∈ Rn, we denote by Diag(x) the diagonal

matrix possessing the components of vector x on the diagonal. For any X ∈ Rn×n, we use λmax(X) to denote its
largest eigenvalue. We define “⊤” as the transpose of a vector or a matrix. Additional notation will be introduced
when it occurs.

2. Preliminaries

In this section, we review some preliminaries on proximal gradient algorithms which are useful in the later analysis.
Let f : Rn → R ∪ {+∞} be a closed proper convex function. The proximal operator proxλf : Rn → Rn of the
scaled function λf is defined by

Proxλf (y) = arg min
x∈Rn

(
λf(x) +

1

2
∥x− y∥22

)
, (8)

which is also called the proximal operator of f with parameter λ. The definition indicates that Proxλf (y) is a point
that compromises between minimizing f and being near to y. Proximal gradient algorithm is to solve the convex
separable minimization problem

min
x∈Rn

F (x) := f(x) + g(x), (9)

where f : Rn → R and g : Rn → R ∪ {+∞} are closed proper convex and f is differentiable. The proximal
gradient algorithm is

xk+1 = Proxλkg

(
xk − λk∇f(xk)

)
, (10)

where λk > 0 is a step size. It is well-known that when ∇f is Lipschitz continuous with constant L, this method
converges with rate O(1/k) when a fixed step size λk ∈ (0, 1/L] is used.

The accelerated version of the basic proximal gradient algorithm mainly includes an extrapolation. One
popular approach is the well-known fast iterative shrinkage-thresholding algorithm (FISTA) of Beck & Teboulle
[6]. Dramatically, the iteration complexity can achieve O(1/k2) with proper choice on steplength λk. Another
accelerated approach is the so-called two-step iterative shringkage/thresholding algorithm (TwIST) of Bioucas-
Dias & Figueiredo [14]. TwIST is motivated from [19] for solving a linear system in case that the coefficient
matrix can be split into two terms and one of them is positive definite and easy to invert. Compared to the standard
proximal gradient iteration (10), a general formulation with scalars β and α is formulated as

xk+1 =
(
1− α

)
xk−1 +

(
α− β

)
xk + β Proxλkg

(
xk − λk∇f(xk)

)
. (11)

Clearly, the case of α = 1 and β = 1 reduces to (10). It was shown in [14] that, the iteration (11) converges globally
at the case of f(x) = ∥Ax− b∥2 and g(x) = ∥x∥1 by using some proper values of α and β.
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3. Two-step proximal gradient algorithm

Based on the above preliminaries, we are now ready to construct the two-step proximal gradient algorithm to solve
problem (6). Comparing the formulations of (6) and (9), we can take

f(X) =
1

2
∥PΩ(X)− PΩ(M)∥2F and g(X) = µ∥X∥∗.

It’s easy to know that g : Rm×n → R is a nonsmooth and continuous convex function and f : Rm×n → R is a
continuously differentiable convex function with Lipschitz continuous gradient

∥∇f(X)−∇f(Y )∥F ≤ L∥X − Y ∥F , ∀ X,Y ∈ Rm×n,

where L is a Lipschitz constant.
For convenience, we denote PΩ(X) = A(X) and PΩ(M) = b. Using the notation, we consider the following

quadratic approximation of F (x) at a given point Xk

Qk(X) := f(Xk) + ⟨X −Xk,∇f(Xk)⟩+
L

2
∥X −Xk∥2 + g(X). (12)

Its unique minimizer admits the following formulation:

argminX∈Rm×n Qk(X)
= argminX∈Rm×n f(Xk) + ⟨X −Xk,∇f(Xk)⟩+ L

2 ∥X −Xk∥2 + g(X)

= argminX∈Rm×n g(X) + L
2

∥∥∥X −
(
Xk − 1

L∇f(Xk)
)∥∥∥2

F

= Proxg/L

(
Xk − 1

LA
∗[A(Xk)− b

])
.

By definition, evaluating a proximal operator involves solving a convex optimization problem generally. In some
cases, exploiting special structure in the problem like sparsity may produce the simplest algorithm, even derive
analytical solutions. Let Yk = Xk − 1

LA
∗[A(Xk)− b

]
, and suppose that the rank of Yk is r. The reduced singular

value decomposition of Yk can be expressed as

Yk = UkΣkV
⊤
k , Σk = Diag({σi}1≤i≤r),

where Uk and Vk are respectively m× r and n× r matrix with orthogonal columns, σ ∈ Rr is the vector of positive
singular values arranged in descending order σ1 ≥ σ2 ≥ · · · ≥ σr > 0. It follows [3] that the proximal operator can
be expressed as

Proxg/L

(
Xk − 1

LA
∗[A(Xk)− b

])
= Proxg/L

(
Yk

)
= UkDiag

([
σ − µ

L

]
+

)
V ⊤
k ,

where [·]+ = max{·, 0} and “max ” is interpreted as componentwise.
Based on the above analysis, the standard proximal gradient algorithm for solving (4) reduces to

Xk+1 = Proxg/L(Yk),

which means that the next iteration is only determined by the current Xk. For deriving an algorithm with more
general form, as formula (11), we choose two positive scalars α and β, and set

Xk+1 =
(
1− α

)
Xk−1 +

(
α− β

)
Xk + β Proxg/L(Yk).

It is clear that the new iteration is a combination of the previous point Xk+1, the current point Xk, and its proximal
gradient point Proxg/L(Yk).
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For the general nuclear norm regularized linear least squares problem (4), the Lipschitz constant L which
depends on the maximum eigenvalue of A∗A is not always easily computable. Specially, in this case of the matrix
completion problem (6), the linear operator A always satisfies A∗A = I (i.e, the identity matrix), and then L = 1
from the fact that L = λmax(A∗A). Based on the above analysis, the standard version of the two-step proximal
gradient algorithm (abbr. Ts PGA) for solving separable convex minimization (6) can be outlined as follows.

Algorithm 1
(Ts PGA)
Initialization. Choose positive constants α and β. Choose an initial point X0

and set X−1 = 0. Let k := 0.
Step 1. Compute

X̃k = Proxg

(
Xk −A∗[A(Xk)− b

])
where

Xk+1 =
(
1− α

)
Xk−1 +

(
α− β

)
Xk + βX̃k. (13)

Step 2. If termination criterion is not met, let k := k + 1. Go to Step 1.

For being easily understood, we make a remark on the close relationship between Ts PGA and the solver TwIST
of Bioucas-Dias & Figueiredo [14], and the solver FPCA of Ma, Goldfarb, and Chen [11].

Remark 1
It is well-known that TwIST is designed for solving ℓ1-norm regularized minimization problems in compressive
sensing. It is also easy to derive that Ts PGA is equivalent to TwIST when it used to recover large sparse signal
in compressive sensing. Generally speaking, the proposed algorithm Ts PGA can be considered as an extension
of TwIST to solve the problems of recovering corrupted low rank matrix. At the special case of α = β = 1,
the iteration (13) reduces to the classical proximal gradient algorithm, also named the fixed point continuation
algorithm when it used to solve (4). In other words, Ts PGA can also be regarded as a generalized variant of FPAC.

Given that Ts PGA is an application of the well-known TwIST to solve nuclear norm least squares for matric
completion, hence, its global convergence can be followed directly. For completeness of this paper, we list the
convergence theorem without proof at the end of this section. For the proof of the theorem, one can refer to [14,
Appendix II].

Theorem 1
Let ξ be a real number such that 0 < ξ ≤ λi(A∗A) ≤ 1 where λi(·) is the i-th eigenvalue and let ρ̂ =

1−
√

ξ

1+
√

ξ
. Let X̄

be the minimizer of (6) and define

Ek = Xk − X̄k & Wk = [Ek+1, Ek]
⊤.

(1) There exists a matrix Qk such that Wk+1 = QkWk. If 0 < α < 2 and 0 < β < 2α, then ρ(Qk) < 1, where
ρ(Qk) is the spectral radius of Q(k).
(2) Setting α = ρ̂2 + 1 and β = 2α

1+ξ guarantees that ρ(Qk) < 1.
(3) If 0 < α ≤ 1, and 0 < β < 2α, then limk→∞ Wk = 0

4. Numerical Experiments

In this section, to illustrate the efficiency of Ts PGA, we test it to recover some missing entries of a low-rank matrix
at the case of different rank, sample radios, and noisy levels. At the meantime, we compare it with the closed related
algorithm FPCA [11] for performance comparison. In the first place, we summary some useful parameters to make
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our experiments more easy to follow:
m: the row number of matrix;
n: the column number of matrix;
r: the rank of original matrix, which is far less than min{m,n};
sr: the sample ratio;
p: the number of measurements, which is set to be p = sr ×m× n;
dr: the number of degree of freedom for a rank r matrix, which is defined

as dr = r(m+ n− r);
Fr: Fr = r(m+ nr)/p and Fr ∈ (0, 1) is important to successfully recover M ;
M : a real low rank matrix to be recovered, which is generated by M = MLM

⊤
R ,

where matrix ML ∈ Rm×r and MR ∈ Rn×r are generated via the
Matlab script “randn(m, r)”;

Ω: the index set of known elements, which are selected randomly;
b: the given measurement vector, which is b = A(X) + ω;
ω: Gaussian noise with mean zero and standard deviation σ generated

by σ × randn(p, 1);
µ: a penalty parameter, which is updated by continuation technique.
X∗: an optimal solution.
All experiments are performed under Window 7 premium and MATLAB v7.8(2009a) running on a Lenovo

laptop with an Intel core CPU at 2.4 GHz and 2 GB memory. The iterative process is terminated when the optimal
solution X∗ satisfies the following criterion:

RelErr =
∥X∗ −M∥F

∥M∥F
≤ tol. (14)

The relative error (RelErr) measures the quality of X∗ to the original M . As usual [3, 20], we say that M is
recovered successfully if RelErr is less than tol = 10−3. By the way, the terminated condition (14) is also used
in [11]. On the other hand, for comparing in a relatively fair way, we also use the Matlab package as in FPCA for
matrix singular value decomposition (SVD).

Our tests are partitioned into four parts. In the first three parts, we test Ts PGA and FPCA to solve different
cases of matrix completion problems. In the forth part, we use two typical images to visibly show the efficiency of
both tested algorithms. In each test, we use the same technique as in [14, (26) and (27)] to choose the parameters
α and β for the purpose of guarantee the algorithm’s convergence. The numerical results generated by Ts PGA
and FPCA for solving matrix completion problems with different sr and r are reported in Table 1, where “Time”
denotes the CPU time required by the algorithm. As can be seen from the top part of the Table 1, both algorithms
required more computing time as Fr is greater than 0.38. For each cases with different Fr, we can clearly see
that Ts PGA performs better than FPCA in terms of running time and relative error. The worse thing is that FPCA
failed to obtain high accuracy solutions at the cases of sr = 0.8, 0.9. From the bottom part of this table, we observe
that all the problems are successfully solved with different r when Fr = 0.38, and see that Ts PGA is a winner in
this case. From the simple test, it is concluded that Ts PGA is more efficient than FPCA.

In the second test, we apply Ts PGA and FPCA to solve some easy matrix completion problems with different
dimension. The numerical results are listed in Table 2 where Fr restricts into (0.01, 0.2) and the m and n vary
from 100 to 2000. From this table, we see that both algorithms produce satisfied optimal solutions within almost
equivalent running time. But the accuracy of the solutions obtained by FPCA looks slightly higher, which means
that the performance of both algorithms are competitive.

In the third test, we use Ts PGA and FPCA to recover low rank matrix which corrupted by Gaussian noise. The
noisy level is set as σ = 1e− 3. The numerical results are reported in Table 3. From this table, it is clear to see that
Ts PGA requires less running time to get solutions with similar accuracy than FPCA. This test shows that Ts PGA
runs faster to solve noisy matrix completion problem.

To visibly illustrate the efficiency of Ts PGA, in the last test, we use both algorithms to recover a couple of
randomly corrupted images which widely used in the literature. In this test, we choose sr = 0.5 and r = 40. The
original low-rank images, the corrupted images, and recovered images by each algorithm are presented in Figure
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Table 1. Numerical results of Ts PGA and FPCA

Ts PGA FPCA
(m, n) r sr Fr Time RelErr Time RelErr

(100,100) 10 0.4 0.47 3.68 5.10e-006 4.35 2.66e-006
(100,100) 10 0.5 0.38 4.35 2.66e-006 9.06 1.37e-006
(100,100) 10 0.6 0.32 0.18 8.57e-005 0.26 4.70e-005
(100,100) 10 0.7 0.27 0.20 7.32e-005 0.85 4.91e-005
(100,100) 10 0.8 0.24 0.20 6.10e-005 1.35 3.36e-002
(100,100) 10 0.9 0.21 0.25 5.67e-005 1.32 2.27e-001
(100,100) 10 0.5 0.38 4.35 2.66e-006 9.06 1.37e-006
(200,200) 20 0.5 0.38 20.40 2.37e-006 44.27 1.21e-006
(300,300) 30 0.5 0.38 60.00 2.43e-006 132.96 1.02e-006
(400,400) 40 0.5 0.38 131.56 2.21e-006 284.10 8.81e-007
(500,500) 50 0.5 0.38 239.57 2.24e-006 510.55 9.21e-007

Table 2. Comparison of Ts PGA and FPCA for easy matrix completion problems

Ts PGA FPCA
(m, n) r sr Fr Time RelErr Time RelErr

(100,100) 5 0.5 0.20 0.20 1.00e-004 0.21 2.69e-005
(200,200) 5 0.5 0.10 0.70 8.63e-005 0.83 6.95e-006
(300,300) 5 0.5 0.07 1.94 8.96e-005 2.19 3.64e-006
(400,400) 5 0.5 0.05 4.17 8.60e-005 5.06 1.83e-006
(500,500) 5 0.5 0.04 6.30 9.75e-005 6.94 1.39e-006
(600,600) 5 0.5 0.03 12.15 8.17e-005 11.77 9.12e-007
(700,700) 5 0.5 0.03 18.09 9.35e-005 19.68 7.75e-007
(800,800) 5 0.5 0.02 27.31 9.69e-005 29.83 3.21e-007
(900,900) 5 0.5 0.02 37.48 9.74e-005 41.24 2.88e-007

(1000,1000) 5 0.5 0.02 39.64 9.30e-005 44.53 2.52e-007
(1500,1500) 5 0.5 0.01 232.00 9.42e-005 262.56 1.62e-007
(2000,2000) 5 0.5 0.01 554.60 9.33e-005 554.60 9.33e-005

Table 3. Numerical Results of Ts PGA and FPCA for (6) with Gaussian noise

Ts PGA FPCA
(m, n) r sr Fr Time RelErr Time RelErr

(200,200) 10 0.5 0.10 5.81 1.86e-004 6.18 2.07e-004
(400,400) 10 0.5 0.05 3.95 1.31e-004 43.87 1.43e-004
(600,600) 10 0.5 0.03 16.77 1.19e-004 141.90 1.13e-004
(800,800) 10 0.5 0.02 34.86 1.15e-004 62.10 1.00e-004

(1000,1000) 10 0.5 0.02 55.01 1.04e-004 70.21 8.81e-005

1. From this figure, we see that Ts PGA successfully recovered the both corrupted images, and the quality of each
recovered image is competitive with the one derived by FPCA.

Taking the above four cases together, it illustrates that Ts PGA provides an alternative approach to low rank
matrix completion problems, and its performance is competitive with or slightly better than the widely used solver
FPCA.

5. Conclusions

In the field of machine learning, one often meets the problem of exploiting the low-rank matrix from its given
noisy partial entries. It has been shown that the task can be characterized as a matrix nuclear-norm minimization
problem. However, the non-smoothness of the nuclear norm make the problem is challenging to solve. Due to the
simplicity and effectiveness of proximal gradient algorithm for a wide range of convex minimization problems, the
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a
b c d

a b c d

Figure 1. (first column): the original image with size 512× 512 and rank r = 40; (second column): randomly masked image with
sr = 50%; ( third column): recovered images by Ts PGA with “RelErr” 6.88e− 002 (peppers) and 7.12e− 002 (man); ( forth column):
recovered images by FPCA, with “RelErr” 6.23e− 002 (peppers) and 7.30e− 002 (man).

algorithm and its accelerated variants have been intensively studied in the past few years. Particularly, the type of
this algorithm was successfully used to solve matrix completion problem by Ma, Goldfarb, and Chen [11]. On the
one hand, the proposed algorithm is actually an extension or generalization of the proximal gradient algorithm, in
which the generated iteration is a combination of the previous point, the current point, and its proximal gradient
point. On the other hand, our idea also comes from the effectiveness of the TwIST algorithm of Bioucas-Dias
and Figueiredo [14] to recover large and sparse signal from the limited measurement. Hence, our algorithm can
also be regarded as an extension of TwIST to solving matrix completion problems. Although both motivations
are simple, the numerical experiments illustrated that the proposed algorithm performs well and is competitive
with the well-known solver FPCA, which in turn showed the superiority of the proposed algorithm. Surely, this
is the contribution of this paper. The paper was paid more attention on solving matrix completion problem where
the Lipschitz constant of the gradient of the least square term is 1, which is essential to the convergence of the
algorithm. However, its efficiency in solving general linear constrained nuclear norm minimization problems has
not been studied. This should be our further task to investigate.
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