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Abstract Stochastic differential equations arise in a variety of contexts. There are many techniques for approximation
of the solutions of these equations that include statistical methods, numerical methods, and other approximations. This
article implements a parametric and a nonparametric method to approximate the probability density of the solutions of
stochastic differential equation from observations of a discrete dynamic system. To achieve these objectives, mixtures
of Dirichlet process and Gaussian mixtures are considered. The methodology uses computational techniques based on
Gaussian mixtures filters, nonparametric particle filters and Gaussian particle filters to establish the relationship between the
theoretical processes of unobserved and observed states. The approximations obtained by this proposal are attractive because
the hierarchical structures used for modeling are flexible, easy to interpret and computationally feasible. The methodology
is illustrated by means of two problems: the synthetic Lorenz model and a real model of rainfall. Experiments show that the
proposed filters provide satisfactory results, demonstrating that the algorithms work well in the context of processes with
nonlinear dynamics which require the joint estimation of states and parameters. The estimated measure of goodness of fit
validates the estimation quality of the algorithms.
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1. Introduction

Stochastic differential equations are used in many applications related to basic science such as modeling of
biological, chemical, physical, environmental, engineering, economics and finance processes among others ([36]).
A stochastic differential equation describes the time evolution of the dynamics of a state vector, based on physical
observations from a real system obtained with errors. In practice, the interest consists in estimating the states or
parameters of the dynamic system. One of the difficulties commonly encountered in the estimation of parameters
in a stochastic differential equation is that the transition density of the equation can not be evaluated in closed
form. There are many estimation methods that are based on the maximum simulated Likelihood methods ([64];
[65]; [53]; [22]; [1]; [49] and [21]). Another standard method is to approximate the solutions using the Markov
Chain Monte Carlo (MCMC) algorithm ([44]; [27]; [13]; [66] and [67]). It is also possible to approximate
solutions by using numerical methods ([23] and [26]). There are others methods based on Hermite expansions
([1]); Taylor approximations ([25]); filtering Theory ([25]; [43] and [24]); approaches that use algorithms based on
the integration of Gaussian quadratures and sigma point methods ([28]; [29]; [60] and [23]); adaptive MCMC
algorithms based on numerical integration methods recently have been used to approximate in the context of
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nonlinear stochastic differential equations, for example [60] and [5] have used an approach based on a Gaussian
process to model the time evolution of the solution of a general stochastic differential equation, the methodology
uses data assimilation techniques ([31]). Recently [57] introduced a nonparametric method to estimate the function
of drift in a stochastic differential equation where a measure of random probability was considered to model the
drift and a Expectation-Maximization (EM) algorithm was developed to try to establish a link between unobserved
and observed states.
This paper aims to approximate the solutions of a stochastic differential equation by using the Gaussian mixture
distribution model, Dirichlet process mixture models, together with a non-parametric density estimation algorithm
and three sequential filters. The most representative references about the Gaussian mixture distribution model are
[61]; [3]; [68] and [2]. Dirichlet processes were treated in [16], and they have been identified in the literature as a
useful tool for estimating densities in the field of non-parametric models. The idea of using Dirichlet process is not
new, and has been considered in previous works such as [15]; [46]; [42]; [45]; [70] among others.
The rest of article is summarized as follows: Section 2 presents the formulation of the problem; Section 3 contains
the description of the filtering algorithms defined to approximate a probability density of the solutions; In Section
4, the results obtained for two different examples are shown, and lastly, Section 5 contains a final discussion and
conclusions.

2. Formulation of the problem

This article proposes to use approximations, obtained by nonlinear filters, to estimate the solution of an Itô
stochastic differential equation (SDE) given by:

dxk = f(xk, k)dk + L(xk, k)dBk (1)

where xk ∈ Rn is a vector of stochastic states in a continuous-time, xk0 is a stochastic initial condition satisfying
the following condition E(|x2

k0
|) < ∞; {Bk : k ≥ 0} is a m− dimensional vector of a standard Brownian motion;

F : [k0, T ]×Rn ×Rd → Rn is a known nonlinear drift function, and L : [k0, T ]×Rn ×Rd → Rn ×Rm is a
diffusion matrix that satisfies sufficient regularity conditions to ensure the existence of strong solutions ([52]).
Theoretically the system is imperfectly observed through a process of continuous observation yk ∈ Rm which is
related to the process xk by the equation:

yk =

∫ k

0

h(xs, s, θ)ds+
√

DkWk (2)

where h : Rn ×R → R is a known function, {Wk : k ≥ 0} is a vector of a standard Brownian motion, which is
independent of Bk, Dk is a matrix of diffusion, and the initial state x0.
When the dynamic system in continuous time is approximated by a discrete system, the derivatives in continuous
time are approximated by difference equations in discrete time, which can be expressed in the form of a space state
model, as follows:

xk = Mk(xk−1,uk) (3)
yk = Hk(xk) + vk (4)
uk ∼ F (., .) (5)

The equation given in (3) represents a dynamic system, where xk denotes the vector of unknown states in a time
t = k, uk is a random error state estimation, Mk is an operator that maps the space transition state within the state
space. The equation given in (4) represents the observed system, where Hk is an operator that maps the states
within the space of observations in time t = k, yk is the vector of observations, and vk is a vector of random
errors of observation. In the given equation (5), F (., .) is a function of unknown probability distribution. The
unobserved solutions xk are assumed to be modeled by a Markov process of first order, with an initial distribution
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function p(x0), and transition equation p(xk|xk−1) given by the model defined in equation (3). Each observation
yk is conditionally assumed to be independent given the state xk, where p(yk|xk) is obtained from equation (4).
The model is summarized in three steps: first an initial seed x0 ∼ p(x0) is generated; then xk ∼ p(xk|xk−1) is
predicted; and finally yk ∼ p(yk|xk) is updated. The general objective is to estimate the unknown states xk =
x0:k = (x0, . . . , xk), based on measurements obtained from the observation process yk = y1:k = (y1, . . . , yk); the
main interest is in estimating the filtering distribution p(xk|y1:k), the predictive distribution p(xk+1|y1:k), and
posterior mean and covariance. The recursive estimation in time k, is performed by the following procedure:

• Step 1: The filtering distribution:

p(xk|y1:k) =
∫

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1 (6)

• Step 2: The predictive distribution:

p(xk+1|y1:k) =
∫

p(xk+1|xk)p(xk|y1:k−1)dxk (7)

• Step 3: The posterior predictive expectation:

mk|k = E(xk|y1:k) =
∫

xkp(xk|y1:k)dxk (8)

• Step 4: The posterior predictive covariance:

Pk|k = E
[
(xk −mk|k)(xk −mk|k)

T
]
=

∫
(xk −mk|k)(xk −mk|k)

T p(xk|y1:k)dxk (9)

Assuming that vk is distributed according to a known probability density function vk ∼ N(0,Rk) with fixed but
unknown parameters, Rk is to be estimated. If, in addition, the errors uk do not have a known distribution, that
is uk ∼ F (., .), where F (., .) is an unknown function, then it is necessary to estimate the probability distribution
function F (., .).
At some time t = k, we can estimate the posterior distribution joint p(x0:k|y1:k) using the Bayes Theorem, as
follows:

p(x0:k|y1:k) =
p(y1:k|x0:k)p(x0:k)∫

p(y1:k|x0:k)p(x0:k)dx0:k
(10)

It is possible to obtain a recursive formula to estimate the joint density p(x0:k|y1:k):

p(x0:k+1|y1:k+1) = p(x0:k|y1:k)
p(yk+1|xk+1)p(xk+1|xk)

p(yk+1|y1:k)
(11)

where the filtering distribution p(xk|y1:k) is estimated by the following recursive Bayesian filter:

1. It is initialized with a prior distribution p(x0).
2. For k = 1, . . . , N run the following:

• Prediction step: the state xk is predicted, which can be calculated:
– In the discrete case: The Chapman-Kolmogorov equation:

p(xk|y1:k−1) =

∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1 (12)

– In the continuous case: The Fokker-Planck-Kolmogorov equation is integrated:

∂p(x, k)

∂k
= −

n∑
i=1

∂

∂xi
[fip(x, k)] +

1

2

n∑
i=1

n∑
j=1

∂2

∂xi∂xj

{[
LQLT

]
ij
p(x, k)

}
(13)

where: p(x, k) = p(xk|y1:k−1), fi = fi(x, k), y L = L(x, k).
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• Update step: given the observation yk, the predictive distribution is updated by:

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)∫
p(yk|xk)p(xk|y1:k−1)dxk

(14)

Given the difficulty of calculating the integrals involved in (12) and (14); a way to solve the situation is to use
computational techniques to approximate the posterior distribution. This article propose three recursive algorithms
to achieve this goal.
A particular problem to be solved in this work is to estimate a probability density using a nonparametric Bayesian
method involving an endless mix model as considered in [42] and [56]; but in the context of stochastic differential
equations. We propose to use the following hierarchical structure to flexibly approximate the probability density of
the solutions of the equation given in (1):

xk−1|θk ∼ f(xk−1|θk) ; k = 1, . . . , t

θk(., ) ∼ G(., .)

G(., .) ∼ DP (α,G0)

xk = Mk(xk−1, uk) =

P∑
i=1

ωif(xi−1|θi) ,

n∑
i=1

ωi = 1

xk+1|xk ∼ N(µ,Σ)

yk|xk+1 ∼ N(Hk(xk+1), Rk)

where DP is a Dirichlet processes and:

θk = (µk,Σk) ; f(xk|µk,Σk) = N(µk,Σk)

G(µk,Σk) = G(µk|Σk)G(Σk) = N

(
λ,

Σk

τ

)
IW (Σ0, ν)

µ =

n∑
i=1

ωiµi ; Σ =

n∑
i=1

ωi

[
Σi + (µi − µ)(µi − µ)T

]

3. Filtering algorithms to approximate a density

Here, three filtering algorithms are proposed to approximate the solutions of stochastic differential equation:
Gaussian Mixtures Filter (GMF), Nonparametric Particle Filtering (NPF), and Gaussian Particle Filter (GPF).
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3.1. Nonparametric density estimation

The problem of estimating a density using a nonparametric method consists of the following, data x1, . . . , xn are
assumed to be an interchangeable sequence of independent observations taken according to a unknown probability
density function F , that is:

xi ∼ F (., .) ; i = 1, . . . , n (15)

The xi can be scalars or vectors. Traditional methods of parametric statistics, consider probability models that are
indexed by unknown finite dimensional parameters, such as the mean and variance, which must be estimated. In
contrast, Bayesian nonparametric methods consider a prior probability model p(F ) for the unknown distribution
function F , where F is a function in a space of infinite dimension. This requires the definition of a measure of
random probability of a collection of distributions functions which should have certain properties such as having a
large support and the condition that the resulting posterior distribution must be analytically tractable ([16]).
The DP ([16] and [62]), are an important Bayesian nonparametric modeling tool. A random probability distribution
F is generated by a DP if for any partition A1, . . . , Ak of sample space Ω, the vector:

(F (A1), . . . , F (Ak)) ∼ Dir(αF0(A1), . . . , αF0(Ak)) (16)

where Dir(α1, . . . , αk) denotes the Dirichlet distributions; F0(.) is a base measure of random probability defining
the expected value, E(F ) = F0 or equivalently E(F (A)) = F0(A) for any A ⊂ Ω, and α is a precision parameter
that defines the variance. The motivation to use the DP is that, in this approach, updating the posterior distribution
is a simple process. That is:

x1, . . . , xn|F ∼ F

F ∼ Dir(F0, α)

F |x1, . . . , xn ∼ Dir(α+ n, F0 +

n∑
i=1

δxi) (17)

where δxi denotes the Dirac delta.
In a Dirichlet mixture process model (DPM), samples xi, for i = 1, . . . , n, are taken from a component of the
mixture parametrized by θi ∈ Θ, where θi is a latent variable. This auxiliary variable is generated by an unknown
distribution G, which represents a measure of random probability distributed according to a prior distribution (a
distribution on the set of probability distributions). That is, the DPM is hierarchically defined as follows:

xi|θi ∼ f(xi|θi) ; i = 1, . . . , n

θi|G ∼ G
G ∼ DP (α,G0) (18)

where the mixing distribution G is a DP with concentration parameter α, and distribution base G0. If integrated
on random measure G, we have a non-parametric model to estimate F , as follows:

F (x) =

∫
θ

f(x|θ)dG(θ) ; G ∼ DP (α,G0) (19)

There are two basic representations of DP , known as Polya urn scheme ([7]), and a prior Stick-breaking scheme
([62] and [54]). The scheme of Polya urn, assumes that the joint distribution of θ1, . . . , θn, can be expressed as
follows:

θ1 ∼ G0(θ1)

θi|θ1, . . . , θi−1 ∼
αG0 +

∑i−1
l=1 δθi|θl

α+ i− 1
(20)
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where δθi|θl is a point mass θl. When α → 0, all the θi = θ1 ∼ G0(θ1), and when α → ∞, θi ∼ G0(θ1). Moreover,
as the θi are exchangeable the Polya urn scheme can be written as:

θi|θ−i ∼
αG0 +

∑
i ̸=l δθi|θl

α+ n− 1
(21)

where θ−i represents the {θl : i ̸= l}.
A strategy for representation the DP , using the scheme called Stick-breaking, is to write the measure G explicitly
as an infinite sum of sums of atomic measures [62]. Embodiments of a DP are expressed as follows:

G =

∞∑
k=1

ωkδθk (22)

where, δθk denotes the measure of the Dirac delta located at θk and

θk ∼ G0

ωk = βk

k−1∏
j=1

(1− βj)

βk ∼ Beta(1, α) (23)

The underlying random measure G is discrete with probability one. Using equation (19), a flexible a priori model
used to estimate the unknown distribution F is obtained:

F (x) =

∞∑
k=1

ωkf(x|θk) (24)

A recursive form to estimate the unknown probability density in nonparametric form is given as follow:

Algorithm 1: Nonparametric algorithm to estimate a density

• Step 1: Simulate:

xk−1|µk,Σk ∼ N(µk,Σk) (25)

• Step 2: Simulate:

(µk,Σk) ∼ NIW (λ, ν,Σ0, γ0) (26)

where:
– The conditional mean is obtained by:

µk|Σk, λ, τ ∼ N

(
λ,

Σk

τ

)
(27)

– The conditional variance is obtained by:

Σk|Σ0, ν ∼ IW (Σ0, ν) (28)

• Step 3: Calculate:

xk = Mk(xk−1, uk−1) =

n∑
i=1

ωiN(µi,Σi) ;

n∑
i=1

ωi = 1 (29)

• Step 4: Conditioned states are generated xk+1|xk, as follows:

xk+1|xk ∼ N (µ,Σ) (30)

• Step 5: The observations of the states are generated yk|xk+1:

yk|xk+1 ∼ N (H(xk+1), R) (31)

where IW denotes Inverse Wishart distribution, and NIW (., ., ., .) denotes a Normal Inverse Wishart.

Stat., Optim. Inf. Comput. Vol. 4, December 2016



S. INFANTE, C. LUNA, L. SÁNCHEZ AND A. HERNÁNDEZ 295

3.2. Gaussian mixtures Filter (GMF)

If we assume that the observation model yk = Hk(xk, vk) = Hxk + vk is linear, where vk ∼ N(0, R) and also
assume that the a priori model of a state x is approximated by p(x), and the likelihood is approximated by p(y|x),
where:

p(x) =

n∑
i=1

ωiN (µ,Σ) ;

n∑
i=1

ωi = 1 (32)

and

p(y|x) =
m∑
j=1

βjN (Hx,R) ;

m∑
j=1

βj = 1 (33)

Then using equations (32) and (33), the posterior distribution is a Gaussian mixture given by:

p(x|y) = p(y|x)p(x)∫
p(y|x)p(x)dx

=

∑m
j=1 βjN (y;Hx,R)

∑n
i=1 ωiN (x;µ,Σ)∫ ∑m

j=1 βjN (y;Hx,R)
∑n

i=1 ωiN (x;µ,Σ) dx

=

∑m
j=1

∑n
i=1 ωiβjN (y;Hx,R)N (x;µ,Σ)∑m

j=1

∑n
i=1 ωiβj

∫
N (y;Hx,R)N (x;µ,Σ) dx

=

∑m
j=1

∑n
i=1 ωiβjN (y; c,D)N (x; a,B)∑m
j=1

∑n
i=1 ωiβjN (y; c,D)

(34)

Note that:

N (Hx,R)N (x;µ,Σ) =
1√

|R||Σ|(
√
2π)nx+ny

exp

(
−Q

2

)
(35)

where:

Q = (y −Hx)TR−1(y −Hx) + (x− µ)TΣ−1(x− µ)

= xTB−1x− 2bx+ yTR−1y + µTΣ−1µ

= (x− a)TB−1(x− a)− aTB−1a+ yTR−1y + µTΣ−1µ

≈ (x− a)TB−1(x− a) + (y − c)TD−1(y − c) (36)

B−1 = HTR−1H +Σ−1 ; b = yTR−1H + µTΣ−1 ; a = Bb (37)

D−1 = R−1 −R−1HB−1HTR−1 ; d = µTΣ−1B−1HTR−1 ; c = Dd (38)

so that:

N (x;µ,Σ)N (y;Hx,R) =
1√

|R||Σ|(
√
2π)nx+ny

exp

{
−1

2

[
(x− a)TB−1(x− a) + (y − c)TD−1(y − c)

]}
= N(x; a,B)N(y; c,D)
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For a recursive algorithm, it is assumed that the probability density function of the initial condition p(x0) is
approximated by:

p(x0) ≈
n∑

i=1

ωi,0N(x0;µi,0|0,Σi,0|0), ;

n∑
i=1

ωi,0 = 1 (39)

Without loss of generality, it is assumed that in an instant k − 1 the system states are known p(xk−1|y1:k−1), that
is:

p(xk−1|y1:k−1) ≈
n∑

i=1

βi,k−1N
(
xk−1;µi,k−1|k−1,Σi,k−1|k−1

)
, ;

n∑
i=1

βi,k−1 = 1 (40)

If xk = Mk(xk−1, uk) ≈
∑n

i=1 αi,kN(xk;µi,k|k−1,Σi,k|k−1), then it is assumed that xk+1|xk is given by:

p(xk+1|xk) ≈
n∑

i=1

αi,kN(xk+1;µ,Σ) ;

n∑
i=1

αi,k = 1 (41)

where:

µ =

n∑
i=1

αi,k−1µi,k|k−1 ; Σ =

n∑
i=1

ωi,k

[
Σi,k|k−1) + (µi,k|k−1 − µ)(µi,k|k−1 − µ)T

]
Then the conditional state xk, given the observed data y1:k−1, is approximated by:

p(xk|y1:k−1) =

∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1

≈
n∑

i=1

m∑
j=1

αj,k−1βi,k−1Ii,j(xk) (42)

where:

Ii,j(xk) =

∫
N (xk;µ,Σ)N

(
xk−1;µi,k|k−1,Σi,k|k−1

)
dxk−1

=

∫
ci,kN

(
xk;µ

1b
i,k|k,Σ

1b
i,k|k

)
dxk−1

µ1b
i,k|k−1 =

(
Σ−1 + (Σi,k|k−1)

−1
)−1 (

Σ−1µ+ (Σi,k|k−1)
−1µi,k|k−1

)
Σ1b

i,k|k−1 =
(
Σ−1 + (Σi,k|k−1)

−1
)−1

and

ci,k =
1

(2π)
n+m

2 |Σ−1 + (Σi,k|k−1)−1| 12
exp−1

2

[(
µi,k|k−1 − µ

)T (
Σ−1 + (Σi,k|k−1)

−1
)−1 (

µi,k|k−1 − µ
)]

.

The assessment of Ii,j(xk) can be treated as an estimation problem of a nonlinear process with non-Gaussian
distribution. In the literature, they have used techniques such as Kalman filter assemblies, or Kalman filter sigma
points, to approximate Ii,j(xk) (see [41]). Furthermore, if it is assumed that the likelihood of the data is distributed
according a Gaussian:

p(yk|xk) ∼ N (yk;Hxk, Rk) (43)
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then, the probability density function of the filtered distribution (the probability distribution function modeling the
approximate solutions) is approximated by:

p(xk|y1:k) ∝ p(yk|xk)p(xk|y1:k−1)

= N (yk;Hxk, Rk)

n∑
i=1

m∑
j=1

αj,k−1βi,k−1Ii,j(xk)

=

n∑
i=1

m∑
j=1

αj,k−1βi,k−1

∫
ci,kN (yk;Hxk, Rk)N

(
xk;µ

1b
i,k|k−1,Σ

1b
i,k|k−1

)
dxk−1

=

n∑
i=1

m∑
j=1

αj,kβi,k−1

∫
ci,kc

∗
i,kN

(
xk;µ

2b
k|k,Σ

2b
k|k

)
dxk−1 (44)

where:

µ2b
i,k|k =

(
R−1

k + (Σ1b
i,k|k−1)

−1)−1(R−1
k Hxk + (Σ1b

i,k|k−1)
−1µ1b

i,k|k−1

)

Σ2b
i,k|k =

(
R−1

k + (Σ1b
i,k|k−1)

−1
)−1

and

c∗i,k =
1

(2π)
n+m

2 |R−1
k + (Σ1b

i,k|k−1)
−1| 12

exp−1

2

[(
µ1b
i,k|k−1 −Hxk

)T (
R−1

k + (Σ1b
i,k|k−1)

−1
)−1 (

µ1b
i,k|k−1 −Hxk

)]
A summary of the algorithm used to estimate the density function by GMF is shown in the following procedure:

Algorithm 2: GMF

• Step 1: Simulate the initial states p(x0) as shown in equation (39).
• Step 2: Use the Algorithm 1 to estimate the density of solutions.
• Step 3: Predict p(xk|y1:k−1), using the equation(42).
• Step 4: Update p(xk|y1:k), using the equation (44).

3.3. Nonparametric filter particles (NPF)

Suppose we want to approximate the filtered density p(xk|y1:k) using an importance function in a marginal state
space xk, that is:

p(xk|y1:k) ∝ p(yk|xk)p(xk|y1:k−1)

= p(yk|xk)

∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1 (45)

A strategy for estimating the filtered distribution is to use a Sequential Monte Carlo method known as Particle

filters. The particle filters consider
{
x
(i)
k , w

(i)
k

}n

i=1
a random sample which characterize the posterior probability

density function p(xk|y1:k). The weights are chosen such that
∑n

i=1 W
(i)
k = 1. Then the posterior distribution, also

called the filtered distribution in time k, can be approximated by an empirical distribution formed by the mass
points or particles:

pn(xk|y1:k) ≈
n∑

i=1

w
(i)
k δ(xk − x

(i)
k ) (46)
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where δ(.) is the Dirac delta function. Given the posterior distribution, some quantities of interest can be estimated,
such as the expected values of a function g(xk) associated with the filtered distribution p(xk|y1:k), that is:

E[g(xk)] =

∫
g(xk)p(xk|y1:k)dxk

Some of the researchers who worked on the subject are: [71]; [20]; [32]; [37]; [11]; [38]; [55]; [10]; [17]; [19];
[39] among others.
The weights w(i)

k are chosen using the principle of importance sampling. The principle of importance sampling is
based on the following argument: Suppose that p(x) ∝ γ(x), is a probability density which is difficult to sample,
but γ(x) can be evaluated and consequently p(x) also be evaluated to a proportionality constant. Then proceed
as follows: Let x(i) ∼ q(x), i = 1, ..., n be a generated sample of a proposed distribution q(.), called density of
importance. Then a weighted density approximation of p(.) is given by:

p(x) ≈
n∑

i=1

w(i)δ(x− x(i)) (47)

where:

w(i) ∝ γ(x(i))

q(x(i))
(48)

The w(i) represents a standardized weight of the i-th particle. If samples {x(i)
0:k} are taken using a density of

importance q(xk|y1:k) then the weights used to approximate the equation (46) are obtained by:

w
(i)
k ∝

p(x
(i)
k |y1:k)

q(x
(i)
k |y1:k)

(49)

If the density of importance can be factored so that:

q(xk|y1:k) = q(xk|xk−1, y1:k)q(xk−1|y1:k−1) (50)

then we can get the samples x
(i)
0:k from q(xk|y1:k) by increasing each of the samples x

(i)
0:k−1 that already exist and

are obtained from q(x
(i)
k−1|y1:k−1), generating the new state x

(i)
k of q(xk|xk−1, y1:k). For the updated weights, the

filtered distribution p(xk|y1:k) is expressed in terms of the equation given in (45). Updated weights are given by:

w
(i)
k ∝

p(yk|x(i)
k )p(x

(i)
k |x(i)

k−1)p(x
(i)
k−1|y1:k−1)

q(x
(i)
k |x(i)

k−1, y1:t)q(x
(i)
k−1|y1:k−1)

=
p(yk|x(i)

k )p(x
(i)
k |x(i)

k−1)

q(x
(i)
k |x(i)

k−1, y1:k)
w

(i)
k−1

where

w
(i)
k−1 =

p(x
(i)
k−1|y1:k−1)

q(x
(i)
k−1|y1:k−1)

In particular, if q(xk|xk−1, y1:k) = q(xk|xk−1, yk), then the density of importance depends only on xk−1, and yk.
This situation is appropriate when required to obtain the filtered estimator p(xk|y1:k) in real time k. Then the
weights are modified as follows:

w
(i)
k =

p(yk|x(i)
k )p(x

(i)
k |x(i)

k−1)

q(x
(i)
k |x(i)

k−1, yk)
w

(i)
k−1 (51)
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The filtered density pn(xk|y1:k) can be approximated by:

pn(xk|y1:k) ≈
n∑

i=1

w
(i)
k δ(xk − x

(i)
k ) (52)

It was proved in [12] that when n → ∞ the equation given in (52) approaches the true posterior distribution
p(xk|y1:k).
This paper seeks to approximate the filtered density function by using nonparametric statistical techniques. A
Dirichlet mixing process is used to estimate the unknown density of states. The algorithm predicts the equation
given in (12) and updates the equation given in (14) based on simulated samples. In order to implement the
algorithm, it is supposed to start with a set of random samples {x(i)

0:k−1}ni=0 generated by a known distribution
function p(xk−1|y1:k−1). The procedure is summarized as follows:

Algorithm 3: NPF

• Step 1: Initialize with a nonparametric prior distribution of an initial state: (for k = 0, and i = 1, . . . , n):

x̃
(i)
0 ∼ p(x0) ; w

(i)
0 = 1

where the samples {x(i)
0:k−1} are considered known from the posterior distribution p(xk−1|y1:k−1).

• Step 2: Perform the nonparametric importance sampling: (for k ≥ 1)

– For i = 1, . . . , n:

x̃
(i)
k ∼ p(xk|x̃(i)

k−1)

– Step 3: Obtain an estimated prediction density:

pn(xk|y1:k−1) =

n∑
i=1

w
(i)
k−1δ(x

(i)
k − x̃

(i)
k )

using samples
{
x̃
(i)
k , w

(i)
k−1

}n

i=1
. For example, the predictive mean and covariance can be estimated as

follows:

mk|k−1 =

n∑
i=1

w
(i)
k−1x̃

(i)
k

Pk|k−1 =

n∑
i=1

w
(i)
k−1(x̃

(i)
k −mk|k−1)(x̃

(i)
k −mk|k−1)

T

– Step 4: For i = 1, . . . , n, the importance density is sampled:

x̃
(i)
k ∼ q(xk|y1:k)

and the importance weights are calculated:

w̃
(i)
k ∝

p(yk|x̃(i)
k )pn(x̃

(i)
k |y1:k−1)

q(x̃
(i)
k |y1:k)

– Step 5: Density prediction pn(xk|y1:k) is updated using the sample
{
x̃
(i)
k , w̃

(i)
k

}n

i=1
.
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– Step 6: For i = 1, . . . , n, sample:

x̃
(i)
k ∼ pn(xk|y1:k)

and calculate the importance weights:

w̃
(i)
k ∝

p(yk|x̃(i)
k )pn(x̃

(i)
k |y1:k−1)

pn(x̃
(i)
k |y1:k)

• Step 7: NPF outputs consist of particles
{
x̃
(i)
k , w̃

(i)
k

}n

i=1
, which approximate the filtered density function:

p(xk, k) = pn(xk|y1:k) =
n∑

i=1

w̃
(i)
k δ(x

(i)
k − x̃

(i)
k )

The updated filtered distribution can be characterized by the mean and covariance:

mk|k =

n∑
i=1

w̃
(i)
k x̃

(i)
k

Pk|k =

n∑
i=1

w̃
(i)
k (x̃

(i)
k −mk|k)(x̃

(i)
k −mk|k)

T

3.4. Gaussian particle filter (GPF)

The interest in the following line is to present a method for approximating the solution using a Gaussian Particle
Filter (GPF) as proposed in [34]. This algorithm allows the generation of samples that approximate the predictive
distribution p(xk|y1:k−1), and the filtered distribution p(xk|y1:k) using Gaussian densities, where the vector of
means and the variance-covariance matrix are estimates of the particles generated. If at time k − 1, the solution is
approximated by N(µk−1,Σk−1), and at time k, it is approximated by N(µ̃k, Σ̃k), then the steps to implement the
GPF consist of the following:

Algorithm 4: GPF

• Step 1: Generate x
(m)
k−1|µk−1,Σk−1 ∼ N(µk−1,Σk−1).

• Step 2: Generate µk|Σk−1, λ, τ ∼ N
(
λ,

Σk−1

τ

)
.

• Step 3: Generate Σk|Σ0, ν ∼ IW (Σ0, ν), and do:

x
(m)
k = Mk(x

(m)
k−1, u

(m)
k ) =

n∑
k=1

ωkN(µk,Σk) ;

n∑
k=1

ωk = 1 (53)

• Step 4: Generate x
(m)
k+1|x

(m)
k ∼ N(µ,Σ).

• Step 5: Generate w̃
(m)
k = p(yk|x(m)

k+1) ∼ N
(
Hx

(m)
k+1, Rt

)
.

• Step 6: The weights are normalized w
(m)
k =

w̃m
t∑t

k=1 w̃m
k

.

• Step 7: Estimate µ̃k, and Σ̃k by:

µ̃k =

M∑
m=1

w
(m)
k x

(m)
k+1

Σ̃k =

M∑
m=1

w
(m)
k (x

(m)
k+1 − µ̃k)(x

(m)
k+1 − µ̃k)

T

• Step 8: Approximate p(xk, k) = p(xk|y1:k) ∼ N(µ̃k, Σ̃k).
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4. Results

The first instance consists of a linear case, while the second example consists of a case with a nonlinear structure.
To measure the estimation quality of the proposed algorithms we use the square root of the mean square error
(RMSE) defined as:

RMSE =
1

n

n∑
i=1

∥x̂(i)
k −mk|k∥2 (54)

where x̂
(i)
k is an estimator of E(xk|y1:k) , and mk|k =

∑n
i=1 w

(i)
k x

(i)
k .

4.1. Example 1

As a first example, the Lorenz model is implemented ([40]), representing a coupled system of nonlinear differential
equations, given by:

dx

dt
= s(y − x)

dy

dt
= rx− y − xz

dz

dt
= xy − bz (55)

where: s, r, b are parameters. The state vector x = (x, y, z)T represents a position of the particles in the phase
space. The model is discretized using the first order Euler method xt = xt−1 + hf(xt−1), with step size h. The
discrete evolution equation is given by:

xt+1 = xt + h(s(yt − xt))

yt+1 = yt + h(rxt − yt − xtzt)

zt+1 = zt + h(xtyt − bzt) (56)

where: s = 10, r = 28, y b = 8
3 . The data was generated by a linear observation equation as proposed in [9]:

γt = ϕt + ηt

where: γt = (x+
t , y

+
t , z

+
t )

T , ϕt = (xt, yt, zt)
T , and ηt = (ηxt , ηyt , ηxt)

T , ηt ∼ N(0, σ2
ηI), 0 is a vector of zeros,

and I is the identity matrix.
To initialize the algorithm the following a priori distributions are considered:

• For GMF: h = 0.0018, µx0|0 = 0.2294, σx0|0 = 0.001, µy0|0 = 1.636, σy0|0 = 0.001, µz0|0 = 20.81, σz0|0 =
0.001, wishardfx = 10, wishardfy = 100 and wishardfz = 10.

• For NPF: h = 0.0018, µx0|0 = 0.2294, σx0|0 = 0.001, µy0|0 = 1.636, σy0|0 = 0.001, µz0|0 = 20.81, σz0|0 =
0.001, σηx

= 0.01, σηy
= 0.01, σηz

= 0.01, wishardfx = 10, wishardfy = 100 and wishardfz = 10.
• For GPF: h = 0.0018, µx0|0 = 0.2294, σx0|0 = 0.001, µy0|0 = 1.636, σy0|0 = 0.001, µz0|0 = 20.81, σz0|0 =
0.001, σηx = 0.01, σηy = 0.01, σηz = 0.01, wishardfx = 10, wishardfy = 10 and wishardfz = 10.

In Table I, the results of the goodness of fit measure, used to gauge the estimation quality of the algorithms, are
shown. In this case, the RMSE calculations in the table shows no significant differences in the estimated errors and
the computing time. Figure 1, shows three graphs depicting the reconstruction of the true Lorenz attractor and the
posterior means of the estimated solution by the three algorithms proposed, where it can be seen that all filters fit
almost perfectly to the original map of Lorenz.
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RMSE GMF NPF GPF
State x 0.0235 0.0458 0.0328
State y 2.2599 2.2421 2.2602
State z 0.0228 0.0237 0.0108
Time (secs.) 2.1326 2.4443 1.9424

Table I. RMSE and computing time of the algorithms GMF, NPF, and GPF.

Figure 1. Lorenz attractor reconstruction using the filters GMF, NPF and GPF.

4.2. Example 2

The second example is a temporary space model based on a stochastic differential equation for predicting rainfall
described in [4], where xt denotes the total rainfall at time t in a locality of s = (x, y) ∈ R2; and x0 is an initial
state. Suppose that the change in total rainfall during a very short time interval ∆t and (∆x)1 = γ, and (∆x)2 = 0
have probabilities p1 = λ∆t, and p2 = 1− λ∆t, respectively. The expected value and the mean squared change in
the total precipitation is given by:

E(∆x) = γλ∆t

E((∆x)2) = γ2λ∆t (57)

Letting µ = γλ∆t, and σ =
√

γ2λ∆t, a stochastic differential equation to model the total precipitation xt is
obtained:

dxt = µdt+ σdWt

x0 = 0 (58)

where dWt is a vector of a Brownian process with mean 0 and covariance matrix Qt. The evolution in time of
the marginal density of the state is given by the posterior marginal distribution p(xk|y1:k−1), which satisfies the
Fokker-Planck equation:

∂

∂t
p(xk|y1:k−1) = L(p(xk|y1:k−1) (59)

where L is a diffusion operator defined by:

L(p) = −
np∑
i=0

∂(µp)

∂xi
+

1

2

np∑
i=0

np∑
j=0

∂2[
(
σQtσ

T )ijp
]

∂xixj
(60)
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with p = p(xk|y1:k−1). The initial condition is given by p(xk−1|y1:k−1). Applying the Fokker-Planck equation to
the equation (58), we obtain:

∂p

∂t
= −µ

∂p

∂x
+

σ2Qt

2

∂2p

∂x2
(61)

The next step is to find a solution to the equation given in (61). The method of discretization of Crank and
Nicolson was used to do this. See [59] for detailed. To illustrate the methodology, a data series of daily
precipitation was considered. The data included information from January 2011 until May 2012 for three (3)
meteorological stations located in Arágua (Ceniap, Tamarindo and Tucutunemo), Venezuela. The data are available
in http : //agrometeorologia.inia.gob.ve/.
To initialize the algorithm GMF, the following a priori distributions were considered:

• Ceniap station δt = 0.001, δx = 0.001, σ = 100, Qt = 0.0001, wishardf = 10, µ = 18.5, u = 100, v = 100.
• Tucutunemo station δt = 0.1, δx = 0.1, σ = 10, Qt = 0.0001, wishardf = 10, µ = 18.5, u = 10, v = 10.
• Tamarindo station δt = 0.001, δx = 0.001, σ = 10, Qt = 0.0001, wishardf = 10, µ = 18.5, u = 100, v =
100.

To initialize the algorithm NPF, the following prior distributions were considered:

• Ceniap station deltat = 0.001, deltax = 0.001, sigma = 100, miu = 18.56, qt = 0.0001, wishardf = 10,
u = 100 and v = 100.

• Tamarindo station deltat = 0.001, deltax = 0.001, sigma = 100, miu = 18.56, qt = 0.0001, wishardf =
10, u = 100 and v = 100.

• Tucutunemo station deltat = 0.1, deltax = 0.1, sigma = 100, miu = 18.56, qt = 0.0001, wishardf = 10,
u = 10 and v = 10.

To initialize the algorithm GPF, the following prior distributions were considered:

• Ceniap station deltat = 0.001, deltax = 0.001, sigma = 10, miu = 18.56, qt = 0.0001, wishardf = 10,
u = 100 and v = 100.

• Tamarindo station deltat = 0.1, deltax = 0.1, sigma = 10, miu = 18.56, qt = 0.0001, wishardf = 10,
u = 100 and v = 100.

• Tucutunemo station deltat = 0.1, deltax = 0.1, sigma = 10, miu = 18.56, qt = 0.0001, wishardf = 10,
u = 10 and v = 10.

In table II, the RMSE estimated by the proposed algorithms are shown, where we can observe a low variability in
the RMSE for the three filters in the Ceniap station. In the Tamarindo station, the lowest RMSE was obtained by
the NPF, and the best estimated values in the Tucutunemo station were calculated with the GPF. The computing
time for the three filters in all meteorological stations are similar, although the computing time of the NPF is
slightly lower than the other two filters. In Figures 2, 3 and 4, the three graphs represent the real states in black,
the simulated states using the GMF in red, the NPF in blue and the GPF in green for the three stations. We can
see a very similar behavior between the actual values, and simulated values of the states by the three proposed
algorithms.

RMSE GMF NPF GPF
Ceniap 0.0018 0.0082 0.0019
Tamarindo 0.1792 0.0790 0.1654
Tucutunemo 0.0540 0.0253 0.0074
Time (secs.) 0.4233 0.3912 0.4826

Table II. RMSE and computing time of the algorithms GMF, NPF, and GPF.
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Figure 2. Real and estimated state by the GMF, NPF and GPF for Tamarindo station.

Figure 3. Real and estimated state by the GMF, NPF and GPF for Tucutunemo station.

Figure 4. Real and estimated state by the GMF, NPF and GPF for Ceniap station.

Stat., Optim. Inf. Comput. Vol. 4, December 2016



S. INFANTE, C. LUNA, L. SÁNCHEZ AND A. HERNÁNDEZ 305

5. Conclusions and discussion

This article has introduced a Bayesian nonparametric estimation method to approximate the solutions of a general
stochastic differential equation. The main contribution of the work is presenting an approach to combine mixtures
of Dirichlet processes and mixtures of Gaussian processes in terms of state space models. The proposed hierarchical
structures are extremely flexible with regard to the specifications of the prior assumptions of parameters, are easy
to interpret and allow to model a variety of physical phenomena under uncertainty. In addition, we propose an
efficient way to predict and update the states of the filtered distribution of the dynamic system through the GMF,
NPF and GPF algorithms. The methodology was illustrated by means of two stochastic differential equations, one
of them synthetic, and the other obtained from a real process. Since the approximate solutions were obtained from
complex models, it is shown that the proposed filters have good performance in the reconstruction of the Lorenz
attractor and the states of rainfall model. The computational implementation is also of low cost. It is also shown
that the algorithms work well in the context of nonlinear dynamic processes, which require joint estimation of
states and distributions of the noise of the equation of state. To measure the quality estimation of the algorithms
the square root mean square error was used as a measure of goodness of fit. This measures produced insignificant
errors of the estimation.
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