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1. Introduction

The problem of estimation of a stochastic linear system has been a matter of active research for the last five decades.
One of the simplest models considers a black box?with some input and giving a certain output. The input may be
single or multiple and there is the same choice for the output. This generates a great amount of models that can
be considered. The sphere of applications of these models is vary extensive, ranging from signal processing and
automatic control to econometrics (errors-in-variables models). For more details, see [15], [22] and [23].

We are interested in the estimation of the so-called impulse function from observations of responses of a SISO
(single-input single-output) system to certain input signals. This problem can be considered both for linear and non-
linear systems. To solve this problem, different statistical approaches were used as well as various deterministic
methods that are based on a perturbation of the system by stationary stochastic processes and the further analysis
of some characteristics of both input and output processes. Let us mention two monographs on this problem by
Bendat and Piersol [3] and Schetzen [22]. Akaike [1] studied a MISO (multiple-input single-output) linear system
and obtained estimates of the Fourier transform of the response function in each component. He considered later a
scenario involving non-Gaussian processes [2].

Some methods for estimation of unknown impulse response function of linear system and the study of properties
of corresponding estimators were considered in the works of Buldygin and his followers. These methods are based
on constructing a sample cross-correlogram between the input stochastic process and the response of the system.

Conditions for asymptotic unbiasedness, consistency, asymptotic normality of the integral-type zero-mean cross-
correlogram estimators for the response function in the space of continuous functions were investigated in the
papers [9], [10], [4], [5], [6].
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The discrete-time sample inputoutput cross-correlogram as estimator of the response function was considered
by Buldygin, Utzet, Kurochka and Zaiats [8], [11]. Both asymptotic normality of finite-dimensional distributions
of the estimates and their asymptotic normality in spaces of continuous functions were studied. An inequality of
the distribution for supremum of estimation error in the space of continuous functions in the case of integral-type
cross-correlogram estimator was obtained in [19].

In this paper a time-invariant continuous linear system with a real-valued impulse response function is
considered. A new method for the construction of estimator of the impulse response function is proposed.

The paper consists of 7 sections.
In the second Section we describe the main definitions and general properties of the estimator. The input signal

process is supposed to be a zero mean Gaussian stochastic process which is represented as a treamed sum with
respect to orthonormal basis in L2(R).

In section 3 properties of the Hermite polynomials are described. Since the family of the Hermite functions forms
an orthonormal basis in L2(R), then the input process of the system can be represented as a series with respect to
the Hermite polynomials. Estimates of mathematical expectation, variance and variance of the increments for the
estimator of impulse function are found.

Section 4 deals with square Gaussian random variables and processes. Inequalities for the C(T ) norm as well as
for Lp(T ) norm of a square Gaussian stochastic process are shown.

In the fifth section the convergence rate for the estimator of unknown impulse response function in the space of
continuous functions and in the space Lp([0, A]) is investigated.

In the sixth section two criteria are developed on the shape of the impulse response function.

2. The estimator of an impulse response function and its properties

Consider a time-invariant continuous linear system with a real-valued square integrable impulse response function
L(τ), τ ∈ R. This means that the response of the system to an input signal X(t), t ∈ R, has the following form:

Y (t) =

∫ +∞

0

L(τ)X(t− τ)dτ (1)

and L ∈ L2(R). In practice the system is often supposed to be a causal linear system, that is, L(τ) = 0 as τ < 0.
Hereinafter we will consider only such feasible system. Then the system (1) can be written as

Y (t) =

∫ +∞

−∞
L(τ)X(t− τ)dτ.

One of the problems arising in the theory of linear systems is to estimate the function L from observations of
responses of the system to certain input signals.

Consider a real-valued Gaussian zero mean stochastic process XN = (XN,t(u), u ∈ R), that can be presented
as

XN (u) = Xt,N (u) =

N∑
k=1

ξkφk(t− u), (2)

where a fixed value t > 0, the system of functions {φk(t), k = 1,∞} is an orthonormal basis (ONB) in L2(R) and
random variables ξk, k ≥ 1, are independent with Eξk = 0, Eξkξl = δkl, where δkl is a Kronecker symbol.

Let us denote

ak =

∫ +∞

0

L(τ)φk(τ)dτ. (3)

If the system (1) is perturbed by the stochastic process XN , then for the output process we obtain
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YN (t) =

∫ +∞

0

L(τ)XN (t− τ)dτ

=

N∑
k=1

ξk

∫ +∞

0

L(τ)φk(τ)dτ =

N∑
k=1

ξkak. (4)

Consider the sequence of independent copies {XN,i(u), i = 1, ..., n} of the Gaussian process (2), that perturb
the system (1). That is,

XN,i(u) =

N∑
k=1

ξk,iφk(t− u), (5)

where ξk,i are independent normal distributed random variables, Eξk,i = 0 and Eξk,iξl,j = δklδij , k, l =
1, N, i, j = 1, n.

By {YN,i(t), i = 1, ..., n} denote the reactions of the system on input signals {XN,i(u)}.
An estimator for impulse function L at the point τ, τ > 0, is defined by

L̂N,n(τ) =
1

n

n∑
i=1

YN,i(τ)XN,i(t− τ), τ > 0. (6)

Since L ∈ L2(R), then the following remarks hold true.

Remark 2.1. The integral in (1) is considered as the mean-square Riemann integral.
The integral in (1) exists if and only if there exists the Riemann integral (see [14], p. 278)∫ ∞

0

∫ ∞

0

L(τ)KXN (s, τ)L(s)dsdτ. (7)

Since the covariance function of the process XN is

KXN
(s, τ) =

N∑
k=1

φk(t− s)φk(t− τ)

and {φk(t), k ≥ 1} is an orthonormal basis in L2(R) and L ∈ L2(R), then the integral (7) exists. Therefore, there
exists also the integral in (1).

Remark 2.2. The process XN,i(t− τ) in (6) depends only on τ and doesn’t depend on t. It follows from the
definition of the process in (5).

Lemma 2.1
The following relations hold true:

EL̂N,n(τ) =

N∑
k=1

φk(τ)ak, τ > 0, (8)

and

L(τ)− EL̂N,n(τ) =

∞∑
k=N+1

φk(τ)ak, τ > 0. (9)
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Proof
The joint covariance function the processes XN,i and YN,i equals

E (YN,i(τ)XN,i(t− τ)) = E
N∑

k=1

N∑
l=1

φk(τ)alξk,iξl,i

=

N∑
k=1

φk(τ)ak. (10)

From the equality above it follows that

EL̂N,n(τ) =
1

n

n∑
i=1

E (YN,i(τ)XN,i(t− τ)) =

N∑
k=1

φk(τ)ak.

Therefore, relation (8) is proved.
Since L ∈ L2(R), then the function L can be expanded into the series by orthonormal basis {φk(t), k ≥ 1}. We

obtain

L(τ) =

∞∑
k=1

φk(τ) ·
∫ +∞

0

L(τ)φk(τ)dτ =

∞∑
k=1

φk(τ) · ak, (11)

where ak is from (3).

Remark 2.3. The series (11) converges in the mean square sense.

Equalities (11) and (8) imply that

L(τ)− EL̂N,n(τ) =

∞∑
k=N+1

φk(τ) · ak, τ > 0.

We prove now the following auxiliary Lemma.

Lemma 2.2
The joint moments of L̂T,N is equal to

EL̂N,n(τ)L̂N,n(θ) =
1

n

N∑
k=1

N∑
l=1

(
nakalφk(τ)φl(θ) + a2kφl(τ)φl(θ)

+ akalφl(τ)φk(θ)) , (12)

where the coefficients ak are defined in (3).

Proof
By definition of estimator L̂T,N (6) and the values of the processes XN,i from (5) and YN,i from (4) we have

EL̂N,n(τ)L̂N,n(θ) =
1

n2

n∑
i=1

n∑
j=1

EYN,i(τ)XN,i(t− τ)YN,j(θ)XN,j(t− θ)

=
1

n2

n∑
i=1

n∑
j=1

N∑
k,l,u,v=1

akauφl(τ)φv(θ)Eξk,iξl,iξu,jξv,j (13)
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To prove the assertion it’s enough to find Eξk,iξl,iξu,jξv,j . Using the Isserlis?formula for the centered Gaussian
random variables [7] we obtain:

Eξk,iξl,iξu,jξv,j = Eξk,iξl,iEξu,jξv,j
+ Eξk,iξu,jEξl,iξv,j
+ Eξk,iξv,jEξl,iξu,j . (14)

By the definition of the processes XN,i and YN,i, we have

Eξk,iξl,i = δkl, Eξu,jξv,j = δuv,

Eξk,iξu,j = δkuδij , Eξl,iξv,j = δlvδij ,

Eξk,iξv,j = δkvδij , Eξl,iξu,j = δluδij ,

(12) will be completely proved if the equalities above and (14) will be substituted in (13).

The next Corollary follows from Lemma 2.2.

Corollary 2.1
The variance of the estimator L̂N,n is equal to

V arL̂N,n(τ) = EL̂2
N,n(τ)− (EL̂N,n(τ))

2

=
1

n

N∑
l=1

N∑
k=1

(
a2kφ

2
l (τ) + akalφk(τ)φl(τ)

)
. (15)

V ar(L̂N,n(τ)− L̂N,n(θ)) = V arL̂N,n(τ) + V arL̂N,n(θ)− 2cov(L̂N,n(τ), L̂N,n(θ)) (16)

Lemma 2.3
Suppose that the Lipschitz condition with a rate α ∈ (0, 1] for the functions φk(t) holds on a segment [0, A]. It
means that there exist constants ck,φ such that

|φk(t)− φk(s)| ≤ ck,φ|t− s|α for all t, s ∈ [0, A] and k ≥ 1. (17)

In this case

V ar(L̂N,n(τ)− L̂N,n(θ)) ≤ C(N,n)|τ − θ|α, α ∈ (0, 1], τ, θ ∈ [0, A],

where

C(N,n) =
1

n

N∑
k=1

N∑
l=1

(
a2k(|φl(τ)|+ |φl(θ)|)cl,φ + akal(|φl(τ)|ck,φ + |φk(θ)|cl,φ)

)
(18)

Proof
From relations (8) and (12) it follows that

cov(L̂N,n(τ), L̂N,n(θ)) = EL̂N,n(τ)L̂N,n(θ)− EL̂N,n(τ)EL̂N,n(θ)

=
1

n

N∑
k=1

N∑
l=1

(
a2kφl(τ)φl(θ) + akalφl(τ)φk(θ)

)
, (19)

Therefore, by (15), (16) and (19), making elementary reduction we obtain

V ar(L̂N,T (τ)− L̂N,T (θ)) =
1

n

N∑
k,l=1

(
a2k (φl(τ)(φl(τ)− φl(θ)) + φl(θ)(φl(θ)− φl(τ)))

+ akal (φl(τ)(φk(τ)− φk(θ)) + φk(θ)(φl(θ)− φl(τ)))) (20)

The Lemma will be fully proved if in (20) the Lipschitz condition (17) for the function φk(τ), τ ∈ [0, A], will be
used.
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3. The use of Hermite polynomials for the presentation of the estimator

Consider the Hermite polynomials of the degree n ≥ 1:

Hn(x) = (−1)ne
x2
2

dn

dxn
(e−

x2

2 ).

It is shown in the book [13] that

dkHn(x)

dxk
= n(n− 1)(n− 2) · · · (n− k + 1)Hn−k(x).

In particular case k = 1 we have
dHn(x)

dx
= nHn−1(x). (21)

It is known that the system of the Hermite functions

gn(x) =
e−

x2

4 Hn(x)√
n!(2π)1/4

=
(−1)ne

x2

4

√
n!(2π)1/4

dn

dxn
(e−

x2

2 ), n ≥ 0, (22)

is an orthonormal basis (ONB) in L2(R) (see, for example, [13]).
Suppose now that the input signal processes of the system (1) are zero mean Gaussian stochastic processes that

are formed by the Hermite ONB (22). This means that the processes XN,i(u), i = 1, n, are represented in such
way:

XN,i(u) =

N∑
k=1

ξk,igk(t− u) for t, u ∈ R. (23)

It follows from (1) that the output processes YN,i(t), t ∈ R, equal

YN,i(t) =

∫ +∞

0

L(τ)XN,i(t− τ)dτ, for i = 1, n. (24)

The estimator for impulse function L in the point τ, τ > 0, is defined by (6).
Consider the following conditions:
Condition A. There exists an integral ∫ +∞

−∞
ZL(z)dz < ∞,

where the function ZL(z) is equal to

ZL(z) =
d3L(z)

dz3
− 3z

2

d2L(z)

dz2
+

3z2 − 6

4

dL(z)

dz
+

6z − z3

8
L(z). (25)

Denote

IL =

∣∣∣∣∫ +∞

−∞
ZL(z)dz

∣∣∣∣ .
Condition B. The function L(z) increases on z no faster than ez

2/4. It means that there exists a constant c ∈ (0, 1
4 )

that
L(z)e−cz2

→ 0, z → +∞.

The following Lemma gives an estimate for |L(τ)− EL̂N,n(τ)| and for the variance V ar(L̂T,N (τ)).
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Lemma 3.1
Assume that the conditions A and B are satisfied. Then

|L(τ)− EL̂N,n(τ)| ≤
2K2

3
√
N + 1

IL, (26)

V arẐN,n(τ) <
K4I2L
n

(
N

N2 − 1

2N2
+

(2
√
N − 2)2

N

)
, (27)

where the number K = 1, 086435.

Proof
From (9) it follows that

L(τ)− EL̂N,n(τ) =

∞∑
k=N+1

gk(τ)ak (28)

Calculate the required values ak by using equality (21) and partial integration:

ak =

∫ +∞

−∞
L(z)gk(z)dz

=

∫ +∞

−∞

L(z)e−
z2

4 Hk(z)√
k!(2π)1/4

dz

=
1√
k + 1

∫ +∞

−∞

L(z)e−
z2

4√
(k + 1)!(2π)1/4

dHk+1(z)

dz
dz

=
1√
k + 1

L(z)e−
z2

4 Hk+1(z)√
(k + 1)!(2π)1/4

∣∣+∞
−∞ −

∫ +∞

−∞

d
(
L(z)e−

z2

4

)
dz

Hk+1(z)√
(k + 1)!(2π)1/4

dz


Since Hk(z)e

−z2/4 tends to zero as z → ±∞, and by condition A the function L(z) increases on z no faster than
ez

2/4, then

ak = − 1√
k + 1

∫ +∞

−∞

d
(
L(z)e−

z2

4

)
dz

Hk+1(z)√
(k + 1)!(2π)1/4

dz.

Let’s apply the integration by parts two times more. We obtain

ak = − 1√
(k + 1)(k + 2)

∫ +∞

−∞

d
(
L(z)e−

z2

4

)
dz

dHk+2(z)

dz

1√
(k + 2)!(2π)1/4

dz

= − 1√
(k + 1)(k + 2)

d
(
L(z)e−

z2

4

)
dz

Hk+2(z)√
(k + 2)!(2π)1/4

|+∞
−∞

+
1√

(k + 1)(k + 2)

∫ +∞

−∞

d2
(
L(z)e−

z2

4

)
dz2

Hk+2(z)√
(k + 2)!(2π)1/4

dz

=
1√

(k + 1)(k + 2)

∫ +∞

−∞

d2
(
L(z)e−

z2

4

)
dz2

Hk+2(z)√
(k + 2)!(2π)1/4

dz

=
1√

(k + 1)(k + 2)(k + 3)

∫ +∞

−∞

d3
(
L(z)e−

z2

4

)
dz3

Hk+3(z)√
(k + 3)!(2π)1/4

dz

Stat., Optim. Inf. Comput. Vol. 4, September 2016



YU. V. KOZACHENKO AND I.V. ROZORA 221

=
1√

(k + 1)(k + 2)(k + 3)

∫ +∞

−∞
ZL(z)gk+3(z)dz, (29)

where gk+3(z) is the Hermite function of and the function ZL(z) is from (25).
By using (28) and (29) we obtain that

L(τ)− EL̂N,n(τ) =

∞∑
k=N+1

gk(τ)ak

=

∞∑
k=N+1

gk(τ)√
(k + 1)(k + 2)(k + 3)

∫ +∞

−∞
ZL(z)gk+3(z)dz (30)

From the Cramér inequality [13] it follows that for all z ∈ R |gk(z)| < K, where K = 1, 086435. Therefore, the
coefficients ak can be estimated as follows

|ak| ≤
K√

(k + 1)(k + 2)(k + 3)

∣∣∣∣∫ +∞

−∞
ZL(z)dz

∣∣∣∣ . (31)

From relations (30) and (31) it follows that

|L(τ)− EL̂N,n(τ)| ≤ K2IL

∞∑
k=N+1

1√
(k + 1)(k + 2)(k + 3)

(32)

Evaluate now the sum in (32).

∞∑
k=N+1

1√
(k + 1)(k + 2)(k + 3)

<

∞∑
k=N+1

1√
(k + 1)3

=

∞∑
k=N+1

∫ k+1

k

1√
(k + 1)3

dx <

∞∑
k=N+1

∫ k+1

k

1

x3/2
dx

=

∫ ∞

N+1

1

x3/2
dx =

2

3
√
N + 1

. (33)

Hence, inequalities (32) and (33) imply (26).
Find the estimate for the variance of the process ẐN,n(τ). From (15) follows that

V arẐN,n(τ) =
1

n

N∑
l=1

N∑
k=1

(
a2kg

2
l (τ) + akalgk(τ)gl(τ)

)
.

Since |gk(τ)| < K and using inequality (31) for ak, we obtain that

V arẐN,n(τ) <
K4I2L
n

N∑
l=1

N∑
k=1

(
1

(k + 1)(k + 2)(k + 3)

+
1√

(k + 1)(k + 2)(k + 3)
√

(l + 1)(l + 2)(l + 3)

)

=
K4I2L
n

N

N∑
k=1

1

(k + 1)(k + 2)(k + 3)
+

(
N∑

k=1

1√
(k + 1)(k + 2)(k + 3)

)2
 . (34)
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Similarly to (33) the sums above can be evaluated in the following way

N∑
k=1

1

(k + 1)(k + 2)(k + 3)
<

N∑
k=1

1

(k + 1)3

=

N−1∑
k=1

∫ k+1

k

1

(k + 1)3
dx <

N−1∑
k=1

∫ k+1

k

1

x3
dx

=

∫ N

1

1

x3
dx =

N2 − 1

2N2
; (35)

N∑
k=1

1√
(k + 1)(k + 2)(k + 3)

<

∫ N

1

1

x3/2
dx =

2
√
N − 2√
N

. (36)

If substitute (35), (36) into (34), then we obtain (27).

The following Lemma gives an estimate for the difference of the Hermite functions |gk(x)− gk(y)| as x, y ∈
[0, A].

Lemma 3.2
Let gk(x), k ≥ 1, be the Hermite functions from (22). Assume that the conditions of Lemma 3.1 are satisfied. Then
for any x, y ∈ [0, A], where A > 0 is some constant, the inequality

|gk(x)− gk(y)| ≤ ck,g|x− y|α, α ∈ (0, 1], (37)

holds true, where the value ck,g is equal to

ck,g =
1√

k!(2π)1/4

(
2

k−α
2 +1e

A2

4

√
π

Γ

(
k + α+ 1

2

)
+

2
k
2−αAα

√
π

Γ(
k + 1

2
)e

A2

2

)

=
2

k−α
2 − 1

4 e
A2

2

√
k!π3/4

(
2Γ

(
k + α+ 1

2

)
+ 2−

α
2 AαΓ(

k + 1

2
)

)
, (38)

where Γ(r) =
∫∞
0

tr−1e−tdt is an Euler gamma function.

Proof
Without limiting the generality assume that x > y ≥ 0. By the definition of the Hermite function:

|gk(x)− gk(y)| =

∣∣∣∣∣ e
−x2

4

√
k!(2π)1/4

Hk(x)−
e

−y2

4

√
k!(2π)1/4

Hk(y)

∣∣∣∣∣
=

1√
k!(2π)1/4

∣∣∣∣e x2

4
dk

dxk
(e−

x2

2 )± e
x2

4
dk

dyk
(e−

y2

2 )− e
y2

4
dk

dyk
(e−

y2

2 )

∣∣∣∣
≤ 1√

k!(2π)1/4

(
e

x2

4

∣∣∣∣ dkdxk
(e−

x2

2 )− dk

dyk
(e−

y2

2 )

∣∣∣∣+ | d
k

dyk
(e−

y2

2 )|
∣∣∣e x2

4 − e
y2

4

∣∣∣)
=

1√
k!(2π)1/4

(I1 + I2) . (39)

To estimate the values I1 and I2 let’s use the next formula

e−
x2

2 =
1√
2π

∫ +∞

−∞
eiux−

u2

2 du, (40)
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that is, actually, a characteristic function for a standard Gaussian random variable. By (40) we have

dke−
x2

2

dxk
=

1√
2π

∫ +∞

−∞
(iu)keiux−

u2

2 du. (41)

From (41) follows that the the quantity I1 in the case of x, y ∈ [0, A] is bounded in a such way:

I1 ≤ e
A2

4

∣∣∣∣ 1√
2π

∫ +∞

−∞
(iu)keiux−

u2

2 du− 1√
2π

∫ +∞

−∞
(iu)keiuy−

u2

2 du

∣∣∣∣
≤ e

A2

4

√
2π

∫ +∞

−∞
|u|k|eiux − eiuy|e−u2

2 du.

Since
|eiux − eiuy| = 2| sin(u

2
(x− y))|,

then

I1 ≤ 2e
A2

4

√
2π

∫ +∞

−∞
|u|k| sin(u

2
(x− y))|e−u2

2 du. (42)

For u ≥ 0 and v > 0 the inequality holds true (see, for example, [18])∣∣∣∣sin u

v

∣∣∣∣ ≤ uα

vα
, α ∈ (0, 1]. (43)

If (43) will be used for the value (42), then we obtain that

I1 ≤ 2e
A2

4

2α
√
2π

|x− y|α
∫ +∞

−∞
|u|k+αe−

u2

2 du

=
2

k−α
2 +1e

A2

4

√
π

Γ

(
k + α+ 1

2

)
|x− y|α , α ∈ (0, 1]. (44)

Remind that Γ(r) =
∫∞
0

tr−1e−tdt is an Euler gamma function.
From (41) follows that

|d
ke−

y2

2

dyk
| ≤ 1√

2π

∫ +∞

−∞
|u|ke−u2

2 du

=
2

k
2

√
π
Γ(

k + 1

2
). (45)

Estimate now the value I2 from (39). By (45) we have

I2 = |d
ke−

y2

2

dyk
|
∣∣∣e x2

4 − e
y2

4

∣∣∣
≤ 2

k
2

√
π
Γ(

k + 1

2
)e

x2

2 |1− e−
x2−y2

4 |. (46)

Since for t > 0

1− e−t ≤ tα, α ∈ (0, 1],
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then for x > y ≥ 0, x, y ∈ [0, A], we obtain

I2 ≤ 2
k
2

√
π
Γ(

k + 1

2
)e

x2

2

∣∣∣∣x2 − y2

4

∣∣∣∣α
≤ 2

k
2−αAα

√
π

Γ(
k + 1

2
)e

A2

2 |x− y|α. (47)

If we substitute (44) and (47) into (39), we will have that (37) completely proved.

Corollary 3.1
From conditions of Lemma 3.1 it follows that

V ar(ẐN,n(τ)− ẐN,n(θ)) ≤ Cg(N,n)|τ − θ|α, α ∈ (0, 1], τ, θ ∈ [0, A], (48)

where

Cg(N,n) =
K3I2L
n

(
2
N2 − 1

2N2

N∑
l=1

cl,g +

N∑
k=1

ck,g√
(k + 1)(k + 2)(k + 3)

)
. (49)

Proof
The assertion (48) follows from Lemmas 2.3 and 3.2.

4. Square Gaussian random variables and processes

In this section the definition and some properties of square Gaussian random variables and processes are presented.
Let (Ω, L, P ) be a probability space and let (T, ρ) be a compact metric space with metric ρ.

Definition 4.1. [7] Let Ξ = {ξt, t ∈ T} be a family of joint Gaussian random variables for which Eξt = 0 (e.g.,
ξt, t ∈ T, is a Gaussian stochastic process).

The space SGΞ(Ω) is the space of square Gaussian random variables if any element η ∈ SGΞ(Ω) can be
presented as

η = ξ̄⊤Aξ̄ − Eξ̄⊤Aξ̄, (50)

where ξ̄⊤ = (ξ1, ξ2, . . . , ξn), ξk ∈ Ξ, k = 1, . . . , n, A is a real-valued matrix or the element η ∈ SGΞ(Ω) is the
square mean limit of the sequence (50)

η = l.i.m.n→∞(ξ̄⊤n Aξ̄n − Eξ̄⊤n Aξ̄n).

Definition 4.2. [7] A stochastic process ξ(t) = {ξ(t), t ∈ T} is square Gaussian if for any t ∈ T a random variable
ξ(t) belongs to the space SGΞ(Ω).

There are shown in the book by Buldygin and Kozachenko [7] that

• SGΞ(Ω) is a Banach space with respect to the norm ∥ζ∥ =
√

Eζ2;
• SGΞ(Ω) is a subspace of the Orlicz space LU (Ω) generated by the function

U(x) = exp |x| − 1;

• the norm ∥ζ∥LU (Ω) on SGΞ(Ω) is equivalent to the norm ∥ζ∥.

Example 4.1. Consider a family of Gaussian centered stochastic processes ξ1(t), ξ2(t), . . . , ξn(t), t ∈ T. Let the
matrix A(t) be symmetric. Then

X(t) = ξ̄⊤(t)A(t)ξ̄(t)− Eξ̄⊤(t)A(t)ξ̄(t),

where ξ̄⊤(t) = (ξ1(t), ξ2(t), . . . , ξn(t)), is a square Gaussian stochastic process.

For more information about properties of square Gaussian random processes see [16], [17], [18], [7], [20].
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4.1. An estimate for the C(T ) norm of a square Gaussian stochastic process

Denote by N(u) the metric massiveness, that is the least number of closed balls of radius u, covering the set T with
respect to the metric ρ. Let ξ(t) = {ξ(t), t ∈ T} be a square Gaussian stochastic process. Assume that there exists
a monotonically increasing continuous function σ(h), h > 0, such that σ(h) → 0 as h → 0, and the inequality

sup
ρ(t,s)≤h

(V ar(ξ(t)− ξ(s)))
1
2 ≤ σ(h)

holds true.
Define now the following values:

ε0 = inf
t∈T

sup
s∈T

ρ(t, s), t0 = σ(ε0),

γ0 = sup
t∈T

(V ar ξ(t))1/2,

Let C be a maximum of t0 and γ0, C = max{t0, γ0}. The next theorem gives an estimate for the large deviation
probability of square Gaussian process in the norm of continuous function. The proof of the Theorem can be found
in the article [19].

Theorem 4.1
Let ξ(t) = {ξ(t), t ∈ T} be a separable square Gaussian stochastic process. Suppose that there exists an increasing
function r(u) ≥ 0, u ≥ 1, with the properties: r(u) → ∞ and u → ∞ and let the function r(exp{t}) be convex.
Assume that the following integral ∫ t0

0

r
(
N
(
σ(−1) (u)

))
du

is convergent. Then for all x > 0

P

{
sup
t∈T

|ξ (t)| > x

}
≤ 2 inf

0<p<1

{
r(−1)

(
1

t0p

∫ t0p

0
r
(
N
(
σ(−1)(ν)

))
dν
)

×
(
1 +

√
2x(1−p)

C

) 1
2

exp
{
−x(1−p)√

2γ0

}}
. (51)

4.2. An estimate for the Lp(T ) norm of a square Gaussian stochastic process

The following theorem can be found in article [21].

Theorem 4.2
[21] Let {T,A, µ} be a measurable space, where T is a parametric set, and let ξ = {ξ(t), t ∈ T} be a measurable
square Gaussian stochastic process. Assume that the Lebesgue integral

∫
T(Eξ

2(t))
p
2 dµ(t) is well defined for p ≥ 1.

Then the integral
∫

T(Eξ
2(t))pdµ(t) exists with probability 1, and

P

{∫
T
|ξ(t)|pdµ(t) > x

}
≤ 2

√√√√1 +
x1/p

√
2

C
1
p
p

exp

{
− x1/p

√
2C

1
p
p

}
, (52)

for all x ≥ ( p√
2
+
√

(p2 + 1)p)pCp, where Cp =
∫

T(Eξ
2(t))

p
2 dµ(t).

5. On the rate of convergence of the estimator of impulse response function

This section is devoted to the investigation of the rate of convergence of estimators of unknown impulse response
function in the space of continuous functions and in the space L2([0, A]).
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Suppose that XN,i = (XN,i(u), u ∈ R), i = 1, n, are real-valued independent centered Gaussian processes from
(23). Assume that they perturb a time-invariant casual continuous linear system (1).

Consider estimator (6) for the impulse response function L. The output process Y (t) is defined by (24).
The next Lemma is clear.

Lemma 5.1
Stochastic process ẐN,n(τ) = L̂N,n(τ)− EL̂N,n(τ), τ > 0, is a square Gaussian one.

Consider a difference of the estimator L̂N,n(τ) and the impulse function L(τ)

L(τ)− L̂N,n(τ), τ > 0.

At first we study the distribution of supremum for this difference on the domain [0, A], where A is a fixed positive
number,

P{ sup
τ∈[0,A]

|L̂N,n(τ)− L(τ)| ≥ ε}, ε > 0.

Denote

l∗N,n =
2K2

3
√
N + 1

IL.

Then from (26) it follows that
|EL̂N,n(τ)− L(τ)| ≤ l∗N,n, τ ∈ [0, A].

Put

γ0(N,n) = γ0 =
K4I2L
n

(
N

N2 − 1

2N2
+

(2
√
N − 2)2

N

)
. (53)

From (34) we have that
sup

τ∈[0,A]

V arẐN,n(τ) ≤ γ0.

Let
Mα = 22−

1
2α e1/αγ

− 1
2−

1
α

0 α1/α−1/2.

The following theorem gives the rate of convergence of the impulse function estimator in the space of continuous
function.

Theorem 5.1
Suppose that the conditions A , B are fulfilled. Then the inequality

P

{
sup

τ∈[0,A]

|L(τ)− L̂N,n(τ)| > ε

}
≤ Mα(ε− l∗N,n)

1
α

×
(
Cα+

√
2α(ε− l∗N,n)− 2γ0

) 1
2

exp

{
−
ε− l∗N,n√

2γ0
+

1

α

}
(54)

holds true for

ε >

√
2γ0
α

+ l∗N,n, α ∈ (0, 1].

Proof
The difference L(τ)− L̂N,n(τ) can be presented as

L(τ)− L̂N,n(τ) = (L(τ)− EL̂N,n(τ))− (L̂N,n(τ)− EL̂N,n(τ)) = lN,n(τ)− ẐN,n(τ).

Then
L(τ)− L̂N,n(τ) ≥ ε ⇔ ẐT (τ) ≤ −(ε− lN,n(τ)),
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L(τ)− L̂N,n(τ) ≤ −ε ⇔ ẐT (τ) ≥ +ε+ lN,n(τ).

Hence, for ε > l∗N,n we obtain

{|L(τ)− L̂N,n(τ)| ≥ ε} ⊂ {|ẐT (τ)| ≥ ε− l∗N,n}

and
P{ sup

τ∈[0,A]

|L(τ)− L̂N,n(τ)| ≥ ε} ≤ P{ sup
τ∈[0,A]

|ẐT (τ)| ≥ ε− l∗N,n}. (55)

In the frame of proving put
x = ε− l∗N,n.

Since from Lemma 5.1 follows that ẐT (τ) is a square Gaussian process then Theorem 4.1 can be used. It follows
from (48) that as a function σ(h) the function σ(h) = Cg(N,n) · hα could be considered, where Cg(N,n) is defined

in (49). In this case the inverse function equals σ(−1)(h) =
(

h
Cg(N,n)

)1/α
. The metric massiveness of the segment

[0, A] with respect to the metric ρ(t, s) = |t− s| can be majorized as

N(u) ≤ A

2u
+ 1.

Therefore,

N(σ(−1)(u)) ≤
(

A

2σ(−1)(u)
+ 1

)
=

(
A

2

(Cg(N,n)

u

)1/α
+ 1

)
.

Consider the function r(u) = uβ − 1, where β ∈ (0, α). It’s clear that the conditions of Theorem 4.1 for the

function r(u) are satisfied. Since 0 < p < 1 and t0 = Cg(N,n)

(
A
2

)α

then A
2

(
Cg(N,n)

pt0

)1/α
> 1. Hence, it follows

from the assumption 0 < u < t0p that the inequality

N(σ(−1)(u)) ≤ A
(Cg(N,n)

u

)1/α
holds. Since the inverse function of r(u) is r(−1)(u) = (u+ 1)1/β , then

r(−1)

(
1

t0p

∫ t0p

0

r
(
N
(
σ(−1)(ν)

))
dν

)
=

( 1

t0p

∫ t0p

0

[(A
2

(Cg(N,n)

u

)1/α
+ 1
)β]

du
)1/β

≤
( 1

t0p

∫ t0p

0

[
A
(Cg(N,n)

u

)1/α]β
du
)1/β

= 2
( α

α− β

)1/β
p−1/α.

Find the minimum with respect to β of the right-hand side of the relationship above

inf
β∈(0,α)

( α

α− β

)1/β
= lim

β→0

( 1

1− β/α

)1/β
= e1/α.

From inequality (51) and equity above follows that for x > 0

P

{
sup

τ∈[0,A]

|ẐT (τ)| > x

}
≤

≤ 4e1/αC− 1
2 inf
0<p<1


√

C +
√
2x(1− p)

p1/α
exp

{
−x(1− p)√

2γ0

} . (56)
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The minimum point of right-hand side of (56) is

pmin =

√
2γ0
αx

.

Since by the condition of Theorem p ∈ (0, 1), then for

x >

√
2γ0
α

the value pmin can be substituted in (56) and the following inequality is obtained

P

{
sup

τ∈[0,A]

|ẐT (τ)| > x

}
≤

≤ Mαx
1
α

√
Cα+

√
2αx− 2γ0 exp

{
− x√

2γ0
+

1

α

}
, (57)

where the constant Mα equals
Mα = 22−

1
2α e1/αγ

− 1
2−

1
α

0 α1/α−1/2.

Taking into account that x = ε− l∗N,n, the assertion of Theorem follows from (57).

Theorem 4.2 can be used to obtain the following estimate for the cross-correlogram in the space Lp([0, A]),
where the constant A > 0 is fixed.

Consider a parametric set T = [0, A] and let {[0, A],A, µ} be a metric space with Euclidean measure µ.

Theorem 5.2
Assume that the conditions A and B are satisfied. Then for

ε ≥
(
(
p√
2
+

√
(
p

2
+ 1)p)A

1
p γ

1
2
0 +Al∗N,n

)p

the estimate

P

{∫ A

0

|L(τ)− L̂N,n(τ)|pdτ > ε

}
≤ 2

√√√√1 +
(ε

1
p −Al∗N,n)

√
2

A
1
p γ

1
2
0

exp

{
−
ε

1
p −Al∗N,n
√
2A

1
p γ

1
2
0

}
(58)

holds true.

Proof
We show first that the result of Theorem 4.2 can be applied to the process ẐN,n(τ), τ > 0. Really, by Lemma 5.1
ẐN,n(τ) is a square Gaussian stochastic process. Prove that the Lebesgue integral∫ A

0

(EẐ2
N,n(τ))

p
2 dµ(τ)

is correctly defined. From inequality (27) follows that∫ A

0

(EẐ2
N,n(τ))

p
2 dµ(τ) =

∫ A

0

(V arẐN,n(τ))
p
2 dτ

< A

(
K4I2L
n

(
N

N2 − 1

2N2
+

(2
√
N − 2)2

N

)) p
2

.
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Therefore, inequality (52) for the process ẐN,n(τ) as x ≥ ( p√
2
+
√

(p2 + 1)p)pCp can be rewritten as

P

{∫ A

0

|ẐN,n(τ)|pdµ(τ) > x

}
≤ 2

√√√√1 +
x1/p

√
2

C
1
p
p

exp

{
− x1/p

√
2C

1
p
p

}
, (59)

where Cp =
∫ A

0
(EẐ2

N,n(τ))
p
2 dτ.

From the Minkowski inequality follows that(∫ A

0

|L(τ)− L̂N,n(τ)|pdµ(τ)

) 1
p

=

(∫ A

0

|L(τ)± EL̂N,n(τ)− L̂N,n(τ)|pdµ(τ)

) 1
p

≤

(∫ A

0

|L(τ)− EL̂N,n(τ)|pdµ(τ)

) 1
p

+

(∫ A

0

|EL̂N,n(τ)− L̂N,n(τ)|pdµ(τ)

) 1
p

≤ l∗N,n ·A+

(∫ A

0

|ẐN,n(τ)|pdµ(τ)

) 1
p

.

Since from the relationship above follows that{∫ A

0

|L(τ)− L̂N,n(τ)|pdµ(τ) > ε

}
=


(∫ A

0

|L(τ)− L̂N,n(τ)|pdµ(τ)

) 1
p

> ε
1
p


⊂

Al∗N,n +

(∫ A

0

|ẐN,n(τ)|pdµ(τ)

) 1
p

> ε
1
p


=

{∫ A

0

|ẐN,n(τ)|pdµ(τ) >
(
ε

1
p −Al∗N,n

)p}
,

then substituting x =
(
ε

1
p −Al∗N,n

)p
in (59), we obtain

P

{∫ A

0

|L(τ)− L̂N,n(τ)|pdµ(τ) > ε

}
≤ 2

√√√√1 +
(ε

1
p −Al∗N,n)

√
2

C
1
p
p

exp

{
−
ε

1
p −Al∗N,n
√
2C

1
p
p

}
. (60)

Since (34) implies supτ∈[0,A] V arẐN,n(τ) ≤ γ0, where γ0 is from (53), then

Cp =

∫ A

0

(EẐ2
N,n(τ))

p
2 dτ ≤ Aγ

p
2
0 .

To complete the proof it’s enough to substitute the above value Cp in (60). Hence,

P

{∫ A

0

|L(τ)− L̂N,n(τ)|pdµ(τ) > ε

}
≤ 2

√√√√1 +
(ε

1
p −Al∗N,n)

√
2

A
1
p γ

1
2
0

exp

{
−
ε

1
p −Al∗N,n
√
2A

1
p γ

1
2
0

}
.

Stat., Optim. Inf. Comput. Vol. 4, September 2016



230 A CRITERION FOR TESTING HYPOTHESIS ABOUT IMPULSE RESPONSE FUNCTION

6. Testing hypotheses on the impulse response function

Using Theorem 5.1 and Theorem 5.2 it is possible to test hypothesis on the shape of impulse response function.
Let the null hypothesis H0 state that an impulse response function is L(τ), τ ∈ [0, A], and the alternative Ha

implies the opposite statement.
Denote

g1(ε) = Mα(ε− l∗N,n)
1
α

(
Cα+

√
2α(ε− l∗N,n)− 2γ0

) 1
2

exp

{
−
ε− l∗N,n√

2γ0
+

1

α

}
.

From Theorem 5.1 follows that if ε > zN,n =
√
2γ0

α + l∗N,n, α ∈ (0, 1], then

P

{
sup

τ∈[0,A]

|L(τ)− L̂N,n(τ)| > ε

}
≤ g1(ε).

Let ε1,δ be a solution of the equation

g1(ε1,δ) = δ, 0 < δ < 1.

Put
ε∗1,δ = max{ε1,δ, zN,n}. (61)

It is obvious that g1(ε∗1,δ) ≤ δ and

P

{
sup

τ∈[0,A]

|L(τ)− L̂N,n(τ)| > ε∗1,δ

}
≤ δ.

From Theorem 5.1 it follows that to test the hypothesis H0, we can use the following criterion.
Criterion 1. For a given level of confidence 1− δ, δ ∈ (0, 1), the hypothesis H0 is rejected if

sup
τ∈[0,A]

|L(τ)− L̂N,n(τ)| > ε∗1,δ,

otherwise the hypothesis H0 is accepted, where ε∗1,δ is from (61).

Remark 6.1. The equation g1(ε1,δ) = δ, has a solution for any δ > 0 since the function g1(ε) decreases. We can
find solution of the equation using numerical methods.

Denote

g2(ε) = 2

√√√√1 +
(ε

1
p −Al∗N,n)

√
2

A
1
p γ

1
2
0

exp

{
−
ε

1
p −Al∗N,n
√
2A

1
p γ

1
2
0

}
.

From Theorem 5.2 follows that if

ε > tN,n(p) =

(
(
p√
2
+

√
(
p

2
+ 1)p)A

1
p γ

1
2
0 +Al∗N,n

)p

,

then

P

{∫ A

0

|L(τ)− L̂N,n(τ)|pdτ > ε

}
≤ g2(ε).

Let ε2,δ be a solution of the equation g2(ε2,δ) = δ, 0 < δ < 1. Put

ε∗2,δ = max{ε2,δ, tN,n(p)}. (62)
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It is clear that g2(ε∗2,δ) ≤ δ and

P

{
sup

τ∈[0,A]

|L(τ)− L̂N,n(τ)| > ε∗2,δ

}
≤ δ.

From Theorem 5.2 it follows that to test the hypothesis H0, we can use the following criterion.
Criterion 2. For a given level of confidence 1− δ, δ ∈ (0, 1), the hypothesis H0 is rejected if∫ A

0

|L(τ)− L̂N,n(τ)|pdτ > ε∗2,δ,

otherwise the hypothesis H0 is accepted, where ε∗2,δ is from (62).

7. Conclusions

In this paper we considere time-invariant continuous linear system in which the impulse response function was
estimated applying a new proposed method. The input signal process is supposed to be a zero mean Gaussian
stochastic process which is represented as a series with respect to an orthonormal basis in L2(R). A particular
case where the orthonormal basis is given by the Hermite functions is studied in details. Some characteristics of
the estimator of impulse function such as mathematical expectation, variance and variance of the increments are
described. We also investigated the convergence rate for the estimator of unknown impulse response function in the
space of continuous functions and in the space Lp([0, A]). For this reason the theory of square Gaussian random
variables and processes is applied, namely we use inequalities for the C(T ) and Lp(T ) norms of square Gaussian
stochastic process. It gives us an opportunity to construct two criteria of testing hypothesis on the shape of the
impulse response function.
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