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Abstract This paper deals with the mean-square optimal linear estimation of linear functionals, which depend on the
unknown values of a stationary stochastic sequence from observations with a stationary noise sequence. If spectral densities
of the sequences are exactly known, we derive the formulas for calculating the mean-square errors and the spectral
characteristics of the optimal linear estimates of functionals. The minimax (robust) method of estimation is applied in the
case of spectral uncertainty, where spectral densities are not known exactly while sets of admissible spectral densities are
given. Formulas that determine the least favorable spectral densities and the minimax spectral characteristics are proposed
for some special sets of admissible densities.
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1. Introduction

Estimation of unknown values of stochastic sequences is of a great interest both in the theory of random processes
and applications of this theory to the data analysis. Such problems arise in such areas of science as oceanography,
meteorology, astronomy, radio physics, statistical hydromechanics etc. Effective methods of solution of estimation
problems (interpolation, extrapolation and filtering) of stationary sequences were developed by A. N. Kolmogorov
(see selected works by Kolmogorov [15]). Detailed description and further development of the methods can be
found in books by Yu. A. Rozanov [35] and E. J. Hannan [10]. A significant contribution to the theory of forecasting
was made by H. Wold [39, 40], T. Nakazi [31]. Constructive methods of solution of the estimation problems for
stationary stochastic processes were proposed by N. Wiener [38] and A. M. Yaglom [41, 42].

The crucial assumption of most of the methods of estimation of the unobserved values of stochastic processes is
that the spectral densities of the considered stochastic processes are exactly known. However, in practice, complete
information on the spectral densities is impossible in most cases. In this situation, one finds a parametric or
nonparametric estimate of the unknown spectral density and then apply one of the traditional estimation methods
provided that the selected density is the true one. This procedure can result in significant increasing of the value
of error as K. S. Vastola and H. V. Poor [37] have demonstrated with the help of some examples. To avoid this
effect one can search the estimates which are optimal for all densities from a certain class of admissible spectral
densities. These estimates are called minimax since they minimize the maximum value of the error. The paper by
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Ulf Grenander [9] was the first one where this approach to extrapolation problem for stationary processes was
proposed.

Several models of spectral uncertainty and minimax-robust methods of data processing can be found in the
survey paper by S. A. Kassam and H. V. Poor [14]. In papers by J. Franke [5], J. Franke and H. V. Poor [6] the
minimax extrapolation and filtering problems for stationary sequences were investigated with the help of convex
optimization methods. This approach makes it possible to find equations that determine the least favorable spectral
densities for different classes of densities.

In papers by M. Moklyachuk [19] – [22] problems of linear optimal estimation of the functionals which
depend on the unknown values of stationary sequences and processes were investigated. Methods of solution the
interpolation, extrapolation and filtering problems for periodically correlated stochastic sequences and processes
were described by M. Moklyachuk and I. Dubovetska [4], M. Moklyachuk and I. Golichenko [23]. The
corresponding estimation problems for vector-valued stationary sequences and processes were investigated in
papers by M. Moklyachuk and A. Masyutka [24]–[26]. Estimation problems for functionals which depend on
the unknown values of stochastic sequences with stationary increments were investigated by M. Luz and M.
Moklyachuk [16] - [18]. The problem of interpolation of stationary sequence with missing values was investigated
by M. Moklyachuk and M. Sidei [29, 30]. The corresponding problem for harmonizable stable sequences was
investigated by M. Moklyachuk and V Ostapenko [27], [28].

Prediction problem for stationary sequences with missing observations was investigated in papers by
P. Bondon [1, 2], Y. Kasahara, M. Pourahmadi and A. Inoue [13, 32], R. Cheng, A. G. Miamee, M. Pourahmadi [3].
The problem of interpolation of stationary sequences was considered in the paper of H. Salehi [36].

In this paper we investigate the problem of the mean-square optimal estimation of the functional Aξ =∑
j∈ZS

a(j)ξ(−j) which depends on the unknown values of a stationary sequence {ξ(j), j ∈ Z} from observations

of the sequence ξ(j) + η(j) at points j ∈ Z−\S, where the stationary sequence {η(j), j ∈ Z} is uncorrelated with

the sequence ξ(j), S =
s∪

l=1

{−(Ml +Nl), . . . ,−Ml}, ZS = {1, 2, . . .}\S+, S+ =
s∪

l=1

{Ml, . . . ,Ml +Nl},M0 = 0,

N0 = 0. The problem is investigated in the case of spectral certainty, where both spectral densities of the sequences
ξ(j) and η(j) are known. In this case we derive formulas for calculating the spectral characteristic and the mean-
square error of the optimal linear estimates using the method of projection in the Hilbert space of random variables
with finite second moments proposed by Kolmogorov [15]. In the case of spectral uncertainty, where the spectral
densities are not exactly known while a set of admissible spectral densities is given, the minimax method is applied.
Formulas for determination the least favorable spectral densities and the minimax-robust spectral characteristics of
the optimal estimates of the functional are proposed for some specific classes of admissible spectral densities.

2. Hilbert space projection method of filtering

Consider stationary stochastic sequences {ξ(j), j ∈ Z} and {η(j), j ∈ Z} with absolutely continuous spectral
measures F (dλ), G(dλ) and correlation functions of the form

Rξ(k) =
1

2π

π∫
−π

eikλf(λ)dλ, Rη(k) =
1

2π

π∫
−π

eikλg(λ)dλ,

where f(λ) and g(λ) are the spectral densities of the sequences {ξ(j), j ∈ Z} and {η(j), j ∈ Z} respectively.
We will suppose that the spectral densities f(λ) and g(λ) satisfy the minimality condition

π∫
−π

1

f(λ) + g(λ)
dλ <∞. (1)

This condition is necessary and sufficient in order that the error-free filtering of unknown values of the sequences
is impossible [35].
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The stationary stochastic sequences ξ(j) and η(j) admit the following spectral decomposition [8], [12]

ξ(j) =

π∫
−π

eijλZξ(dλ), η(j) =

π∫
−π

eijλZη(dλ),

where Zξ(dλ) and Zη(dλ) are orthogonal measures defined on (−π, π] that correspond to the spectral measures
F (dλ) and G(dλ)

EZξ(∆1)Zξ(∆2) = F (∆1 ∩∆2) =
1

2π

∫
∆1∩∆2

f(λ)dλ,

EZη(∆1)Zη(∆2) = G(∆1 ∩∆2) =
1

2π

∫
∆1∩∆2

g(λ)dλ.

Suppose that we have observations of the sequence ξ(j) + η(j) at points j ∈ Z−\S, where S =
s∪

l=1

{−(Ml +

Nl), . . . ,−Ml}. The problem is to find the mean-square optimal linear estimate of the functional

Aξ =
∑
j∈ZS

a(j)ξ(−j),

which depends on the unknown values of the sequence ξ(j), ZS = {1, 2, . . .}\S+, S+ =
s∪

l=1

{Ml, . . . ,Ml +Nl}.

Suppose that the coefficients {a(j), j = 0, 1, . . .} defining the functional Aξ satisfy the following conditions∑
k∈ZS

|a(k)| <∞,
∑
k∈ZS

(k + 1) |a(k)|2 <∞. (2)

The first condition ensures that the functional Aξ has finite second moment. The second condition ensures the
compactness in ℓ2 of operators that will be defined below.

It follows from the spectral decomposition of the sequence ξ(j) that the functional Aξ can be represented in the
following form

Aξ =

π∫
−π

A(eiλ)Zξ(dλ), A(eiλ) =
∑
j∈ZS

a(j)e−ijλ.

Consider values ξ(j) and η(j) as elements of the Hilbert space H = L2(Ω,F , P ) generated by random variables
ξ with zero mathematical expectations, Eξ = 0, finite variations, E|ξ|2 <∞, and inner product (ξ, η) = Eξη.
Denote by Hs(ξ + η) the closed linear subspace generated by elements {ξ(j) + η(j) : j ∈ Z−\S} in the Hilbert
spaceH = L2(Ω,F , P ). Let L2(f + g) be the Hilbert space of complex-valued functions that are square-integrable
with respect to the measure whose density is f(λ) + g(λ). Denote by Ls

2(f + g) the subspace of L2(f + g)
generated by functions {eijλ, j ∈ Z−\S}.

The mean-square optimal linear estimate Âξ of the functional Aξ from observations of the sequence ξ(j) + η(j)
can be represented in the form

Âξ =

π∫
−π

h(eiλ)(Zξ(dλ) + Zη(dλ),

where h(eiλ) ∈ Ls
2(f + g) is the spectral characteristic of the estimate.

The mean-square error ∆(h; f) of the estimate Âξ is given by the formula

∆(h; f, g) = E
∣∣∣Aξ − Âξ

∣∣∣2 =
1

2π

π∫
−π

∣∣A(eiλ)− h(eiλ)
∣∣2 f(λ)dλ+

1

2π

π∫
−π

∣∣h(eiλ)∣∣2 g(λ)dλ.
Stat., Optim. Inf. Comput. Vol. 4, December 2016
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The Hilbert space projection method proposed by A. N. Kolmogorov [15] makes it possible to find the spectral
characteristic h(eiλ) and the mean square error ∆(h; f) of the optimal linear estimate of the functional Asξ in the
case where spectral densities f(λ) and g(λ) of the sequences are exactly known and the minimality condition (1)
is satisfied. According to this method the optimal estimate of the functional Aξ is a projection of the element Aξ
of the space H on the space Hs(ξ + η). It can be found from the following conditions:

1)Âξ ∈ Hs(ξ + η),

2)Aξ − Âξ⊥Hs(ξ + η).

It follows from the second condition that the spectral characteristic h(eiλ) for any j ∈ Z−\S satisfies the
equations

E
[(
Aξ − Âξ

)
(ξ(j) + η(j))

]
=

=
1

2π

π∫
−π

(
A(eiλ)− h(eiλ)

)
e−ijλf(λ)dλ− 1

2π

π∫
−π

h(eiλ)e−ijλg(λ)dλ = 0.

The last relation is equivalent to equations

1

2π

π∫
−π

[
A(eiλ)f(λ)− h(eiλ)(f(λ) + g(λ))

]
e−ijλdλ = 0, j ∈ Z−\S.

Hence the function
[
A(eiλ)f(λ)− h(eiλ)(f(λ) + g(λ))

]
is of the form

A(eiλ)f(λ)− h(eiλ)(f(λ) + g(λ)) = C(eiλ),

C(eiλ) =
∑
j∈S

c(j)eijλ +

∞∑
j=0

c(j)eijλ,

where c(j), j ∈ T = S ∪ {0, 1, 2, . . .} are unknown coefficients that we have to find.
From the last relation we deduce that the spectral characteristic of the optimal linear estimate Âξ is of the form

h(eiλ) = A(eiλ)
f(λ)

f(λ) + g(λ)
− C(eiλ)

f(λ) + g(λ)
. (3)

It follows from the first condition, Âξ ∈ Hs(ξ + η), which determine the optimal linear estimate of the functional
Aξ, that the Fourier coefficients of the function h(eiλ) are equal to zero for j ∈ T ,

1

2π

π∫
−π

h(eiλ)e−ikλdλ = 0, k ∈ T,

namely

1

2π

π∫
−π

(
A(eiλ)

f(λ)

f(λ) + g(λ)
− C(eiλ)

f(λ) + g(λ)

)
e−ikλdλ = 0, k ∈ T.
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312 FILTERING FOR SEQUENCES WITH MISSING OBSERVATIONS

We will use the last equality to find equations which determine the unknown coefficients c(j), j ∈ T. After
disclosing the brackets we get the relation

∑
j∈ZS

a(j)
1

2π

π∫
−π

e−i(k+j)λf(λ)

f(λ) + g(λ)
dλ−

∑
j∈S

c(j)
1

2π

π∫
−π

e−i(k−j)λ

f(λ) + g(λ)
dλ+

∞∑
j=0

c(j)
1

2π

π∫
−π

e−i(k−j)λ

f(λ) + g(λ)
dλ

 = 0, k ∈ T.

(4)

Let us introduce the Fourier coefficients of the functions 1
f(λ)+g(λ) , f(λ)

f(λ)+g(λ) , f(λ)g(λ)
f(λ)+g(λ)

bk,j =
1

2π

π∫
−π

e−i(k−j)λ 1

f(λ) + g(λ)
dλ, (5)

rk,j =
1

2π

π∫
−π

e−i(k+j)λ f(λ)

f(λ) + g(λ)
dλ, (6)

qk,j =
1

2π

π∫
−π

e−i(k−j)λ f(λ)g(λ)

f(λ) + g(λ)
dλ. (7)

Using the introduced notations we can verify that equality (4) is equivalent to the following system of equations:

∑
j∈ZS

rk,ja(j) =
∑
j∈S

bk,jc(j) +

∞∑
j=0

bk,jc(j), k ∈ T.

Denote by a(j) = 0, j ∈ S, a(0) = 0 a(j) = 0, j ∈ S+. Thus, we can write

∑
j∈T

rk,ja(j) =
∑
j∈S

bk,jc(j) +

∞∑
j=0

bk,jc(j), k ∈ T.

The last equations can be rewritten in the following form

Ra⃗ = Bc⃗, (8)

where c⃗ is a vector constructed from the unknown coefficients c(j), j ∈ T , vector a⃗ has the same with the vector c⃗
dimension, it is of the form

a⃗ = (⃗00, a⃗1, 0⃗1, a⃗2, 0⃗2, . . . a⃗i, 0⃗i, . . . , a⃗s, 0⃗s, a⃗s+1),

where 0⃗0 is the vector which consists form |S|+ 1 zeros, where |S| =
s∑

k=1

(Nk + 1) is the amount of missing values,

vectors 0⃗i, i = 1, 2, . . . , s, consist from Ni + 1 zeros, vectors

a⃗1 = (a(1), . . . , a(M1 − 1)),

a⃗i = (a(Mi−1 +Ni−1 + 1), . . . , a(Mi − 1)), i = 2, . . . , s,

a⃗s+1 = (a(Ms +Ns + 1), a(Ms +Ns + 2), . . .),

are constructed from the coefficients that determine the functional Aξ.
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Operators B, R are linear operators in the space ℓ2 defined by matrices with coefficients (B)k,j = bk,j , k, j ∈ T ,
(R)k,j = rk,j , k, j ∈ T ,

B =


Bs,s Bs,s−1 . . . Bs,1 Bs,n

Bs−1,s Bs−1,s−1 . . . Bs−1,1 Bs−1,n

...
...

. . .
...

...
B1,s B1,s−1 . . . B1,1 B1,n

Bn,s Bn,s−1 . . . Bn,1 Bn,n

 ,

where elements in the last column and the last row are the matrices with the elements

Bl,n(k, j) = bk,j , l = 1, 2, . . . , s,

k = −Ml −Nl, . . . ,−Ml, j = 0, 1, 2, . . . ,

Bn,m(k, j) = bk,j , m = 1, 2, . . . , s,

k = 0, 1, 2, . . . , j = −Mm −Nm, . . . ,−Mm,

Bn,n(k, j) = bk,j , k, j = 0, 1, 2, . . . ,

and other elements of matrix B are the matrices with elements of the form

Bl,m(j, k) = bk,j , l,m = 1, 2, . . . , s

k = −Ml −Nl, . . . ,−Ml, j = −Mm −Nm, . . . ,−Mm.

The unknown coefficients c(k), k ∈ T , which are defined by the equations (8), can be calculated by the formula

c(k) = (B−1Ra⃗)k,

where (B−1Ra⃗s)k is the k component of the vector B−1Ra⃗.
The formula for calculating the spectral characteristic h(eiλ) of the estimate Âξ is of the form

h(eiλ) = A(eiλ)
f(λ)

f(λ) + g(λ)
−

∑
k∈T

(B−1Ra⃗)ke
ikλ

f(λ) + g(λ)
. (9)

The mean-square error of the estimate Âξ can be calculated by the formula

∆(h; f, g) = E
∣∣∣Aξ − Âξ

∣∣∣2 =
1

2π

π∫
−π

∣∣∣∣A(eiλ)g(λ) + ∑
k∈T

(B−1Ra⃗)ke
ikλ

∣∣∣∣2
(f(λ) + g(λ))2

f(λ)dλ

+
1

2π

π∫
−π

∣∣∣∣A(eiλ)f(λ)− ∑
k∈T

(B−1Ra⃗)ke
ikλ

∣∣∣∣2
(f(λ) + g(λ))2

g(λ)dλ

= ⟨Ra⃗,B−1Ra⃗⟩+ ⟨Qa⃗, a⃗⟩,

(10)

where Q is the linear operator in the space ℓ2 defined by matrix with coefficients (Q)k,j = qk,j , k, j ∈ T.
Let us summarize results and present them in the form of a theorem.

Theorem 2.1
Let ξ(j) and η(j) be uncorrelated stationary sequences with spectral densities f(λ) and g(λ) which satisfy the
minimality condition (1). The spectral characteristic h(eiλ) and the mean square error ∆(f, g) of the optimal linear
estimate of the functional Aξ which depends on the unknown values of the sequence ξ(j) based on observations of
the sequence ξ(j) + η(j), j ∈ Z−\S can be calculated by formulas (9), (10).
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Consider the problem of the mean-square optimal linear estimation of the functional

Aξ =
∑
j∈ZS

a(j)ξ(−j),

which depends on the unknown values of the sequence ξ(j) from observations of the sequence ξ(j) + η(j) at points
j ∈ Z−\S, S = {−(M +N), . . . ,−M}, ZS = {1, 2, . . .}\S+, S+ = {M, . . . ,M +N}.

From theorem 2.1 the following corollary can be derived.

Corollary 2.1
Let ξ(j) and η(j) be uncorrelated stationary sequences with spectral densities f(λ) and g(λ) which satisfy the
minimality condition (1). The spectral characteristic h(eiλ) and the mean square error ∆(f, g) of the optimal linear
estimate of the functional Aξ which depends on the unknown values of the sequence ξ(j) based on observations of
the sequence ξ(j) + η(j), j ∈ Z−\S can be calculated by formulas (11), (12)

h(eiλ) = A(eiλ)
f(λ)

f(λ) + g(λ)
−

∑
k∈T

(B−1Ra⃗)ke
ikλ

f(λ) + g(λ)
, (11)

∆(h; f, g) = ⟨Ra⃗,B−1Ra⃗⟩+ ⟨Qa⃗, a⃗⟩, (12)

where B, R, Q are linear operators in the space ℓ2 defined by matrices with coefficients (B)k,j = bk,j , k, j ∈ T ,
(R)k,j = rk,j , k, j ∈ T , (Q)k,j = qk,j , k, j ∈ T , (T = S ∪ {0, 1, 2, . . .}). For example matrix B is of the form

B =

(
Bs,s Bs,n

Bn,s Bn,n

)
,

where its components are matrices with the elements

Bs,n(k, j) = bk,j , k = −M −N, . . . ,−M, j = 0, 1, 2, . . . ,

Bn,s(k, j) = bk,j , k = 0, 1, 2, . . . , j = −M −N, . . . ,−M,

Bn,n(k, j) = bk,j , k, j = 0, 1, 2, . . . ,

Bs,s(j, k) = bk,j , k = −M −N, . . . ,−M, j = −M −N, . . . ,−M.

Consider the problem of the mean-square optimal linear estimation of the functional

Aξ =
∑
j∈ZS

a(j)ξ(−j),

which depends on the unknown values of the sequence ξ(j) from observations of the sequence ξ(j) + η(j) at points
j ∈ Z−\{−s}, ZS = {1, 2, . . .}\{s}.

It follows from theorem 2.1 that the following corollary holds true.

Corollary 2.2
Let ξ(j) and η(j) be uncorrelated stationary sequences with spectral densities f(λ) and g(λ) which satisfy the
minimality condition (1). The spectral characteristic h(eiλ) and the mean square error ∆(f, g) of the optimal linear
estimate of the functional Aξ which depends on the unknown values of the sequence ξ(j) based on observations of
the sequence ξ(j) + η(j), j ∈ Z−\{−s} can be calculated by formulas (13), (14)

h(eiλ) = A(eiλ)
f(λ)

f(λ) + g(λ)
−

∑
k∈T

(B−1Ra⃗)ke
ikλ

f(λ) + g(λ)
, (13)

∆(h; f, g) = ⟨Ra⃗,B−1Ra⃗⟩+ ⟨Qa⃗, a⃗⟩, (14)
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where B, R, Q are linear operators in the space ℓ2 defined by matrices with coefficients (B)k,j = bk,j , k, j ∈ T ,
(R)k,j = rk,j , k, j ∈ T , (Q)k,j = qk,j , k, j ∈ T , (T = {s} ∪ {0, 1, 2, . . .}),

B =

(
b−s,−s B−s,n

Bn,−s Bn,n

)
,

where elements in the last column and the last row are the matrices with the elements

B−s,n(k, j) = bk,j , k = −s, j = 0, 1, 2, . . . ,

Bn,−s(k, j) = bk,j , k = 0, 1, 2, . . . , j = −s,
Bn,n(k, j) = bk,j , k, j = 0, 1, 2, . . . .

Consider the problem of the mean-square optimal linear estimation of the functional

ANξ =
∑

j∈ZS∩{0,...,N}

a(j)ξ(−j),

which depends on the unknown values of the sequence ξ(j) from observations of the sequence ξ(j) + η(j) at points
j ∈ Z−\S, where S is defined in the introduction. The linear estimate of the functional ANξ has the representation

ÂNξ =

π∫
−π

hN (eiλ)(Zξ(dλ) + Zη(dλ)).

Define the vector a⃗N as follows: elements with indices from the set T ∩ (S ∪ {0, . . . , N}) coincide with the
elements of the vector a⃗ with the same indices and elements with indices from the set T\(S ∪ {0, . . . , N}) are
zeros. Let B, R, Q be linear operators in the space ℓ2 defined in the theorem 2.1.

The spectral characteristic hN (eiλ) and the mean square error ∆(hN ; f, g) of the optimal linear estimate of the
functional ANξ can be calculated by formulas (15), (16)

hN (eiλ) = AN (eiλ)
f(λ)

f(λ) + g(λ)
−

∑
k∈T

(B−1Ra⃗N )ke
ikλ

f(λ) + g(λ)
, (15)

∆(hN ; f, g) = ⟨Ra⃗N ,B
−1Ra⃗N ⟩+ ⟨Qa⃗N , a⃗N ⟩, (16)

where AN (eiλ) =
∑

j∈ZS∩{0,...,N}
a(j)e−ijλ.

The following corollary holds true.

Corollary 2.3
Let ξ(j) and η(j) be uncorrelated stationary sequences with spectral densities f(λ) and g(λ) which satisfy the
minimality condition (1). The spectral characteristic hN (eiλ) and the mean square error ∆(hN ; f, g) of the optimal
linear estimate of the functional ANξ which depends on the unknown values of the sequence ξ(j) from observation
of the sequence ξ(j) + η(j) at points j ∈ Z−\S can be calculated by formulas (15), (16).

Example 1. Let ξ(j) and η(j) be uncorrelated stationary sequences with the spectral densities

f(λ) = |1− αe−iλ|2, g(λ) = |1− βe−iλ|2

respectively, where |α| < 1, |β| < 1. Consider the problem of the mean-square optimal linear estimation of the
functional

A2ξ = a(1)ξ(−1) + a(2)ξ(−2)

which depends on the unknown values ξ(−1), ξ(−2) based on the observations of the sequence ξ(j) + η(j) at
points j ∈ Z−\{−n,−n+ 1}.
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The spectral density of the sequence ξ(j) + η(j) has the representation

f(λ) + g(λ) =
∣∣1− ae−iλ

∣∣2 + ∣∣1− be−iλ
∣∣2 =

∣∣x− ye−iλ
∣∣2 ,

x =
1

2

(
±
√

(1 + a)2 + (1 + b)2 ±
√

(1− a)2 + (1− b)2
)
, y =

a+ b

x
.

Since |a| < 1, |b| < 1, then
∣∣ y
x

∣∣ < 1. Making use of decomposition of the function 1
1−t into the power series we

can write the canonical factorizations of functions 1
f(λ)+g(λ) , f(λ)

f(λ)+g(λ) and f(λ)g(λ)
f(λ)+g(λ)

1

f(λ) + g(λ)
=

1

|x− ye−iλ|2
=

∣∣∣∣∣
∞∑
k=0

yk

xk+1
e−ikλ

∣∣∣∣∣
2

,

f(λ)

f(λ) + g(λ)
=

∣∣1− ae−iλ
∣∣2

|x− ye−iλ|2
=

∣∣∣∣∣
∞∑
k=0

yk

xk+1
e−ikλ −

∞∑
k=0

ayk

xk+1
e−i(k+1)λ

∣∣∣∣∣
2

=

=

∣∣∣∣∣ 1x +

∞∑
k=0

(
yk+1

xk+2
− ayk

xk+1

)
e−i(k+1)λ

∣∣∣∣∣
2

,

f(λ)g(λ)

f(λ) + g(λ)
=

∣∣1− ae−iλ
∣∣2 · ∣∣1− be−iλ

∣∣2
|x− ye−iλ|2

=

∣∣1− (a+ b)e−iλ + abe−i2λ
∣∣2

|x− ye−iλ|2
=

=

∣∣∣∣∣
∞∑
k=0

yk

xk+1
e−ikλ −

∞∑
k=0

(a+ b)yk

xk+1
e−i(k+1)λ +

∞∑
k=0

abyk

xk+1
e−i(k+2)λ

∣∣∣∣∣
2

=

=

∣∣∣∣∣ 1x +
y − ax− bx

x2
e−iλ +

∞∑
k=0

(
yk+2

xk+3
− (a+ b)yk+1

xk+2
+
abyk

xk+1

)
e−i(k+2)λ

∣∣∣∣∣
2

.

The spectral characteristic of the optimal linear estimate Â2ξ can be calculated by the formula

h2(e
iλ) = (a(1)e−iλ + a(2)e−2iλ)

f(λ)

f(λ) + g(λ)
−

∑
k∈T

(B−1Ra⃗2)ke
ikλ

f(λ) + g(λ)
,

where unknown components (B−1Ra⃗2)k, k ∈ T = {−n,−n+ 1} ∪ {0, 1, . . .} are to be found.
Linear operators B, R, Q are defined by the matricesB,R,Qwith elements of the form (5), (6), (7) respectively,

and we have vector a⃗N = (0, 0, 0, a(1), a(2), 0, . . .),

B =


b−n,−n b−n,−n+1 b−n,0 b−n,1 b−n,2 . . .
b−n+1,−n b−n+1,−n+1 b−n+1,0 b−n+1,1 b−n+1,2 . . .
b0,−n b1,−n+1 b0,0 b0,1 b0,2 . . .
b1,−n b1,−n+1 b1,0 b1,1 b1,2 . . .
b2,−n b2,−n+1 b2,0 b2,1 b2,2 . . .
. . .

 ,

R =


r−n,−n r−n,−n+1 r−n,0 r−n,1 r−n,2 . . .
r−n+1,−n r−n+1,−n+1 r−n+1,0 r−n+1,1 r−n+1,2 . . .
r0,−n r1,−n+1 r0,0 r0,1 r0,2 . . .
r1,−n r1,−n+1 r1,0 r1,1 r1,2 . . .
r2,−n r2,−n+1 r2,0 r2,1 r2,2 . . .
. . .

 ,
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Q =


q−n,−n q−n,−n+1 q−n,0 q−n,1 q−n,2 . . .
q−n+1,−n q−n+1,−n+1 q−n+1,0 q−n+1,1 q−n+1,2 . . .
q0,−n q1,−n+1 q0,0 q0,1 q0,2 . . .
q1,−n q1,−n+1 q1,0 q1,1 q1,2 . . .
q2,−n q2,−n+1 q2,0 q2,1 q2,2 . . .
. . .

 .

We need to find the matrix B−1 which defines the operator B−1. In order to find it we represent the matrix B in
the form

B =

(
K L
M N

)
,

where

K =

(
b−n,−n b−n,−n+1

b−n+1,−n b−n+1,−n+1

)
, L =

(
b−n,0 b−n,1 b−n,2 . . .
b−n+1,0 b−n+1,1 b−n+1,2 . . .

)
,

M =


b0,−n b1,−n+1

b1,−n b1,−n+1

b2,−n b2,−n+1

...
...

 , N =


b0,0 b0,1 b0,2 . . .
b1,0 b1,1 b1,2 . . .
b2,0 b2,1 b2,2 . . .

...
...

...

 .

By the Frobenius formula [7] the matrix B−1 is of the form

B−1 =

(
V −1 −V −1LN−1

−N−1MV −1 N−1 +N−1MV −1LN−1

)
,

where V = K − LN−1M .
The matrix N−1 can be found in the following way. Since matrix N is the matrix Bn,n defined in theorem 2.1,

it is constructed from the Fourier coefficients of the function 1
f(λ)+g(λ) . The function 1

f(λ)+g(λ) = |x− ye−iλ]|−2

admits the following canonical factorization, where zp are its Fourier coefficients

1

f(λ) + g(λ)
=

1

|x− ye−iλ|2
=

∞∑
p=−∞

zpe
ipλ =

∣∣∣∣∣
∞∑
k=0

ψke
−ikλ

∣∣∣∣∣
2

=

∣∣∣∣∣
∞∑
j=0

θje
−ijλ

∣∣∣∣∣
−2

,

ψk =
yk

xk+1
, k ≥ 0, θ0 = x, θ1 = −y, θj = 0, j > 1.

Hence zp =
∞∑
k=0

ψkψk+p, p ≥ 0, and z−p = zp, p ≥ 0. In the case i ≥ j we have bi,j = zi−j =
∞∑
l=i

ψl−iψl−j , and

in the case i < j we have bi,j = zi−j = zj−i =
∞∑
l=j

ψl−jψl−i.

Denote Ψ and Θ linear operators in the space ℓ2 which are defined by matrices with elements Ψi,j = ψi−j ,
Θi,j = θi−j , when 0 ≤ j ≤ i, Ψi,j = 0, Θi,j = 0, when 0 ≤ i < j. Elements of the matrix N can be represented
in the form N(i, j) = (Ψ

′
Ψ)i,j . It can be shown that the relation ΨΘ = ΘΨ = I holds true . It follows from this

relation that elements of the matrix N−1 can be calculated by the formula N−1(i, j) = (ΘΘ
′
)i,j .

Denote

N−1(i, j) = γi,j =

min(i,j)∑
l=0

θi−lθj−l. (17)

The matrix N−1 is of the form

N−1 =


γ0,0 γ0,1 γ0,2 . . .
γ1,0 γ1,1 γ1,2 . . .
γ2,0 γ2,1 γ2,2 . . .
. . .

 .
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Denote (LN−1M)k,j = βk,j , (V −1)k,j = τk,j , (N−1MV −1)k,j = −ρk,j ,
(V −1LN−1)k,j = −σk,j , (N−1 +N−1MV −1LN−1)k,j = ωk,j .

Thus the matrix B−1 is of the form

B−1 =


τ−n,−n τ−n,−n+1 σ−n,0 σ−n,1 σ−n,2 . . .
τ−n+1,−n τ−n+1,−n+1 σ−n+1,0 σ−n+1,1 σ−n+1,2 . . .
ρ0,−n ρ0,−n+1 ω0,0 ω0,1 ω0,2 . . .
ρ1,−n ρ1,−n+1 ω1,0 ω1,1 ω1,2 . . .
ρ2,−n ρ2,−n+1 ω2,0 ω2,1 ω2,2 . . .
. . .

 ,

τ−n,−n = (b−n+1,−n+1 − β−n+1,−n+1)/d,

τ−n,−n+1 = −(b−n,−n+1 − β−n,−n+1)/d,

τ−n+1,−n = −(b−n+1,−n − β−n+1,−n)/d,

τ−n+1,−n+1 = (b−n,−n − β−n,−n)/d,

d = (b−n,−n − β−n,−n)(b−n+1,−n+1 − β−n+1,−n+1)−
(b−n,−n+1 − β−n,−n+1)(b−n+1,−n − β−n+1,−n),

βk,j =

∞∑
i=0

( ∞∑
r=0

bk,rγr,i

)
bi,j ,

ρk,j = −
∞∑
i=0

γk,i

−n+1∑
r=−n

bi,rτr,j ,

σk,j = −
−n+1∑
i=−n

τk,i

∞∑
r=0

bi,rγr,j ,

ωk,j = γk,j +

∞∑
i=0

γk,i

−n+1∑
m=−n

−n+1∑
r=−n

bi,rτr,m

∞∑
l=0

bm,lγl,j = γk,j + νk,j . (18)

The unknown coefficients c(k), k ∈ T can be calculated by formulas

c(k) =
∑
j∈T

(B−1R)k,ja(j) = a(1)(B−1R)k,1 + a(2)(B−1R)k,2, (19)

(B−1R)k,j =

−n+1∑
i=−n

τk,iri,j +

∞∑
i=0

σk,iri,j , k = −n,−n+ 1, j = 1, 2;

(B−1R)k,j =

−n+1∑
i=−n

ρk,iri,j +

∞∑
i=0

ωk,iri,j , k = 0, 1, . . . , j = 1, 2. (20)

The spectral characteristic and the mean-square error of the estimate can be calculated by formulas

h2(e
iλ) = (a(1)e−iλ + a(2)e−2iλ)

f(λ)

f(λ) + g(λ)
−

∑
k∈T

c(k)eikλ

f(λ) + g(λ)
,

∆(h2; f, g) = ⟨Ra⃗2,B
−1Ra⃗2⟩+ ⟨Qa⃗2, a⃗2⟩

=
∑
k∈T

(a(1)rk,1 + a(2)rk,2) c(k) + a(1)q1,1 + a(2)q1,2 + a(1)q2,1 + a(2)q2,2.
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The coefficients rk,j can be found from the canonical factorization of the function f(λ)
f(λ)+g(λ)

f(λ)

f(λ) + g(λ)
=

∣∣∣∣∣
∞∑
k=0

ϕke
−i(k+1)λ

∣∣∣∣∣
2

, ϕ0 =
1

x
, ϕk =

yk+1

xk+2
− ayk

xk+1
, k > 0.

Hence, ri,j =
∞∑

l=max(i,j)

ϕl−iϕl−j .

Coefficients qk,j we can find from the canonical factorization of the function f(λ)g(λ)
f(λ)+g(λ)

f(λ)g(λ)

f(λ) + g(λ)
=

∣∣∣∣∣
∞∑
k=0

φke
−i(k+2)λ

∣∣∣∣∣
2

, φ0 =
1

x
, φ1 =

y − ax− bx

x2
,

φk =
yk+2

xk+3
− (a+ b)yk+1

xk+2
+
abyk

xk+1
, k > 1.

Hence, qi,j =
∞∑

l=max(i,j)

φl−iφl−j .

Example 2. Consider the problem of the mean-square optimal linear estimation of the functional A2ξ =
a(1)ξ(−1) + a(2)ξ(−2) in the case of observations of the sequence ξ(j) + η(j) at all points j ∈ Z− without
missing observations.

And compare values of the mean square errors derived in the case of missing observations and in the case of all
observations at points j ∈ Z−.

The mean-square error of the estimate is determined by the formula [18], [21]

∆1(h̃; f, g) = ⟨R̃a⃗, B̃−1R̃a⃗⟩+ ⟨Q̃a⃗, a⃗⟩,

where vector a⃗ = (0, a(1), a(2), 0, 0, . . .), and B̃, R̃, Q̃ are linear operators in the space ℓ2 defined by matrices
(B̃)k,j = bk,j , k, j ≥ 0, (R̃)k,j = rk,j , k, j ≥ 0, (Q̃)k,j = qk,j , k, j ≥ 0, where elements bk,j , rk,j , qk,j are
determined by formulas (5),(6),(7) respectively, h̃ is the spectral characteristic of the estimate of the functional
which depends on the unknown values of the sequence without missing values. Hence

∆1(h̃; f, g) =

∞∑
k=0

(a(1)rk,1 + a(2)rk,2) c̃(k) + a(1)q1,1 + a(2)q1,2 + a(1)q2,1 + a(2)q2,2,

where c̃(k) = (B̃−1R̃a⃗)k, k ≥ 0. Since matrix which determines the operator B̃ coincides with matrix N from the
previous example, elements of the matrix which determines the inverse operator B̃−1 are calculated by the formula

(17). Hence c̃(k) =
∞∑
j=0

∞∑
i=0

γk,iri,ja(j), k ≥ 0.

Consider the expression (20). Making use of (18), we can rewrite (20) in the following form

(B−1R)k,j =

−n+1∑
i=−n

ρk,iri,j +

∞∑
i=0

γk,iri,j +

∞∑
i=0

νk,iri,j , k, j ≥ 0.
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Consider the formula (19) for k ≥ 0

c(k) =
∑
j∈T

(B−1R)k,ja(j) =
∑
j∈S

(B−1R)k,ja(j) +

∞∑
j=0

(B−1R)k,ja(j)

=
∑
j∈S

(B−1R)k,ja(j) +

∞∑
j=0

(−n+1∑
i=−n

ρk,iri,j +

∞∑
i=0

γk,iri,j +

∞∑
i=0

νk,iri,j

)
a(j)

=c̃(k) +
∑
j∈S

(B−1R)k,ja(j) +

∞∑
j=0

(−n+1∑
i=−n

ρk,iri,j +

∞∑
i=0

νk,iri,j

)
a(j)

=c̃(k) + cT (k).

Hence

∆(h2; f, g) = ∆1(h̃; f, g)+
∞∑
k=0

(a(1)rk,1 + a(2)rk,2) cT (k) +
∑
k∈S

(a(1)rk,1 + a(2)rk,2) c(k).

3. Minimax-robust method of filtration

Theorem 2.1 and its corollaries can be applied to filtering of the functional in the cases where the spectral densities
of the sequences are exactly known. If complete information on the spectral densities is impossible while a class
of admissible densities is given, it is reasonable to apply the minimax-robust method of filtering which consists in
minimizing the value of the mean-square error for all spectral densities from the given class. For description of the
minimax method we propose the following definitions [19].

Definition 3.1. For a given class of spectral densitiesD = Df ×Dg the spectral densities f0(λ) ∈ Df , g0(λ) ∈ Dg

are called least favorable in the class D for the optimal linear filtering of the functional Aξ if the following relation
holds true

∆(f0, g0) = ∆ (h (f0, g0) ; f0, g0) = max
(f,g)∈Df×Dg

∆(h (f, g) ; f, g) .

Definition 3.2. For a given class of spectral densities D = Df ×Dg the spectral characteristic h0(eiλ) of the
optimal linear estimate of the functional Aξ is called minimax-robust if there are satisfied conditions

h0(eiλ) ∈ HD =
∩

(f,g)∈Df×Dg

Ls
2(f + g),

min
h∈HD

max
(f,g)∈D

∆(h; f, g) = max
(f,g)∈D

∆
(
h0; f, g

)
.

From the introduced definitions and formulas derived above we can obtain the following statement.

Lemma 3.1
Spectral densities f0(λ) ∈ Df , g0(λ) ∈ Dg satisfying the minimality condition (1) are the least favorable in the
class D = Df ×Dg for the optimal linear filtering of the functional Aξ if operators B0, R0, Q0 determined by the
Fourier coefficients of the functions

(f0(λ) + g0(λ))
−1, f0(λ)(f0(λ) + g0(λ))

−1, f0(λ)g0(λ)(f0(λ) + g0(λ))
−1

determine a solution to the constrain optimization problem

max
(f,g)∈Df×Dg

⟨Ra⃗,B−1Ra⃗⟩+ ⟨Qa⃗, a⃗⟩ =

⟨R0a⃗, (B0)−1R0a⃗⟩+ ⟨Q0a⃗, a⃗⟩.
(21)
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The minimax spectral characteristic h0 = h(f0, g0) is determined by the formula (9) if h(f0, g0) ∈ HD.

The least favorable spectral densities f0(λ), g0(λ) and the minimax spectral characteristic h0 = h(f0, g0) form a
saddle point of the function ∆(h; f, g) on the set HD ×D. The saddle point inequalities

∆(h; f0, g0) ≥ ∆
(
h0; f0, g0

)
≥ ∆

(
h0; f, g

)
∀h ∈ HD, ∀f ∈ Df , ∀g ∈ Dg

hold true if h0 = h(f0, g0) and h(f0, g0) ∈ HD,where (f0, g0) is a solution to the constrained optimization problem

sup
(f,g)∈Df×Dg

∆(h(f0, g0); f, g) = ∆ (h(f0, g0); f0, g0) , (22)

∆(h(f0, g0); f, g) =
1

2π

π∫
−π

∣∣A(eiλ)g0(λ) + C0(eiλ)
∣∣2

(f0(λ) + g0(λ))2
f(λ)dλ

+
1

2π

π∫
−π

∣∣A(eiλ)f0(λ)− C0(eiλ)
∣∣2

(f0(λ) + g0(λ))2
g(λ)dλ,

C0(eiλ) =
∑
j∈T

((B0)−1R0a⃗)je
ijλ,

The constrained optimization problem (22) is equivalent to the unconstrained optimization problem [33]:

∆D(f, g) = −∆(h(f0, g0); f, g) + δ((f, g) |Df ×Dg ) → inf, (23)

where δ((f, g) |Df ×Dg ) is the indicator function of the set D = Df ×Dg. Solution of the problem (23) is
characterized by the condition 0 ∈ ∂∆D(f0, g0), where ∂∆D(f0) is the subdifferential of the convex functional
∆D(f, g) at point (f0, g0) [34].

The form of the functional ∆(h(f0, g0); f, g) admits finding the derivatives and differentials of the functional in
the space L1 × L1. Therefore the complexity of the optimization problem (23) is determined by the complexity of
calculating the subdifferential of the indicator functions δ((f, g)|Df ×Dg) of the sets Df ×Dg [11].

Lemma 3.2
Let (f0, g0) be a solution to the optimization problem (23). The spectral densities f0(λ), g0(λ) are the least favorable
in the class D = Df ×Dg and the spectral characteristic h0 = h(f0, g0) is the minimax of the optimal linear
estimate of the functional Aξ if h(f0, g0) ∈ HD.

4. Least favorable spectral densities in the class Dε1 × Dε2

Consider the problem of the optimal linear filtering of the functional Aξ in the case where spectral densities f(λ),
g(λ) belong to the set of admissible spectral densities Dε1 ×Dε2 , where

Dε1 =

f(λ)|f(λ) = (1− ε1)u1(λ) + ε1u(λ),
1

2π

π∫
−π

f(λ)dλ = P1

 ,

Dε2 =

g(λ)|g(λ) = (1− ε2)v1(λ) + ε2v(λ),
1

2π

π∫
−π

g(λ)dλ = P2

 ,

where u1(λ), v1(λ) are known and fixed spectral densities and u(λ), v(λ) are unknown ones. These sets of spectral
densities describe “ε-contamination” models of stochastic sequences.

Stat., Optim. Inf. Comput. Vol. 4, December 2016



322 FILTERING FOR SEQUENCES WITH MISSING OBSERVATIONS

Suppose that the densities f0(λ) ∈ D0
f , g0(λ) ∈ D0

g and functions determined by formulas

hf (f0, g0) =

∣∣A(eiλ)g0(λ) + C0(eiλ)
∣∣2

(f0(λ) + g0(λ))2
, (24)

hg(f0, g0) =

∣∣A(eiλ)f0(λ)− C0(eiλ)
∣∣2

(f0(λ) + g0(λ))2
. (25)

are bounded. In this case the functional

∆(h(f0, g0); f, g) =
1

2π

π∫
−π

hf (f0, g0)f(λ)dλ+
1

2π

π∫
−π

hg(f0, g0)g(λ)dλ

is continuous and bounded in the space L1 × L1 and we can use the method of Lagrange multipliers to solve the
optimization problem (22) [33].

As a result we obtain the following relations determining the least favorable spectral densities∣∣A(eiλ)g0(λ) + C0(eiλ)
∣∣ = (f0(λ) + g0(λ))(φ1(λ) + α−1

1 ), (26)∣∣A(eiλ)f0(λ)− C0(eiλ)
∣∣ = (f0(λ) + g0(λ))(φ2(λ) + α−1

2 ), (27)

where φ1(λ) ≤ 0, and φ1(λ) = 0 when f0(λ) ≥ (1− ε1)u1(λ), φ2(λ) ≤ 0, and φ2(λ) = 0 when g0(λ) ≥ (1−
ε2)v1(λ).

The following theorem holds true.

Theorem 4.1
Let the spectral densities f0(λ) ∈ Dε1 , g0(λ) ∈ Dε2 and the minimality condition (1) holds true. Suppose that
functions determined by formulas (24), (25) are bounded. The functions f0(λ), g0(λ) determined by relations (26),
(27) are the least favorable spectral densities in the class Dε1 ×Dε2 for the optimal linear filtering of the functional
Aξ if they determine a solution to optimization problem (21). The function h(f0, g0) determined by formula (9) is
the minimax spectral characteristic of the optimal estimate of the functional Aξ.

Corollary 4.1
Suppose that the spectral density f(λ) is known, the spectral density g0(λ) ∈ Dε2 . Let the function f(λ) + g0(λ)
satisfy the minimality condition (1) and the function hg(f, g0) determined by (25) is bounded. The spectral density
g0(λ) is the least favorable in the class Dε2 for the optimal linear filtering of the functional Aξ if it is of the form

g0(λ) = max
{
(1− ε2)v1(λ), α2

∣∣A(eiλ)f(λ)− C0(eiλ)
∣∣− f(λ)

}
,

and the pair f(λ), g0(λ) determine a solution to the optimization problem (21). The function h(f, g0) determined
by formula (9) is the minimax spectral characteristic of the optimal estimate of the functional Aξ.

5. Least favorable spectral densities in the class D = D1
ε × Du

v

Consider the problem of the optimal linear filtering of the functionalAξ for the class of admissible spectral densities
D = D1

ε ×Du
v , where

D1
ε =

f(λ)
∣∣∣∣∣∣ 12π

π∫
−π

|f(λ)− f1(λ)| dλ ≤ ε

 ,

Du
v =

g(λ)
∣∣∣∣∣∣v(λ) ≤ g(λ) ≤ u(λ),

1

2π

π∫
−π

g(λ)dλ ≤ P

 ,
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where spectral densities u(λ), v(λ), f1(λ) are known and fixed and the spectral densities u(λ) and v(λ) are bounded.
The class of admissible spectral densitiesD1

ε describes a model of “ε-neighbourhood” in the space L1 of the given
bounded spectral density f1(λ). The class Du

v describes the “band” model of stochastic sequences.
Let the sequences f0(λ) ∈ D1

ε , g0(λ) ∈ Du
v determine the bounded functions hf (f0, g0), hg(f0, g0) defined by

the formulas (24), (25). It follows from the condition 0 ∈ ∂∆D(f0, g0) that the least favorable densities satisfy the
following equations ∣∣A(eiλ)g0(λ) + C0(eiλ)

∣∣ = (f0(λ) + g0(λ))Ψ(λ)α1, (28)∣∣A(eiλ)f0(λ)− C0(eiλ)
∣∣ = (f0(λ) + g0(λ))(γ1(λ) + γ2(λ) + α−1

2 ), (29)

where |Ψ(λ)| ≤ 1, and Ψ(λ) = sign(f0(λ)− f1(λ)) when f0(λ) ̸= f1(λ), α1, α2 are fixed values, γ1 ≤ 0, and
γ1 = 0 when g0(λ) ≥ v(λ), γ2 ≥ 0, and γ2 = 0 when g0(λ) ≤ u(λ).

Equations (28), (29) together with the extremal condition (21) and normalization condition

1

2π

π∫
−π

|f(λ)− f1(λ)| dλ = ε, (30)

determine the least favorable spectral densities in the class D.
The following theorem holds true.

Theorem 5.1
Let the spectral densities f0(λ) ∈ D1

ε , g0(λ) ∈ Du
v , and the minimality condition (1) holds true. Suppose the

functions defined by the formulas (24), (25) are bounded. Functions determined by equations (28)–(30) are the
least favorable spectral densities in the class D1

ε ×Du
v for the optimal linear filtering of the functional Aξ if they

determine a solution to the optimization problem (21). The function h(f0, g0) determined by formula (9) is the
minimax spectral characteristic of the optimal estimate of the functional Aξ.

Corollary 5.1
Suppose that the spectral density g(λ) is known, the spectral density f0(λ) ∈ D1

ε and the minimality condition
(1) holds true. Let the function hf (f0, g) determined by (24) be bounded. The spectral density f0(λ) is the least
favorable in the class D1

ε for the optimal estimation of the functional Aξ if it is of the form

f0(λ) = max
{
f1(λ), α1

∣∣A(eiλ)g(λ) + C0(eiλ)
∣∣− g(λ)

}
,

and the pair f0(λ), g(λ) determine a solution to the optimization problem (21). The function h(f0, g) determined
by formula (9) is the minimax spectral characteristic of the optimal estimate of the functional Aξ.

6. Least favorable spectral densities in the class D = D2
ε × Du

v

Consider the problem of the optimal linear filtering of the functionalAξ for the class of admissible spectral densities
D = D2

ε ×Du
v , where

D2
ε =

f(λ)
∣∣∣∣∣∣ 12π

π∫
−π

|f(λ)− f1(λ)|2 dλ ≤ ε

 ,

Du
v =

g(λ)
∣∣∣∣∣∣v(λ) ≤ g(λ) ≤ u(λ),

1

2π

π∫
−π

g(λ)dλ ≤ P

 ,

where spectral densities u(λ), v(λ), f1(λ) are known and fixed, the densities u(λ) and v(λ) are bounded. The class
D2

ε describes a model of ”ε-district” in the space L2 of the given bounded spectral density f1(λ).
Suppose that densities f0(λ) ∈ D2

ε , g0(λ) ∈ Du
v are such that functions hf (f0, g0), hg(f0, g0) determined by the

formulas (24), (25) are bounded.
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From the condition 0 ∈ ∂∆D(f0, g0), where D = D2
ε ×Du

v , we obtain equations which the least favorable
spectral densities should satisfy∣∣A(eiλ)g0(λ) + C0(eiλ)

∣∣2 = (f0(λ) + g0(λ))
2(f0(λ)− f1(λ))α1, (31)∣∣A(eiλ)f0(λ)− C0(eiλ)

∣∣ = (f0(λ) + g0(λ))(γ1(λ) + γ2(λ) + α−1
2 ), (32)

where α1, α2 are fixed values, γ1 ≤ 0, and γ1 = 0 when g0(λ) ≥ v(λ); γ2 ≥ 0 and γ2 = 0 when g0(λ) ≤ u(λ).
Equations (31), (32) together with the optimization problem (21) and the normalization condition

1

2π

π∫
−π

|f(λ)− f1(λ)|2 dλ = ε, (33)

determine the least favorable spectral densities in the class D.
The following theorem holds true.

Theorem 6.1
Let the densities f0(λ) ∈ D2

ε , g0(λ) ∈ Du
v be such that the minimality condition (1) holds true and the functions

determined by (24), (25) are bounded. The spectral densities f0(λ), g0(λ) are the least favorable in the class
D2

ε ×Du
v for the optimal linear filtering of the functional Aξ if they satisfy equations (31)–(33) and determine a

solution to the optimization problem (21). The function h(f0, g0) determined by formula (9) is the minimax spectral
characteristic of the optimal estimate of the functional Aξ.

Corollary 6.1
Suppose that the spectral density g(λ) is known, the spectral density f0(λ) ∈ D2

ε and the minimality condition(1)
holds true. Let the function hf (f0, g) determined by formula (24) be bounded. The spectral density f0(λ) is the
least favorable in the class D2

ε for the optimal linear filtering of the functional Aξ if the following relation holds
true ∣∣A(eiλ)g(λ) + C0(eiλ)

∣∣2 = (f0(λ) + g(λ))2(f0(λ)− f1(λ)),

and the pair f0(λ), g(λ) determine a solution to the optimization problem (21). The function h(f0, g) determined
by formula (9) is the minimax spectral characteristic of the optimal estimate of the functional Aξ.

7. Conclusions

In the article we propose methods of the mean-square optimal filtering of functionals which depend on the unknown
values of a stationary sequence based on observed data of the sequence with a stationary noise and with missing
observations. In the case of spectral certainty, where spectral densities of the stationary sequences are exactly
known, we derive formulas for calculating the spectral characteristics and values of the mean-square errors of the
optimal estimates of the functionals. In the case of spectral uncertainty, where spectral densities of the stationary
sequences are not exactly known while certain sets of admissible densities are given, we derive relations which
determine the least spectral densities and the minimax-robust spectral characteristics of estimates.
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