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Abstract In this paper we propose a new mathematical model to describe the mechanisms of biological macromolecules
interactions. Our model consists of a discrete stationary random sequence given by a solution of difference stochastic
equation, characterized by a drift predictive component and by a diffusion term. The relative statistical estimations are
very simple and effective, promising to be a good tool for mathematical description of collective biological reactions. This
paper presents the mathematical model and its verification on simulated data set, obtained on the basis of the well-known
Stokes-Einstein model. In particular we considered several mix of particles of different diffusion coefficient, respectively:
D1 = 10µm2/sec and D2 = 100µm2/sec. The parameters evaluated by this new mathematical model on simulated data,
show good estimation accuracy, in comparison with the prior parameters used in the simulations. Furthermore, when
analyzing the data for mix of particles with different diffusion coefficient, the proposed model parameters V (regression)
and σ2 (square variance of stochastic component) have a good discriminative ability for the molar fraction determination.
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1. Introduction

Biological systems are intrinsically complex, due the huge number of interacting objects. In nanotechnology
and nanobiotechnology applications, an important role is played by dynamics of macromolecules or interaction
between them (proteins, metabolites, substrates,). In such wide view, mathematical models can be a useful tool for
investigating a large number of questions in metabolism, biochemistry, genetics and gene-environment interactions,
genotype-phenotype mapping and their use in medicine. Various complex systems like biochemical reactions are
driven by binding / unbiding dynamics of the single species concentrations, described by mathematical models
[18, 3, 7, 14].

Protein-ligand binding is a key biological process at molecular level. The identification and characterization of
small-molecule binding sites on therapeutically relevant proteins could have tremendous implications for target
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evaluation and rational drug design [4]. Simulated statistical data based on simple chemical kinetic hypotheses can
be used to validate the presence or absence of a binding in a set of molecules that makes up a complex system
[11]. In some natural conditions and normalization, it has the asymptotical behavior as a discrete Markov diffusion
[12]. In the simpler case of non-interacting species, the dynamic tracking of particles reduces to the study of
mixtures of molecules with different speed of Brownian motion, due to their different hydrodynamic radii and to
the corresponding different diffusion coefficients.

In the last two decades, the FCS technique has been developed, based on the laws of molecular diffusion,
formulated from Browns observations of random particle motion and used to study the movements and the
interactions of biomolecules at extremely dilute concentrations. FCS is a fluorescence based technique that can be
used to study a variety of sample types. The analysis of FCS data examines the minute intensity fluctuations caused
by spontaneous deviations from the mean at thermal equilibrium. These fluctuations can result from variations in
local concentrations owing to molecular mobility or from characteristic intermolecular or intramolecular reactions
of fluorescently labeled biomolecules present at low concentrations.

The analytical potential of FCS for the life sciences has been shown in numerous applications since the original
work of Rigler and coworkers [1, 17] FCS was successfully used to study association and dissociation of nucleic
acids [10] and proteins [15]. Moreover, these features allowed for real-time investigation of enzyme kinetics [9].

FCS is a method worth considering for a variety of biological and physicochemical questions. FCS has great
advantages for quantitatively analyzing biomolecular mobilities and interactions in situ. Precise values of physical
parameters, such as diffusion coefficients, are determined relatively easily and quickly. Essential information about
processes governing molecular dynamics can, thus, be derived from the temporal pattern by which fluorescence
fluctuations arise and decay. Although FCS curves are easy to record, interpreting them may not be straightforward.
Many free parameters in the fitting procedure will return seemingly good fit results, even if the values for these
parameters fail to reflect the sample properties or have no physical meaning at all. Any changes in molecular shape
or size, on binding or cleavage, that affect the hydrodynamic radius of a particle, are also reflected in the diffusion
coefficient and, thus, in the average diffusion time through the observation volume.

Interpretation of FCS data generally requires fitting the curves to a mathematical model. The type of applicable
model and the parameters that can be extracted depends on the system under investigation. The diffusion coefficient
D is derived from the characteristic decay time of the correlation function [19].

Usually, in order to estimate the diffusion coefficient and other parameters of interest, the autocorrelation
function of the data is fitted typically using a nonlinear least squares algorithm. In this paper we introduce a new
computational model and the corresponding statistical parameters characterizing the mobility of particles, in order
to describe the dynamic of binding among different species. The model is based on difference stochastic equation
with predictable linear component, and with an additional stochastic component, determined by a stationary, in
the wide sense, random sequence. The statistical analysis of real measurements is particularly important when the
observation of physical data (biological, chemical etc.) has often no justification in the form of simple physical
theory.

In numerous complex systems like biological processes with equilibrium, the dynamics of concentration, or
frequencies of some predefined attribute presence, can be described by the mathematical model of binary discrete
Markov diffusions, based on statistical data of elementary hypotheses validation about the presence or absence of
the predefined attribute in the set of elements that make up a complex system [11].

In our consideration, we proceed from the following principles of statistical analysis of physical data:

• all the elements that make up the system can gain or lose said attribute over time, that is the relative frequency
of attribute, a discrete dynamic variable;

• the basic objects of our study are discrete Markov diffusions, characterized by relative frequencies of
presence or absence of the attribute in a sample of fixed volume at each time instant;

• it is assumed that the average frequency of the attribute at a fixed time depends only on the average frequency
of the attribute relative to the next previous time. Such relationship is called persistent regression and it is
used as a fundamental condition for the subsequent analysis of the model.

The present work introduces a new computational method and the corresponding statistical estimators
of parameters characterizing the dynamics of frequency (concentration). We proceed from the following
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considerations: two different models, the physical (Stokes-Einstein) diffusion process and the mathematical one
(stationary discrete Markov diffusion), describing the same physical process.

2. Mathematical model

2.1. Motivation of the model

The FCS method of macromolecules dynamic monitoring, registres the number of fluctuations of fluorescently
labeled molecules in a confocal observation volume. The basic object of analysis is the fluctuation αt of the
fluorescence intensity, that is the difference of its current value at the instant t ≥ 0 and its average value. The
fluorescence intensity is proportional to the number of the labeled molecules observed at the instant t. A single
molecule can freely diffuse in and out the observation volume or undergo chemical reactions. Thus resulting
in a combination of motions of different species characterized by different drift and diffusion parameters. The
mathematical model of stationary Gaussian diffusion, defined by a continuous process of Ornstein-Uhlenbeck
type, is motivated by its important special case of motion of particles in a viscose liquid medium, known in physics
as the Langevin equation. Consider the equation:

mv̇(t) = −βv(t) + µt , t ≥ 0,

where m is the particle mass, v(t) is the particle speed, β is the medium viscosity and µt is a noise component
which will further be clarified.

Here, the component of the ”force” mv̇(t) which slows down the particle, is proportional to the ”speed” v(t),
and the presence of ”noise” is associated with chaotic collisions of the particle with the molecules of the medium
(due to thermal motion of the latter). In this formulation as the noise is used the random process µt = Ẇt, where
W = {Wt , t0} be a stochastic process of Brownian motion. According to Paley-Wiener-Zygmund Theorem, the
random function W is nowhere differentiable almost surely.

In order to give meaning to the equation:

mv̇(t) = −βv(t) + Ẇt , t ≥ 0, (1)

known in physics as the Langevin equation, should be given a probabilistic meaning of the derivative process
Ẇt,t ≥ 0. This is done by operating the concept of Ito stochastic integral.

2.2. Statistical model of stationary discrete Markov diffusion

In our case, we deal with discrete time, so using the structures like (1), we have to operate with finite
(stochastic) differences. Therefore, we have no need to operate with stochastic integrals. In [11], a model of
discrete Markov diffusions with persistent regression is considered as a stationary discrete Markov diffusion αt,
t ∈ N0 = {0, 1, 2, ...}, given by a solution of the difference stochastic equation:

∆αt = −V αt + σwt+1 , t ∈ N0 = 0, 1, 2, 3, ... (2)

where
∆αt := αt+1 − αt,

and
Ewt = 0 , E(wt)

2 = σ2 , ∀t = 1, 2, ... (3)

The stationary, in wide sense, random sequence αt, t = 0, 1, 2, is characterized by two numerical parameters:
V : regression parameter of the predictable component;
σ2: variance of the stochastic component σw(t+ 1), t = 0, 1, 2, defined by a sequence of independent, identically
distributed Gaussian random variables with parameters (3) or alternatively, by martingale-differences which satisfy
the conditions of the Central Limit Theorem [8].
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An important role is played by the condition of statistical stationarity for the discrete stationary discrete Markov
diffusion [12]:

σ2 = σ2
0V (2− V ) , 0 < V < 2, (4)

where
σ2
0 := cov(αt, αt) = Eα2

t , t ≥ 0.

In this case, one can use several sufficient statistics which allow to estimate the numerical parameters of the
model generated by the solutions of the difference stochastic equations (2) (3). In statistical analysis of stationary
discrete Markov diffusion with persistent linear regression (2) (3), the main problem is to construct the statistical
estimations of numerical parameters V (the regression) and σ2 (the square variance of the stochastic component).
The condition of statistical stationarity allows the use of the correlation analysis of the stationary discrete Markov
diffusion. The covariances related to the stationary discrete Markov diffusion, defined by solution of equation (2)
(3), in terms of the statistical stationarity (4), has the following form:

R := σ2
0 , R0 := E[αt∆αt] , R∆ := E[∆αt∆αt] , R∆ = R∆(0) := 2V0σ

2
0 , t ≥ 0. (5)

The following relations take place:
R0 = −V σ2

0 , R∆ = 2V σ2
0 (6)

and also
cov(αt, αt+s) = σ2

0(1− V )s , s, t ≥ 0 , 0 < V < 1. (7)

The covariances (5) generate, as estimators, the following statistics:

RT :=
1

T

T−1∑
t=0

α2
t , R0

T =
1

T

T−1∑
t=0

αt∆αt , R∆
T :=

1

T

T−1∑
t=0

(∆αt)
2 (8)

The statistics (8) generate the following two estimators of the predictable component parameter V :

V ≈ V 0
T = −R0

T /RT , V ≈ V ∆
T = R∆

T /2RT , (9)

which are strongly consistent and asymptotically unbiased.
Naturally one has the following obvious estimation

σ2
0 ≈ σ2

0T = RT . (10)

The stationarity condition (4) generates the stochastic component dispersion σ2:

σ2 ≈ σ2
T = E0

TRT , (11)

where
E0
T := V 0

T (2− V 0
T ). (12)

Remark 1
The properties of the statistical estimator V 0

T are studied in [12]. The dispersion-type estimator VT does not depend
on its mean value.

Remark 2
The formula (7), under the condition 0 < V < 1, can be also used as control of dynamics as follows:

ln cov(αt, αt+s) = lnσ2
0 + s ln(1− V ) , s, t ≥ 0. (13)

So in logarithmic scale, the covariance of the stationary discrete Markov diffusion is characterized by the linear
function a− sb where, by definition,

a := lnσ2
0 , b := − ln(1− V ). (14)

The verification of stationary discrete Markov diffusion property can be done using the following estimations of
the parameters a and b:

a ≈ aT = lnRT , b ≈ bT = − ln(1− V ). (15)
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2.3. Kinetic Stokes-Einstein diffusion model

The discretized three-dimensional Brownian motions of n particles moving inside a cubic box of side L centered
at the origin of a Cartesian frame have been obtained by numerical simulation (see also [3]). Each Cartesian
component of the position of each particle has been modeled as an independent discretized scalar Brownian motion.
Let Wt denote the value of such scalar Brownian motion at time t=0, 1, 2. The following time-marching scheme
has been adopted:

Wt = Wt−1 + dWt , t = 0, 1, 2, ... (16)

where each dWt is an independent random variable of the form
√
2DδN(0, 1). Here N(0, 1) denotes the normal

random variable, δ is the sampling time interval, and D is the diffusion coefficient, given by

D = kT/6πrη (17)

where kT is kinetic energy, r is radius of the particle, η is the viscosity of the medium. Periodic boundary
conditions have been enforced at the box boundaries. The initial position of each particle was assumed to be a
three-dimensional random variable, uniformly distributed inside the cubic box. A spherical region of interest (ROI)
of diameter DR centered at the origin has been considered. At each time instant t, the number αt of particles inside
the ROI has been recorded.

The algorithm has been implemented using massively parallel GPU computing and MATLAB.
Two simulation campaigns have been performed. First, all particles have been given the same diffusion

coefficient D, and different values of D have been considered. Then, a mixture of two particle families with
different diffusion coefficients D1 and D2 have been taken into account. The volume fraction of the slow-diffusing
family was denoted by f .

The Parameter values adopted in the simulations are an ROI diameter of 1 µm, 10 particles expected in ROI
giving a density of 19.099 particles/µm3. Assuming a sampling frequency of 50 kHz (acquisition time: δ = 20
µs) with a simulation time of 10s (500 ksamples). The first run of simulation was performed setting the diffusion
coefficient at different values, respectively: 10, 30, 50, 80, 100 µm2/s. In the second run, two set of particles were
considered to exist concurrently in the ROI, in detail: 10 and 100 µm2/s changing the ratio between the two species
from 0 to 1, as schematized in the following table

Parameter Description Value/Range Unit
DR ROI diameter 1 µm

L side of cubic simulation box (periodic
boundary conditions)

10 µm

N total number of particles 19.099 ♯

nROI average number of expected particles
in ROI

10 ♯

P average particle density 19.099 ♯/µm3

δ sampling time interval 20 µs

fS sampling frequency 50 kHz

T total simulation time 10 S

S total number of samples 500,000 Samples
D diffusion coefficient (first simulation

campaign)
10, 30, 50, 80, 100 µm2/s

D1, D2 diffusion coefficients (second simula-
tion campaign)

10, 100 µm2/s

F volume fraction of the slow-diffusing
family (second simulation campaign)

0, 0.1, 0.3, 0.5, 0.7,
0.9, 1
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3. The stationary discrete Markov diffusion models verification by direct numerical simulation

The models verification by numerical simulation is performed by mean of numerical simulations of the trajectories
of stationary discrete Markov diffusion (1) - (2) for specified parameters V and σ .

Next, according to statistical formulas (7) - (11), are calculated the values of estimates V 0
T , σ2

0T and σ2
T comparing

with the original (theoretical) settings of parameters V , σ.
For different runs of the random numbers generator, we have the following result of the direct numerical

simulation.
The following is the model numerical simulation and parameters estimation, case V = 0, 2; σ = 10.

Figure 1. The case (V =0,2; σ=10). Left: plot of a numerical simulatied discrete Markov diffusion α(t) and its stochastic
component σW (t+ 1). Right: simulated discrete Markov diffusion parameters evaluation for 4 different runs of the random
numbers generator.

In our calculations, we use 30000 samples of the data length, which give good convergence.
The model verification is done for a wide range of V (0 < V < 1) and σ (σ > 0), so we give a calculation for

another original setting of parameters V , σ.

Figure 2. The case V =0,8; σ=10. Left: plot of a numerical simulatied discrete Markov diffusion α(t) and its stochastic
component σW (t+ 1). Right: simulated discrete Markov diffusion parameters evaluation for 4 different runs of the random
numbers generator.

The discrete Markov diffusion numerical simulation gives a convinced statistical estimation of the parameters
V , σ.
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4. The stationary discrete Markov diffusion models verification using Kinetic Stokes-Einstein diffusion
model simulated data

The data, based on Stokes-Einstein diffusion model, present the dynamics of the number of numerically simulated
particles, counted in a limited volume in pre-set time slots (20µs), for the total observation time interval about
0,328 sec. (16385 samples). The simulation generates the mix of two Brownian motions: a slow one (D=10) and a
fast one (D=100). The samples are obtained for different mix rate (proportions) of the fast and the slow particles
with mix rate values: (0|1); (0,1|0,9); (0,3|0,7); (0,5|0,5); (0,7|0,3); (0,9|0,1) and (1|0). For every mix rate value,
several samples are acquired by mean of different runs of the random numbers generator.

Now the 7 groups of the samples are considered as trajectories of stationary discrete Markov diffusion, defined
by (2) - (3), with unknown parameters V , σ estimated by the statistics (8) - (12).

The use of stationary discrete Markov diffusion model in the analysis of statistical data, based on the Stokes-
Einstein diffusion model, gives effective mechanisms of interactions analysis of slow and fast diffusions (see Fig.
3, 4). Let us first consider the two extreme cases mix-rate =(0|1) and (1|0).

For the mix-rate =( 0|1) one can obtain, using the estimators (8) - (12), the following parameters evaluations:

Figure 3. The mix-rate =(0|1). Left: Stokes-Einstein kinetic model trajectory. Right: the stochastic discrete Markov diffusion
model parameters evaluation.

The same calculations for the mix-rate = (1|0) give the following:

Figure 4. The mix-rate =(1|0). Left: Stokes-Einstein kinetic model trajectory. Right: the stochastic discrete Markov diffusion
model parameters evaluation.

One can see that the values of the main parameters V , σ in both the cases are very different. This is an indication
that the main parameters V , σ can also be discriminant for any value of the mix-rate. So now we should to repeat
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the same calculus of the model parameters for the mix-rate values (0,1|0,9); (0,3|0,7); (0,5|0,5); (0,7|0,3), (0,9|0,1)
and then to compare the dynamics of parameters V , σ and σ2

0 by variating the mix-rate.

5. The mix rate discrimination capability of the fundamental parameters of the model using Kinetic Stokes-
Einstein diffusion model simulated data

The simulated data, based on Stokes-Einstein diffusion model, has been produced for seven mix-rate values
(0,1|0,9); (0,3|0,7); (0,5|0,5); (0,7|0,3) and (0,9|0,1). Every simulation run contains 500000 samples, used for
evaluation of parameters V , σ and σ2

0 by direct application of the estimators (8) - (12).
The following results has been obtained for the parameter σ :

Figure 5. Left: the plot of σ estimated values, as a function of mix-rate. Right: the parameter σ estimation for the 7 groups
of the samples acquired by 2 different runs of the random numbers generator.

The parameter V evaluation gives us the following:

Figure 6. Left: the plot of V estimated values, as a function of mix-rate. Right: the parameter V estimation for the 7 groups
of the samples acquired by 2 different runs of the random numbers generator.

And for the parameter σ2
0 we have:

One can see from the tables and relative plots that, the parameters σ and V have good ability to distinguish the
mix rate of two ensembles of the particles with different diffusion coefficient, according to the Stokes-Einstein
diffusion model.

However, the parameter σ2
0 does not have such property.
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Figure 7. Left: the plot of σ2
0 estimated values, as a function of mix-rate. Right: the parameter σ2

0 estimation for the 7 groups
of the samples acquired by 2 different runs of the random numbers generator.

6. Conclusions

The following results has been obtained:

1. A new statistical model, presented by the solution of equation (2) - (3) is proposed for the mathematical
description of macromolecules interaction, which is characterized by numerical parameters V (regression)
and σ2 (the square variance of the stochastic component).

2. There were obtained statistical estimators (8), (11) and (12) of the interaction parameters (V , σ2) promised to
be far superior in accuracy and efficiency than the traditionally used method of autocorrelation curve fitting,
based on kinetic Stokes-Einstein model (16) - (17).

3. The statistical estimators (8) - (12), applied to a numerically simulated process defined by the statistical
model (2) - (3), give excellent coincidence of the parameters evaluation with their real value, which proves
the high accuracy of estimators (8) - (12).

4. The proposed model has been tested and verified on a set of simulated data derived from a discrete kinetic
Stokes-Einstein Brownian process of two biological molecules with different diffusion coefficients and
different molar fractions. The statistics (8) - (12) has quasi-linear discriminant capacity for the proportion of
different molar fractions containment.

Generally the biochemical systems are quite complex, involving many species and many reactions, thus it is
difficult to study and analyze them. The strategy provided utilizes an experimental technique combined with
stochastic difference equations to extrapolate parameters directly related to biochemical system dynamics. The
proposed model may be used for a large class of biochemical reaction models. A possible application in biophysics
is the study of biological macromolecules diffusion in solution (eg.: enzymes and substrates), combining our
model with dataset acquired by a fluorescence correlation spectroscopy system. In this case, in fact, the fluorescent
fluctuations signal of marked molecules has been observed in a reduced number of molecules in a small measuring
volume (about 1 cubic micron) defined by the focusing of excitation laser. The speed of these fluctuations depends,
in turn, from the diffusion coefficient of molecules under study, hence by its hydrodynamic radius. Applying in
next works the proposed model to experimental data of fluorescence correlation spectroscopy, it will be possible to
directly determine the diffusion coefficients and molar fractions of molecules under study. In particular, it will be
possible to follow the dynamic of binding/unbinding of enzymatic macromolecules and its substrate, accordingly
to the mass variation of the observables. These processes could be of fundamental importance for the development
of new drugs as inhibitors of artificial enzymes involved in pathologies. To understand complex biological systems,
it is necessary to obtain a thorough understanding of the interaction between molecules and pathways. Such fact is
even truer for understanding complex diseases such as cancer, Alzheimer and others as well. For these reasons, we
believe the method here presented could provide a new important tool to improve biomedical and pharmaceutical
research.
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