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Abstract The move toward exascale computing for scientific simulations is placing new demands on compression
techniques. It is expected that the I/O system will not be able to support the volume of data that is expected to be written
out. To enable quantitative analysis and scientific discovery, we are interested in techniques that compress high-dimensional
simulation data and can provide perfect or near-perfect reconstruction. In this paper, we explore the use of compressed
sensing (CS) techniques to reduce the size of the data before they are written out. Using large-scale simulation data, we
investigate how the sufficient sparsity condition and the contrast in the data affect the quality of reconstruction and the
degree of compression. We provide suggestions for the practical implementation of CS techniques and compare them with
other sparse recovery methods. Our results show that despite longer times for reconstruction, compressed sensing techniques
can provide near perfect reconstruction over a range of data with varying sparsity.

Keywords Compressed Sensing, Sparse Recovery, Simulation Data, Algorithms

AMS 2010 subject classifications 94Axx, 68U20

DOI: 10.19139/soic.v4i3.207

1. Background and Motivation

The analysis of data from scientific simulations is typically done by writing out the variables of interest at each
time step and analyzing them at a later time. For simulations run on massively parallel machines, the volume of
data written out frequently approaches terabytes and beyond. In some problems, writing out the data could be more
time consuming than the computations done at each time step. As we move to exascale computing, it is expected
that the I/O subsystem will not be able to provide the needs of the simulations [8]. Instead of writing out the data
for analysis, it has been proposed that the analysis algorithms be moved in situ, and only the analysis results, which
are hopefully much smaller, be written out. This is a viable option that works when we know the analysis algorithm
we want to use and its parameters. However, in many cases, the choice of analysis algorithms and their parameters
may depend on what we find as we analyze the simulation output. This is especially true when the motivation
for the analysis is scientific understanding and discovery. In such cases, the analysis cannot be done in situ and
alternate approaches have to be considered to address this problem of limited I/O bandwidth.

One such approach is to reduce the size of the simulation output by compressing the data before they are written
out. There are several ways of compressing data, ranging from the traditional compression schemes, such as JPEG,
that are used for images, to others that are based on clustering techniques from data mining. For the data set and
problem considered in this paper, we require loss-less compression techniques that can be applied to data that are
irregularly spaced in two or three dimensions and are distributed across multiple processors (or files). We propose
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addressing this problem of compressing simulation output using compressed sensing (CS) and sparse recovery
algorithms. We have three goals. First, we want to understand how we would apply compressed sensing techniques
in practice to simulation data, given the irregular spacing of points and their distribution across multiple files.
Second, we are interested in how well these techniques preserve the features of interest in the data so that we can
perform our analysis on data that were compressed and reconstructed, while obtaining results identical or close
to what we would have obtained using the original, uncompressed data. Finally, we want to compare compressed
sensing with other sparse recovery algorithms and evaluate their suitability for our data sets using the metrics of
reconstruction accuracy, compression time, and reconstruction time.

We note that our interest in compression is for the purpose of reducing the amount of data generated for
quantitative analysis, not for visualization. In other words, the fact that the original and the compressed, then
reconstructed, data are visually the same is not sufficient; we also want the quantitative results of the analysis to be
the same for the two data sets. Therefore, we need perfect or near-perfect reconstruction of the compressed data.

This paper is organized as follows: First, in Section 2, we discuss compression techniques currently in use
to reduce the size of scientific data sets, especially those from simulations. Next, we describe the specific
characteristics of our data set in Section 3 to provide the background on the constraints that influence our choice
of compression algorithm. We describe the algorithms considered in Section 4 and the pre-processing of the data
in Section 5, followed by the experimental results in Section 6. We first identify a performance metric to use
to evaluate the effectiveness of compression, followed by an evaluation of various preprocessing steps and the
use of sparse vs. dense measurement matrices. We then compare compressed sensing with other sparse recovery
algorithms and identify which algorithms best meet the needs of our problem. We conclude with a summary in
Section 7.

2. Related work

Data compression techniques, such as JPEG and MPEG [28], have long been used to reduce the size of images and
video to make it easier to store and transmit them. These techniques are lossy, that is, the data compressed using
these techniques cannot be reconstructed exactly. However, if the compression preserves key aspects of the images
such that the image or video after reconstruction is visually the same as the original, such compression may be
acceptable in some applications while, at the same time, enabling a large reduction in the volume of the data.

However, for scientific data, visual quality is often not the only factor influencing the choice of a compression
technique. For example, the wavelet-based Hcompress software [16] used in compressing astronomy images has
both a lossy and a loss-less capability; the former is used to generate pre-view images, where fine details may
be irrelevant, and the latter is used in scientific analysis where such details are important. Similarly, for medical
images, loss-less compression is used to preserve the information in the data, though a hybrid approach that uses
lossy compression in regions that are not of interest has been proposed [15] to reduce the size.

Our interest is in scientific data generated not as images, but as a result of scientific simulations run on
high-performance computers. These simulations typically generate multi-terabytes of data in the form of double-
precision variable values that are specified at grid or mesh points in a two- or three-dimensional spatial domain.
The grid could be regular or irregular and could be either fixed or change over time. Since the volume of these
data are large, the visualization community has developed several compression schemes to reduce the costs of
data transfer and storage. Many of these schemes are lossy, and range from simple approaches, such as storing a
double precision number in single precision, to more complex techniques involving sophisticated encoding [14, 24].
These lossy techniques are often sufficient to meet the end goal of qualitative analysis through visual display of
the data, especially as the data sizes are much larger than can be accommodated on the displays used to visualize
the data. However, to understand the effects of loss of information, efforts have been made to evaluate how various
physically-motivated metrics change as a result of compression [22]. A different approach to lossy compression
of simulation data borrows ideas from graph-based clustering techniques. It represents the mesh data as a graph,
and identifies vertex-sets that can be approximated by a constant value within a user-specified error tolerance [20].
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Compressed sensing techniques, the subject of this paper, can also be implemented in a lossy manner by including
quantization in the process [29, 26], or by combining it with wavelets [27].

As mentioned earlier, our interest is in loss-less compression of simulation data using compressed sensing and
sparse recovery methods. There has been relatively little work in this area. The visualization community has
investigated, albeit to a limited extent, the loss-less compression of the meshes used to represent three-dimensional
geometric models [19] as well as the floating-point data themselves [25]. The work in this paper is an extension
of our early work that was performed to understand if compressed sensing could be applied to unstructured mesh
data [12].

3. Description of the Data

We conduct our investigation into compressed sensing and sparse recovery algorithms using data from a fusion
simulation [23]. These data describe how the plasma within a tokamak evolves over time. The computational
domain is a three-dimensional toroid, representing the tokamak. It is composed of 32 poloidal planes, equi-spaced
along the toroid (see schematic in Figure 1(a)). Each poloidal plane has 591,745 grid points; these are arranged in
concentric circles around a center that represents the magnetic axis that runs around the toroid (see Figure 1(c)). To
correctly simulate the physical processes in fusion without unnecessarily increasing the number of grid points, and
hence the computational cost of the simulation, the distances between poloidal planes is larger than the distances
between grid points within a poloidal plane. This means that the physics of interest occurs within each poloidal
plane and we can analyze each plane independently. The grid points are not regularly spaced, so their spatial
coordinates are required for analysis. This also means that compression techniques that assume the data to be
available in a two-dimensional regular grid, as in an image, are not applicable to our data set. To reduce the size of
the simulation output, the data are written out every five time steps.

Since the computational domain is so large, with nearly 19,200,000 grid points across the 32 poloidal planes, the
simulation is run on massively parallel machines. The points in each poloidal plane are sub-divided into smaller
domains, as shown in Figure 1(b), with roughly equal number of points in each, and each domain is assigned to
one processor. As we shall see later in this section, this distribution of points across multiple processors, causes an
additional complication in applying the compression algorithms to our data.

At each time step in the simulation, there are several variables that are written out for each grid point; each
variable represents a different physical quantity. In our work, we consider just one of these variables; compressing
all the data at a time step can be done by processing each variable separately. The grid points in our problem remain
fixed over time, so their coordinates, in three-dimensions, are written out only once.

In our evaluation of compressed sensing and sparse recovery algorithms, we want to ensure that the analysis
results obtained using the re-constructed compressed data are very close to the results using the original,
uncompressed data. Specifically, we focus on the analysis of coherent structures in the data. Coherent structures
are essentially groups of grid points that behave as a coherent whole. The grid points are spatially near each
other, have similar values of a variable, and evolve in a similar way over time. Identifying coherent structures and
characterizing their behavior over time is a common analysis task in many simulations, so our work is broadly
applicable in many domains.

Figure 1(d) shows the values of the variable of interest at the grid points in plane 00 at time step 500. Since
each plane has a large number of grid points (nearly 600,000), we progressively zoom-in into the details of this
plane in Figure 2, where panel (a) shows a pie-shaped wedge, panel (b) shows the distinct grid points illustrating
the coherent structures, and panel (c) shows a region with no structures. The coherent structures can be seen in
panel (b) as the groups of grid points with values of the variable higher than the surrounding grid points, where
the values are nearly zero. At this time step, there are very few coherent structures on the left half of the poloidal
plane and near the center (which is the location of the magnetic axis of the tokamak). As a result, when the plane
is sub-divided into domains as shown in Figure 1(b), there are some domains that have a large number of coherent
structures, while others have none. Consequently, each domain has a different range of values of a variable, with
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Figure 1. (a) A schematic showing a three-dimensional toroid representing the tokamak; the plane highlighted in blue is a
poloidal plane. (b) Black lines show the division of a poloidal plane into regions with roughly equal areas; each region is
assigned to a different processor. The center of the circle is the magnetic axis of the toroid. (c) A zoomed-in view showing
the locations of the points near the center of the poloidal plane. (d) An example of the data in a poloidal plane at time step
500. The dotted lines indicate a slice of the data that contains 1

16 of the grid points in this plane.
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Figure 2. (a) A segment of the data at time step 500 showing the variable of interest. Zoomed-in views showing (b) the
patterns of interest and the grid points and (c) the background region with no structures.

domains with many coherent structures having a larger variation. Given this variation in the data, we expect that
determining CS parameters, such as the size of the compressed data, will be a challenge.
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3.1. Dividing the data into sub-domains

To mimic the decomposition of each poloidal plane among processors, we divided the data on a poloidal plane into
parts, or sub-domains, of equal area so that each sub-domain has almost the same number of data points, n. Since
the data are in the form of a circular disk, we use the radius r and angle θ for the split. The range of the angle θ is
[−π, π]. We make 16 cuts into the circle from the center out. Each part has the same angle θ = π

8 in radians. We
then divide each part into five pieces of equal area. Let r0 and r be the closest and farthest distance from the data
to the center of the circle, respectively. We compute the radii, r1, r2, . . . , r4, that equally separate the part into five

based on r0 and r. That is ri =
√

1
5 (i× r2 + (5− i)× r20). Figure 1(b) shows how the data are divided into 80

sub-domains that are almost equal in size.
In practice, the number of sub-domains is determined by the size of the problem and the number of processors

used to run the simulation. However, the division into sub-domains shown in Figure 1(b) is typical as it minimizes
the communication costs associated with sharing data across sub-domains in neighboring processors.

4. Description of the compression algorithms

We next describe the compressed sensing and sparse reconstruction algorithms used in our work. The ideas behind
compressed sensing have been studied extensively [11]. In essence, the method begins by sampling a sparse signal
at a low rate and then uses computational techniques to obtain its exact reconstruction. This makes compressing
data a simple task and most of the effort is spent on reconstructing the original signal.

Given a signal u, in the form of an n-dimensional vector, we want to compress the signal to a smaller length
m(< n) so that we can reduce the cost of moving or transmitting this signal, which in our case is the data from the
simulation, from the computer to the disk. We make m measurements, each amounting to a projection of u on a
known vector. These measurements with a linear transformation result in a vector f of length m, that is, f = Au,
where the known matrix A is of size m× n. The vector f is referred to as a sketch of u in theoretical computer
science [17].

Once the m values of the vector f , which is smaller than the original signal u, have been transmitted, we need
to uncompress the vector and recover the original signal. In general, this is a difficult task. Compressed sensing
works only when signal u is sufficiently sparse, with k number of non-zero elements, where k ≪ n [7, 5]. The
matrix A contains randomly generated numbers, which, in the conventional CS approach, are drawn independently
from a Gaussian distribution. From a computational viewpoint, we do not need to explicitly store the matrix A.
Instead, we can store the random seed used to create the matrix and generate the matrix entries as needed, saving
on memory requirements for the algorithm. In our work, we focus on the case where the non-zero components are
real numbers and the measurements are linearly independent, that is, A is a full-rank matrix. The CS reconstruction
problem then reduces to finding a u that satisfies the linear system f = Au.

To make exact signal reconstruction possible in principle, we need at least m ≥ k + 1. We can conduct an
exhaustive search on all

(
n
k

)
possible selections of searches on non-zero components of u to find the only one

possible linear system that can be inverted. However, when our data set is very large, with a large n, using the
enumeration method quickly becomes impractical.

In practice, the reconstruction step in CS is solved by forming an L1-norm optimization problem [6, 11] defined
as

min
û

∥û∥1 subject to Aû = f (1)

where ∥û∥1 =
∑n

i=1 |ûi|. Equation (1) is also known as the basis pursuit problem, whose solution is the vector
with smallest L1 norm that describes the sketch f .

CS is an example of a sparse recovery algorithm that approximates a sparse signal u from its lower-dimensional
sketch Au ∈ ℜm. However, unlike the conventional CS approach, sparse recovery algorithms do not require a
solution of the optimization problem in Equation (1), nor do they require the matrix A to be dense or have entries
drawn from a Gaussian distribution.
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In this paper, we compare the performance of CS and sparse recovery algorithms for the compression of the data
set described in Section 3. We consider six different methods: three of them - L1 magic [4], Gradient Projection
for Sparse Reconstruction (GPSR) [13] and YALL1 [10] - are conventional CS methods where the matrix A
is dense, with values drawn from a Gaussian distribution. The other three methods - Sparse Matching Pursuit
(SMP) [2], Sequential Sparse Matching Pursuit (SSMP) [1], and Count-Min sketch [9] - have a sparse measurement
matrix A. Numerous methods have been proposed for sparse recovery by different research communities, including
signal processing, theoretical computer science, and applied mathematics. These methods vary in the accuracy of
reconstruction, computational time, and the length of the sketch. The six methods we selected are illustrative of
different approaches. We briefly describe them in the following; more details are available in the references.

• Compressed sensing using L1 magic: L1 magic [4] is a public domain solver that obtains solutions of
Equation (1) using efficient linear programming techniques. In our work, we use the routine l1eq pd, which
is a primal-dual algorithm for linear programming. A system of nonlinear equations is formulated using the
Karush-Kuhn-Tucker conditions corresponding to Equation (1). The system is linearized and solved using
the classical Newton’s method. This algorithm starts at an interior point and applies the maximum step size
that just keeps the point in the interior. The algorithm iterates and identifies the solution point as close to
being optimal when the slackness condition is small and the surrogate duality gap has decreased below a
given tolerance. In the conventional CS method, the measurement matrix A is dense.

• Compressed sensing using Gradient Projection for Sparse Reconstruction (GPSR): Gradient projection
for sparse reconstruction (GPSR) [13] solves the general optimization problem formulated as

min
û

1

2
∥f −Aû∥22 + τ∥û∥1, (2)

which is a convex unconstrained optimization problem with a quadratic term. τ is a nonnegative parameter
and ∥v∥2 denotes the Euclidean norm of a vector v. Equation (2) falls in the category of a sparse recovery
problem since the use of the L1 norm on û tends to reconstruct the signal u to be as sparse as possible,
given the sketch f and the measurement matrix A. GPSR is a gradient projection algorithm in which the
search path from each iterate is obtained by projecting the negative-gradient onto the feasible set from each
iteration. GPSR has been shown to perform well in a range of applications and is significantly faster than
competing methods [13]. The measurement matrix A is typically dense.

• Group sparse reconstruction using alternating direction method (YALL1): YALL1 (Your ALgorithm for
L1) [10] is a solver for group sparse reconstruction using alternating direction method (ADM) [31, 3]. The
algorithm makes use of the group sparsity structure in the data. Components within a group are likely to be
either all zeros or all nonzeros. Formulating the group sparsity reduces the degrees of freedom in the solution,
and hence improves reconstruction performance. Let groups {ugi ∈ ℜni : i = 1, . . . , s} be a partition of u,
where gi ⊆ {1, 2, . . . , n} is a set of instance indices contained in the i-th group, and ugi are the ni instances
of u that are in the i-th group. YALL1 solves the following basis pursuit model:

min
û

∥û∥w,2,1 subject to Aû = f (3)

where ∥û∥w,2,1 :=
∑s

i=1 wi∥ûgi∥2 is the weighted l2,1-norm and wi ≥ 0 for i = 1, . . . , s are weights
associated with each group. YALL1 applies the classic ADM to both the primal and dual forms of the lw,2,1-
problem (3) whose objective functions are separable, and constructs an efficient first-order algorithm using
augmented Lagrangian that updates both the primal and dual variables at each iteration.

• Sparse matching pursuit (SMP): Sparse matching pursuit (SMP) is a method designed for practical, near-
optimal, sparse recovery in the L1 norm [2]. Instead of using a dense matrix generated from a Gaussian
distribution in the L1 norm, as in Equation (1), SMP uses a sparse measurement matrix A with binary
elements, that is, the matrix elements take the values 0 or 1. It is derived from a very fast recovery algorithm,
called Expander Matching Pursuit (EMP) [18], which, in turn, is derived from the Orthogonal Matching
Pursuit (OMP) [30]. Like these methods, SMP is a greedy iterative algorithm that estimates the vector
y = (ut − u), which is the difference between the current approximation ut and the signal u from the sketch
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Ay = Aut −Au. The matrix A can be interpreted as an adjacency matrix of a bipartite graph G, with left
vertex set = {1, 2, . . . , n} and right vertex set = {1, 2, . . . ,m}. Each column of A contains d elements that are
one, that is, every vertex in the left part of the graph has exactly d neighbors in the right part. Each coordinate
y∗
i in the estimation y∗ of y is the median of the coordinates of the sketch vector Ay that are neighbors

of i in the graph G. The approximated signal ut is updated by y∗ and the process is repeated. The idea
behind the algorithm is to select the neighbors of i using a voting-like mechanism. Compared to EMP, SMP
is slightly slower, but performs successful recovery from a significantly smaller number of measurements,
and is therefore more suitable for our application in reducing the cost of data movement.

• Sequential sparse matching pursuit (SSMP): Sequential sparse matching pursuit (SSMP) [1] is derived
from the SMP method. Both SSMP and SMP use a sparse binary matrix for measurement, and voting-
like mechanism in iterative search for signal approximation. The difference is that SSMP updates the
approximation signals sequentially while SMP updates them in parallel. SMP works only when the input
parameters, the sparsity k and the number of measurements m, are within the theoretically guaranteed region.
SSMP does not have such convergence problems and is designed for arbitrary input signals.

• Count-Min and Count-Median sketch: The Count-Min sketch algorithm [9] also utilizes a sparse random
matrix A with binary elements. It only works under the assumption that all elements in the signal are
greater or equal to zero. That is, the elements of u, ui ≥ 0 for all i. The method divides matrix A into
d segments, A(h1),A(h2), . . . ,A(hd). Each segment of A corresponds to a function h, from the set H
of all functions h : {1, 2, . . . , n} → {1, 2, . . . , w}. We independently and uniformly choose these d random
functions. Each such function generates a binary matrix A(h) of size w × n by setting (A(h))j,i = 1 if
j = h(i) and (A(h))j,i = 0 otherwise. The one-to-one mapping makes each column have exactly one 1.
Combining the d segments, the algorithm constructs the matrix A whose number of rows is equal to m = wd.
To approximate u∗ from Au, the algorithm makes use of the construction of matrix A. Observe that for any
signal u,

(Au)(l−1)w+j = (A(hl)u)j =
∑

i:hl(i)=j

ui

for l = 1, 2, . . . , d and j = 1, 2, . . . , w. Using this property, computing the approximation of signal u is fairly
simple. It requires only pairwise independent hash functions. Under the assumption of u ≥ 0, we define
elements of the approximation of u∗ to be:

u∗
i = min

l
(A(hl)u)hl(i) = min

l

∑
i′:hl(i′)=hl(i)

ui′ .

We cannot directly apply Count-Min to our data sets as they contain negative values. Instead we use the
extended Count-Min algorithm, which is also called the Count-Median algorithm, for our problem. This
method replaces u∗

i by

(u∗
med)i = median

l
(A(hl)u)hl(i).

Removing minimization constraints allows negative estimators. The algorithm then works for general signals
with both positive and negative values.
Count-Min and Count-Median sketches are algorithms designed by the database community to handle fast
queries on data streams [9]. Therefore, their recovery time is expected to be very fast, but as only a summary
of the data is stored, the algorithms are not intended for use in exact recovery. However, we have included
them in our study to evaluate how much the accuracy degrades in the context of our problem.

5. Preprocessing the data

Before we could apply the six compression algorithms to our simulation data, we found that the data required some
preprocessing. Our data set contains a large number of values that are almost zero as seen in the background region
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in Figure 2. When we first applied CS to the data, we were not successful in recovering the original signal even
though the algorithm had converged (see Figure 5). On examining the results, we found that a majority of the data
components have to be exactly zero in order to satisfy the sufficient sparsity condition of CS. This suggests that
we need to threshold the data first and set all values below the threshold to zero. From the analysis viewpoint, this
is acceptable because one of the first steps in the analysis of coherent structures in the data is to perform such a
thresholding as it is the grid points with the larger values that are of interest [21].

The use of thresholding as a pre-processing step is also motivated by a constraint on k, the number of non-zeros,
and m, the number of measurements, that must be satisfied for reconstructing the signal. As the results by Candes
et al. [5] show, if k ≤ α ·m · (log n)−1, where α > 0 is a constant, then the L1 problem (1) will find the unique
solution that is exactly equal to u with very high probability. Their empirical study showed that for n between a
few hundred and a few thousand, with k ≤ m/8, the recovery rate is above 90%. These results also suggest that
m∗ = k log n is an appropriate choice for the number of rows of A. However, there is still slight chance that we
will not get the exact u from solving the L1 problem. Since we are looking for exact reconstruction of the patterns
in the data, in addition to thresholding values that are very near zero, we need to investigate values around m∗ and
find a better condition for CS for our simulation data.

Another issue we need to address is the contrast in our data set, that is the range of intensity values at the
grid points in the simulations. The data over an entire poloidal plane at early time steps have low contrast, with
a relatively small range of intensities. Not only are the majority of the data values almost zero, forming the
background, but the rest of the data values, which are part of the coherent structures of interest, are also close
to zero. For example, at time step 500, Figure 1 indicates that the absolute values in the poloidal plane are less
than 3× 10−10. The corresponding histogram of values shown in Figure 3 indicates that most of the values are
near zero (the background), with a few grid points (the coherent structures) having slightly larger values, as shown
in Figure 3(b). At later time steps in the simulation, the absolute values of the variable in a coherent structure
within a poloidal plane can go as high as 10−5, while the background remains at 10−10 or smaller. Further, some
sub-domains, such as the ones near the center or on the left side of the poloidal plane, continue to have a small
range of values as they are composed of mainly the background. The results at later time steps of the simulation
allow us to compare the methods for higher dynamic range data with varying sparsity.
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Figure 3. (a) Histogram of the data at time step 500 showing majority of the data values very close to zero. (b) Zoomed-in
view of the histogram.

To address this problem of sub-domains in a poloidal plane having a large range of values either within a sub-
domain or across sub-domains, we consider the option of scaling the data within a poloidal plane. Scaling just the
values in each sub-domain to [0.0,1.0] will result in amplifying the noise in the sub-domains that have all grid
points with values very near zero. To scale across the entire poloidal plane, we first use a gather/scatter operation to
find the minimum and maximum values across all sub-domains that form a poloidal plane. Then, each sub-domain
scales its grid points so that the values in the entire poloidal plane are in the [0.0, 1.0] range. After reconstruction,
we only need the two limits to scale the data back to their original values without any loss of information.

Increasing the contrast of the data helps the performance of CS and the sparse recovery algorithms in many
ways. First, it improves our ability to control the convergence of these methods. Recall that L1 magic, GPSR
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and YALL1 are iterative optimization algorithms and all have convergence conditions with a given tolerance. In
practice, the tolerance is set to be some very small number. However, when the contrast or the values of the data
are relatively small, the algorithm could terminate prematurely due to the convergence conditions being satisfied,
even though the optimal solution has not been obtained. While the user can adjust the tolerance for the algorithm
to terminate at an acceptable optimal, it is difficult to determine such a value when the data set contains very small
numbers and has a small range of intensity values. Therefore, scaling the data to [0.0,1.0] helps standardize the
input data for convergence conditions. This scaling, by improving the contrast in the data values, also helps the
sparse recovery algorithms that are iterative in nature. Finally, when multiple algorithms are being compared, as in
our study, scaling the data helps us to evaluate the performance of the algorithms more objectively.

6. Experimental Results

We next describe the experiments we conducted to understand how best to apply compressed sensing and sparse
recovery algorithms to our data set. Given a data set of n components containing k non-zero entries, we have two
main goals: The first is to determine if CS can be applied successfully to our data and if our ideas for scaling the data
and selecting the size of the compressed data result in sufficient compression and near-perfect reconstruction. In
particular, we want to understand how well the features of interest in our data are preserved during reconstruction.
Second, we want to compare CS with other compression methods described in Section 4 in terms of reconstruction
accuracy, compression time and reconstruction time to identify those suitable for our problem.

We conduct our experiments in two parts. Our main focus is compressed sensing as it allows perfect
reconstruction of the data. Therefore, in the first set of experiments we evaluate different performance metrics
and pre-processing ideas with CS using L1 magic as the compression algorithm. In the second set of experiments,
we compare CS with the sparse recovery algorithms. Since the SMP, SSMP and Count-Min methods require a
sparse measurement matrix, for a fair comparison, we consider both a dense matrix and a sparse matrix in L1

magic, GPSR and YALL1. Recall that these three methods were originally proposed with a dense measurement
matrix.

6.1. Reconstruction accuracy of compressed sensing

The first evaluated how well CS could reconstruct compressed data using the L1 magic software. Recall that we
divided the data on each poloidal plane into equal sub-domains to mimic the way in which the data are decomposed
into domains for parallel processing. As observed earlier, some of these domains have a large number of coherent
structures, while others are mainly background, with relatively small values that are likely to be ignored during
thresholding. So, the percentage of non-zeros, k/n, in each domain is different. To evaluate the performance of CS
on each sub-domain of the data, we vary the percentage of compression, m/n for each sub-domain, and evaluate
a metric that determines the accuracy of reconstruction. The ratio k/n gives the percentage of non-zeros in each
sub-domain, while the ratio m/n gives the reduction in size of the data for that sub-domain.

We considered three metrics to measure the accuracy of reconstruction: the L2 norm, the peak signal-to-noise
ratio (PSNR), and R2. The L2 norm measures the Euclidean distance between the original data, ui, i = 1, . . . , n,
and the data, ûi, i = 1, . . . , n, after CS and reconstruction. PSNR is derived from the mean squared error (MSE) of
the two data sets; it is often used in image compression where removing noise is the desired outcome. Let

MSE =
1

n

n∑
i=1

(ui − ûi)
2.

Then, PSNR is defined as:

PSNR = 10 · log10
(
max({ui}i=1,...,n)

MSE

)
.
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The coefficient of determination, denoted by R2, is widely used in statistics in comparing two data sets and is
defined as:

R2 = 1−
∑n

i=1(ui − ûi)
2∑n

i=1(ui −
∑n

i=1 ui

n )2
.

Since we are looking for exact reconstruction, we prefer smaller L2, larger PSNR and an R2 value that is close to
1.

6.1.1. Evaluating performance metrics We compared the three performance metrics, the L2 norm, PSNR, and R2,
by evaluating their effectiveness using the data in all sub-domains from time step 500 in the simulation. First, we
scaled the data in each sub-domain using the maximum and the minimum values from the 00 poloidal plane that
spans all sub-domains. Then, based on the histogram of the data, we set components whose absolute values are less
than 0.3 to zero as a threshold that separates the coherent structures of interest from the background.

Table 1. Data size n and number of non-zero components k for the 11 sub-domains (out of a total of 80) that are non-sparse
at time step 500. CS fails to reconstruct these sub-domains using m < n.

Pie # Slice # n k
1 2 7454 4171
1 3 7508 4553
2 2 7381 3866
2 3 7448 4914
3 3 7458 4505
4 3 7459 3587

13 3 7468 3933
14 3 7458 4898
15 2 7380 3756
15 3 7459 4435
16 3 7451 4752
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(a) L2 (b) PSNR (c) R2

Figure 4. Performance of L1 magic with a sparse measurement matrix on data from time step 500. The values of the three
metrics - L2, PSNR and R2 - are shown in color for different levels of compression (m/n) for sub-domains with different
levels of sparsity (k/n) . The dotted black line represents the slope of 1

3 . The straight line with star markers is the theoretically
suggested selection of m∗ with respect to k.

When the data in a sub-domain are not sufficiently sparse, CS performs poorly. Table 1 shows the numbers of
non-zero components and the sizes of the data for the 11 sub-domains that are not sparse enough and are excluded
in our work. The results indicate that in general when k is more than 50% of n, CS fails in reconstruction using
m < n.

Figure 4 shows the performance of L1 magic with a sparse measurement matrix on each sub-domain at time
step 500 using the three different performance metrics. This measurement matrix was generated as described in the
Count-Min sketch algorithm and in Section 6.1.4. There are 80 sub-domains on each poloidal plane (as shown in
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Figure 1(c)), each with roughly the same number of grid points, but a different number, k, of non-zero values. We
ignore the low sparsity sub-domains listed in Table 1. Before applying CS, the data were first scaled so the poloidal
plane had values between [0.0, 1.0], then thresholded to identify the background points, which were set to zero.
The dotted black line starting from origin represents the slope of 1

3 . Points below that line could be compressed
better by writing out just the x–y coordinates and values of the grid points that remain after the thresholding. The
solid straight line with star markers is the theoretically suggested selection of m∗ with respect to k.

Each horizontal line in the figure represents the performance of CS on one sub-domain. Taking Figure 4(c) as an
example, as we vary m, the number of measurements, for a sub-domain that has k non-zero values, the performance
of CS evaluated using R2 is represented by colors on a horizontal dotted line. The change in color clearly shows
that the R2 increases as the size of compressed data (m/n) increases. Recall that we prefer smaller L2, larger PSNR
and an R2 value that is close to 1.

Among the three metrics, R2 gives the most gradual and distinct difference in the performance as we vary
m. Regardless of the data used, R2 is always in the range [0, 1], unlike the L2 norm and PSNR metrics, whose
maximum will vary with the data, making it difficult to compare compression results across data from different
time steps or poloidal planes. A value of R2 = 1 obtained using data before and after compression indicates that
they are identical. Therefore, we propose using R2 as our metric of choice in measuring CS for exact reconstruction.
We will only show R2 values in the rest of this paper.

6.1.2. Evaluating the effectiveness of compression In Figure 4, we include two lines to help evaluate the
effectiveness of the compression using CS. The thick dotted black line starting from the origin has a slope of 1

3 .
Points on the line represent m = 3k, indicating that carrying the three values - x–y coordinates of a grid point and
its value - for all non-zero points that remain after thresholding requires the same size of storage as the compressed
data. Points below the line represent m > 3k, where the compressed data have a larger size than the size of k non-
zero values and their corresponding x–y locations. Therefore, the sub-domains that benefit from CS are the ones
that have R2 = 1 and lie above the dotted line.

The straight line with markers connects the values when m = m∗. As mentioned earlier, theory suggests a value
of m∗ = k log n for reconstruction using the L1 norm. To test how accurate this number m∗ works in practice,
especially in the context of the R2 metric, we considered several different values of m around m∗ for various k.
Most points below the line with markers have R2 = 1 and only a few points with small k below the line do not.
This indicates that the theoretical selection of m∗ works very well when k is not too small, i.e. less than 5% of n in
Figure 4(c). Also, we do not need as large an m∗ for exact reconstruction when k is large, especially above 10% of
n as indicated by the R2 = 1 points that lie to the left of the line with markers.

6.1.3. Evaluating the performance of preprocessing Figure 5 shows the results of L1 magic with a sparse
measurement matrix on data from time step 1000 in the simulation with different preprocessing options. We
considered a later time step as by this time the simulation has progressed and there are more coherent structures,
leading to data that allows a better evaluation of the preprocessing options. Recall that we need exact reconstruction,
so a value of R2 = 1 is desired.

Figure 5(a) shows the results with no preprocessing, followed by the results with only thresholding, only
scaling, and both thresholding and scaling, in Figures 5(b)-(d), respectively. To make it easier to compare the
plots, each horizontal line in Figures 5(a) and (c) corresponds to the same sub-domain as the corresponding line
in (d); however, the number of non-zero components is higher when no thresholding is used. We make several
observations. The results with no preprocessing and only thresholding appear very similar. Neither has any sub-
domains with perfect reconstruction. The maximum R2 from the data without any preprocessing is 0.9982, while
the maximum R2 from only thresholding is 0.9977. The use of both scaling and thresholding results the most
sub-domains with R2 = 1, while using just scaling, but no thresholding, results in a few sub-domains with R2 = 1.
However, all these sub-domains in Figure 5(c) are below the black dotted line, the one at 1

3 slope, indicating that
compression is not preferred. From these observations, we conclude that scaling has very significant effect on the
performance of CS, and thresholding improves the performance only when the data are scaled.
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(a) Without preprocessing (b) Thresholding only (c) Scaling only (d) Scaling and thresholding
Figure 5. Performance of L1 magic with a sparse measurement matrix on data at time step 1000 with different preprocessing
options. (a) Results with no scaling or thresholding of the data. (b) Results with thresholding, no scaling. (c) Results with
scaling, but no thresholding of the data. (d) Results using both scaling and thresholding. For ease of comparison, each
horizontal line in the four plots corresponds to the same sub-domain as indicated in (d), though the sub-domain has a higher
number of non-zeros when thresholding is not used.

We next considered the performance of L1 magic at other time steps. We know that in the simulation, the number
of coherent structures changes over time. At early time steps, there is a small number of coherent structures, which
grow larger in size over time, until they split into multiple structures. Thus the sparsity of the data reduces over
time, and we would expect that CS techniques would start performing poorly at late time. Figure 6 shows the
performance of L1 magic with a sparse measurement matrix evaluated using R2 on data at time steps 2000, 3000
and 4000 using scaling and thresholding. These results suggest that compression using CS is an option when the
sparsity is more than 15% and less than 50%. For sparsity lower than the lower limit, it is preferable to just store
the non-zero values and their locations in three dimensions. For sparsity greater than the upper limit, CS does not
give perfect reconstruction.
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(a) Time step 2000 (b) Time step 3000 (c) Time step 4000
Figure 6. Performance of L1 magic with a sparse measurement matrix at time steps 2000, 3000 and 4000 evaluated using
R2.

Finally, we evaluated the effectiveness of CS in preserving small but unusual structures in the data. Our earlier
work had shown that, at time step 3000, there are some small structures, composed of a few points, with large
negative values of the variable, unlike other structures in the data that have positive values. When the simulations
are run for scientific discovery, it is important that any compression preserve such structures so they can be analyzed
further. Figure 7 and Table 2 show that this is possible using CS, even with a compression ratio of 72%.

Table 2. Performance of compressed sensing on sub-domain data at time steps 3000.

k/n 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38
m/n 0.60 0.63 0.65 0.68 0.70 0.73 0.75 0.78 0.80 0.83 0.85 0.90 0.95 0.98
R2 0.87 0.89 0.91 0.93 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

6.1.4. Comparing the use of dense vs. sparse measurement matrix Next, we compare the use of a dense matrix
vs. a sparse matrix in L1 magic, GPSR and YALL1, using the metrics of compression time, recovery time
and reconstruction accuracy. The dense matrix is generated using random numbers drawn independently from a
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(a) Original data (b) Reconstructed data using m/n = 72%, giving R2 = 1

Figure 7. Sub-domain data at time steps 3000 before and after applying preprocessing and compressed sensing. Using 72%

compression rate, CS reconstructed the patterns perfectly with R2 = 1 after the background grid points were set to zero. The
small structures near the lower right with large positive and negative values next to each other are of scientific interest.

Gaussian distribution. The sparse matrix is generated using d = 8, which divides each column of A into d segments,
randomly assigns one element in each division to be 1, and sets the rest to 0. This sparse matrix satisfies the
requirements for SMP, SSMP and Count-Min algorithms to work and therefore, allows us to compare all methods
on an equal footing.

(a) (b)
Figure 8. Comparison of (a) compression and (b) reconstruction times using L1 magic, GPSR and YALL1 with a dense and
a sparse matrix on a subdomain data of length n = 7351 and sparsity k = 26 at time step 2000.

Since we compress data u using a matrix A, the compression time is the time for the calculation of Au, and
is the same for all methods. Figure 8(a) compares the compression time using a dense matrix and a sparse matrix
on a subdomain of length n = 7351 and sparsity k = 26 at time step 2000, as the size of compression m is varied.
The compression time using a dense matrix obviously increases linearly as m increases; in contrast, using a sparse
matrix takes a smaller amount of time, which is almost constant with increasing m. The corresponding recovery
times for L1 magic, GPSR and YALL1 with both dense and sparse matrices on the same subdomain data at time
step 2000 are shown in Figure 8(b), with additional details shown in Figure 13. Similarly using a dense matrix
takes dramatically more time for the recovery, especially in the case of L1 magic. In general, the recovery times
increase as the compression size m increases, except for YALL1.

Figure 9(a) and Figure 9(c) display the reconstruction accuracy of L1 magic using a dense matrix and a sparse
matrix, respectively, for time step 2000. Figures 9(b) and (d) show just the points where R2 = 1, that is, the points
when L1 magic gives perfect reconstruction. Focusing on the points with perfect reconstruction, we observe that
the performance of a dense matrix is very similar to that of a sparse matrix. There are only a few points that are
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(a) L1-magic: dense (b) L1-magic: dense (R2 = 1)
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(c) L1-magic: sparse (d) L1-magic: sparse (R2 = 1)
Figure 9. Comparison of reconstruction accuracy of L1-magic using (a) a dense matrix and (c) a sparse matrix. (b) and (d)
display just the points that satisfy R2 = 1.
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(a) GPSR: dense (b) GPSR: dense (R2 = 1)
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(c) GPSR: sparse (d) GPSR: sparse (R2 = 1)
Figure 10. Comparison of reconstruction accuracy of GPSR using (a) a dense matrix and (c) a sparse matrix. (b) and (d)
display just the points that satisfy R2 = 1.

different. A similar result is observed for GPSR and YALL1 with dense and sparse matrices as shown in Figure 10
and Figure 11.
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(a) YALL1: dense (b) YALL1: dense (R2 = 1)
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(c) YALL1: sparse (d) YALL1: sparse (R2 = 1)
Figure 11. Comparison of reconstruction accuracy of YALL1 using (a) a dense matrix and (c) a sparse matrix. (b) and (d)
display just the points that satisfy R2 = 1.

Our results suggest that for L1 magic, GPSR and YALL1, using a sparse matrix is a better choice compared to
using a dense matrix. The use of a sparse matrix gives similar reconstruction accuracy and requires a significantly
smaller amount of time in compression and recovery.

6.2. Comparison of CS with other sparse recovery algorithms

We next compare the performance of CS using L1 magic, GPSR and YALL1 with the other sparse recovery methods
described in Section 4. Recall that, unlike compressed sensing algorithms, the sparse recovery algorithms have
no guarantee of exact reconstruction. Figure 12 displays the reconstruction accuracy of SMP, SSMP and Count-
Min using a sparse matrix for time step 2000, along with the points with value R2 = 1 where we have perfect
reconstruction. SSMP gives perfect reconstruction with compression size m almost aligned with the theoretically
suggested compression size m∗ (the straight line in Figure 12(b)) for CS. The results also show that SMP does
not perform as well as SSMP, and Count-Min only works well when data are extremely sparse. All three sparse
recovery methods and the group sparse recovery method (YALL1) have fewer points with R2 = 1 when compared
with L1 magic and GPSR.

Next, in Figure 13, we compare the recovery time for the different methods. For a fair comparison, we use the
same subdomain as in the case of L1 magic from time step 2000, the results for which are shown in Figure 9. We
also consider a range of m values such that we have full recovery (R2 = 1) for some points for all the methods. The
subdomain contains n = 7351 signals with sparsity k = 26, which gives k

n = 0.0035. Since all our sub-domains
have roughly the same signal size n ≈ 7400, we did not vary n as a factor in the recovery time. These results
show that L1 magic with a sparse matrix, and GPSR with a dense matrix, require more time for the recovery step,
with the time increasing as the compression size m increases. Recovery times for YALL1 with both dense and
sparse matrices are mostly in between the times for L1 magic and GPSR. The remaining methods in decreasing
order of recovery times are SSMP, GPSR sparse, SMP and Count-Min; all methods are almost indifferent to the
compression size m.

Based on the performance of all methods using compression time, recovery time and accuracy, we make the
following observations: GPSR is a good method if a shorter recovery time is desired; Count-Min is the fastest
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(a) SSMP (b) SSMP, R2 = 1 points
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(c) SMP (d) SMP, R2 = 1 points
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(e) Count-Min (f) Count-Min, R2 = 1 points

Figure 12. Performance comparison of SSMP, SMP and Count-Min using sparse matrix for time step 2000, showing just the
points with R2 = 1 in the right column.

method but only works well when data are extremely sparse; and SSMP is particularly better than SMP in
reconstruction accuracy but takes longer time in recovery. L1 magic gives the best performance in accuracy but
takes a much longer time than the other methods. It also takes longer to compress and recover the signal using a
dense matrix than using a sparse matrix for L1 magic, GPSR and YALL1. We suggest using L1 magic if the goal is
to obtain perfect reconstruction as it has more points with R2 = 1 that meet the criterion of using less storage than
the non-zero values and their locations.

Finally, we compare how well different methods perform in preserving the small structures of interest in time step
3000 (see Figure 7). In Figure 14, we show the region around the structures after thresholding and the difference
between this and the reconstruction by each of the methods. The reconstructed data by each method appears visually
similar to the thresholded data, so we present the difference plot to clearly show the quality of reconstruction for
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(a) Sparse recovery (b) A zoomed-in view of (a)

Figure 13. Comparisons of recovery times for the different methods. The values of m are chosen such that all six methods
give full recovery (R2 = 1). Results for L1 magic with a dense matrix are shown in Figure 8.

each method. For each plot, we list the minimum and maximum values in the thresholded data or the difference
data sets. We observe that even though the worst performing method appears to have a large difference from the
thresholded data in Figure 14(h), this difference is in the range of [-7.6e-12, 5.1e-12], while the thresholded data
are in the range [-4.6e-6, 4.1e-6]. This suggests that the sparse recovery methods can be an alternative when perfect
reconstruction is not required.

7. Conclusions

In this paper, we considered practical issues in the application of compressed sensing to simulation data. We were
motivated by the need to reduce the size of the data being written out from simulations run on massively-parallel
processors, while enabling accurate reconstruction of the data for quantitative analysis. Using data from a plasma
physics simulation, we showed how we could scale and threshold the data that are distributed across processors and
determine the amount of compression that would enable near perfect reconstruction. We found that a successful
application of CS is bounded by the percentage of sparsity in the data - the data have to be sparse enough for
compression using CS, but not so sparse that it is more cost effective to just write out the locations and values of
the non-zero data points.

Our experiments, conducted using the R2 metric, show that scaling the data is very helpful and thresholding
helps both with compression and the coherent structure analysis that is performed on the data. After comparing
the performance of CS and sparse recovery algorithms, we suggest using L1 magic with a sparse measurement
matrix for CS if the goal is to obtain near perfect reconstruction, even though the method takes longer time for the
recovery task. Our future work will focus on determining to what extent we can relax the perfect reconstruction
requirement and still obtain results close to what we would get by analyzing the original data.
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Figure 14. A slice from sub-domain data at time step 3000 before and after applying compression methods. (a) displays
the thresholded data. (b)-(h) show the difference between the thresholded data and the reconstructed data for each method.
Numbers in [min,max] are the minimum and maximum values in each plot.
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