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Abstract Data Envelopment Analysis (DEA) is an optimization technique to evaluate the efficiency of Decision- Making
Units (DMU’s) together with multiple inputs and multiple outputs on the strength of weighted input and output ratios, where
as Linear fractional programming is used to obtain DEA frontier. The efficiency scores of DMU obtained through either
input orientation or output orientation DEA model will provide only local optimum solution. However, the mixed orientation
of input and output variables will provide the global optimal solution for getting the efficient DMUs in DEA. This study
has proposed the relationships of a mixed orientation of input and output variables using fractional linear programming
along with Least-Distance Measure (LDM). Both constant returns to scale (CRS) and variable returns to scale (VRS) are
considered for the comparative study. .
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1. Introduction

The objective function involving the ratio of two programming problems is the fractional programming. If both
numerator and denominator have linear functions of decision variables then such programming is called linear
fractional programming, otherwise it is nonlinear fractional programming. The generalization of linear fractional
programming is also referred as fractional programming problems (FPP). We need FPP for the situations like
(i) maximizing efficiency of the production processes such as maximizing the ratio of virtual output (a linear
combination of outputs) to virtual input (a linear combination of inputs) (ii) maximizing the rate of returns
to scale on investment (profit to capital) or (iii) maximization of return on risk, etc. DEA is a most powerful
optimization technique to take the challenges of efficiencies like Technical efficiency, scale efficiency, allocate
efficiency, economic efficiency as well as scope and super efficiency. Many profit and non-profit organizations
make use of DEA optimization technique for evaluating and benchmarking the relative efficiencies of different
DMUs in the organization.

There is evidence that the FPP is assuming either the ratio of objective functions or the ratio of constraints
until 1989 [4]. There are applications where a single ratio is to be maximized or minimized while in other
problems the objective function consists of a sum of fractions. Some kind of minimization of input to output
was proposed [17], the systematic approaches to this problem was published by Chanes and Cooper [7]. Some
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more publications were due to [22, 24, 23, 27, 14]. The transformation through modification of the feasible set in
order to convert the fractional program into a linear program was mentioned by Chanes and Cooper [7]. A large
number of problems in the management science directly or indirectly depend on the fractional programs. A more
recent comprehensive survey on DEA studies are found in [22]. Charnes, Cooper, and Rhodes [8] introduced a
non-parametric optimization technique for evaluates the efficiency of DMU known as DEA which is a special case
of FPP. DEA is a very flexible method of comparing the efficiency performance of various decision-making units
utilizing the multiple inputs to produce multiple outputs [16] Initially, DEA maximizing the ratio of virtual output
(a linear combination of outputs) by virtual input (a linear combination of inputs)[8]. The original CCR model was
applicable only to technologies characterized by constant returns to scale. The transformations of linear fractional
DEA into LPP model was proposed by [18].The conventional DEA modeling where estimating efficiency values,
only for the specific DMU. However an optimal decision is possible only when there is the full information about
slacks variables also. The weakness of conventional DEA-model was improved by Joe Zhu see [15]. The maximum
efficient score is unity in standard DEA-model. If efficient score is unity, then we can conclude that the specific
DMU is full efficient. But in case of small number of DMUs, the efficient set can contain almost all DMUs. In such
cases, for the further classification of efficient DMUs the super efficiency model is very useful see [21]. The super
efficiency measure is important for ranking of efficient DMU’s see [26]. Then slack based measure is applied in
case of super efficiency see [11]. More recently, DMUs are assumed as the black box process,where the inefficiency
of inefficient DMUs can be identified by dividing into stages, for measuring the efficiency as whole, as well as for
each stage independently by using conventional DEA methodology. For two stages see [12], for three stages see[2]
and for decomposition of efficiency into networking DEA-model see [13].

DEA has become very popular with more than 40,000 publications in last four decades by over 2,500 authors
[10].Empirical analysis of the performance of universities typically takes the form of estimating cost functions with
the focus on economies of size and scope or an analysis of efficiency using data envelopment analysis [3].Duality
has only established a link between multiplier and envelopment DEA- models [19].Efficiency analysis is performed
not only to estimate the current level of efficiency but also provided information about how to remove inefficiencies
[9]. Least-Distance Measure (LDM) is a technique which provides the efficiency measure as well as relevant
benchmarking information. The LDM define the strongly efficient set first and then calculate the least distance
benchmark from the evaluated DMU [5].

In the aforesaid beck drop, this paper is an attempt to utilize the duality concept in FPP for solving the DEA-
models, and explore the duality in DEA for evaluation of productive efficiencies of an organization is characterized
by CRS and VRS. In addition, the attempt has been made to explore the concept of input-oriented and output-
oriented models for assessing the productive efficiency by mixed-orientation of inputs and outputs in DEA and
find the global optimal solution by using LDM. The DEA-model with mixed-orientation has important practical
implications which are discussed in this paper which is structured as follows. Section first introduces linear
fractional programming (LFP), transformation of LFP into LPP by exploring Chanes,Cooper-transformation,
affine transformations and duality in LFP. Section second explains the development of DEA for evaluation of
technical efficiencies of organization which is characterized by constant and variable returns to scales with different
orientations. Section third includes BCC DEA model with mixed-orientation. Section four deals with the global
optimal solution of DEA-model by using LDM approach. The final section discusses data, results and conclusion.

1.1. Linear Fractional Programming

The linear fractional programming is the optimization technique dealing with the ratio of two linear functions (or a
ratio of two linear programming problems) subject to a set of linear inequalities and non-negativity constraints on
the variables. In 1956 linear fractional programming was developed by J.R. Isbell and W.H. Marlow, the problem
is solved directly beginning with a basic feasible solution and showing the conditions under which the solution
can be improved. The technique followed is similar to the simplex method of linear programming problem (LLP).
The general Mathematical form of the linear fractional Programming given by J.R. Isbell and W.H. Marlow is as
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follows:

Max z =
c
′
x+ α

d′x+ β

sub to

Ax ≤ b; x ≥ 0 (1.1)

where x, c, d are n× 1 vectors, A is a m× n matrix, b is a m× 1 vector, c’ and d’ are the transpose of vector c and
d and α , β are scalar quantities.
When (d

′
x+ β) ̸= 0, the linear fractional programming problem can be expressed as an equivalent linear problem

with an additional constraint and an additional variable. The usual simplex method may be then applied to find
the optimal solution. There is another approach for solving the linear fractional programming problem (LFPP) is
to covert into LPP by using transformation given by Charnes Cooper and States under the assumption that the
Feasible Region is non-empty and bounded then the CC transformation is given below:

y =
x

d′x+ β
and t =

1

d′x+ β
⇒ y = xt

The modified problem is in linear from which is feasible for the Simplex Algorithm for solve linear programming
problems developed by an American mathematician G.B.Dantziga in 1946. The standard form of the converted
problem is as given below.

Max z = c
′
y + α t

sub to

Ay − b t ≤ 0 (1.2)

d
′
y + β t = 1

t ≥ 0 , y ≥ 0

The model (1.2) is of linear form obtained by Charnes Cooper transformation through denominator normalized
linear programming problem. Similarly we can get the numerator normalized linear programming problem for
(c′x+ α) ̸= 0 by using the following transformation:

y =
x

c′x+ α
and t =

1

c′x+ α
⇒ y = xt

The numerator normalized linear model is given as:

Max z = d
′
y + β t

sub to

−Ay − b t ≥ 0 (1.3)

c
′
y + α t = 1

t ≥ 0 , y ≥ 0

The models in (1.2) and (1.3) are LPP’s but not in standard from. These LPPs are not feasible for simplex algorithm.
In such cases the alternative technique called Duality in linear programming is very useful. The two different dual
problems of models are given as.
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Dual Programming Program of Model (1.2)
Max θ
sub to
z

′
A+ d θ ≥ c (1.4)

−z d+ βθ ≥ b
z ≥ 0 , z ∈ ℜ and θ ∈ ℜ

Dual Programming Program of Model (1.3)
Max ϕ
sub to
−z A+ c ϕ ≤ d (1.5)
z

′
b+ αϕ ≤ b

z ≥ 0 , z ∈ ℜ and ϕ ∈ ℜ
To preserve co- linearity of linear fractional programming in order to convert into linear programming problem

is called Affine Transformation gave by Euler in 1748.

y =
x

ϕ(d′x+ β)
and t =

1

ϕ(d′x+ β)
⇒ y = xt

By using the affine transformation in the linear fractional programming given in the model (1.1) become:

Max z = ϕ(c
′
x+ α t)

sub to

A y − b t ≤ 0 (1.6)

d
′
y + β t =

1

β

t ≥ 0 , y ≥ 0

Alternative setting in the affine transformation for numerator normalized is shown below:

y =
x

θ(c′x+ α)
and t =

1

θ(c′x+ α)
⇒ y = xt

Substitute affine transformation with by above settings in the model (1.1) is called denominator normalized affine
transformation and equivalent LPP which given below:

Min z = θ(d
′
y + β t)

sub to

− A y + b t ≥ 0 (1.7)

c
′
y + α t =

1

θ
t ≥ 0 , y ≥ 0

The two different Dual problems of models (1.6) and (1.7) are shown in (1.8) and (1.9).

Min
θ

ϕ

sub to

z
′
A + d θ ≥ c ϕ (1.8)

− z
′
b+ βθ = αϕ

z ≥ 0
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Similarly, the following programming problem is Dual problem of model(1.7).

Max
ϕ

θ
sub to

− z
′
A + c ϕ ≤ dθ (1.9)

z
′
A+ αϕ = βθ

z ≥ 0

Since models (1.8) and (1.9) are identical and thus can be written as in the following programming problem.

Min
θ

ϕ

sub to

z
′
A − cϕ+ d θ ≥ 0 (1.10)

z
′
b+ αϕ− βθ ≤ 0

θ ≥ 0, ϕ ̸= 0 and z ≥ 0

Since again model (1.8) is the dual of the model (1.6). The weak duality theorem states that if x is a feasible
solution for the primal minimization problem and y is a feasible solution for the dual maximization problem, then
duality implies g(x) ≤ f(y); where f and g are the objective functions for primal-dual problems respectively This
yield as:

ϕ(c
′
y + α t) ≤ θ

ϕ
⇒ c

′
x+ α

d′ x+ β
≤ θ

ϕ

Similarly, because (1.9) is the dual of (1.7) then the below result is true:

θ(d
′
y + β t) ≥ ϕ

θ
⇒ c

′
x+ α

d′ x+ β
≤ θ

ϕ

Therefore, equation (1.10) is a dual fractional programming of model (1.1) and the relation from (1.1) to (1.10) in
shown in the following table;

Relationship from model (1.1) to model (1.10)
Problem Numerator

Normalization
Denominator
Normalization

θ = 1 ϕ = 1 linear fractional form

Primal (1.7) (1.6) (1.3) (1.2) (1.1)
Dual (1.9) (1.8) (1.5) (1.4) (1.10)

2. Data Envelopment Analysis (DEA)

DEA can be formulated from the LFPP. Thus DEA is particular form of FPP and hence is a LPP based technique for
evaluating the efficiency of DMU. The two type of models used in DEA on the basis of the production processes is
CCR-model for CRS production processes and BCC-model for VRS production processes with two different types
of orientations namely input orientation and output orientation. These sections discussed the mixed-orientation in
the situation of CRS and VRS and compare the results with LDM.
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2.1. Constant Returns to Scale Model (CRS)

Let xij and yrj denotes ith input; i = 1 , 2 , 3 , . . . m and rth output; r = 1 , 2 , 3 , . . . s respectively of the
jthDMU ; j = 1 , 2 , 3 , . . . n. The CCRmodel for calculating the efficiency of DMUk under the assumption of
CRS. The Mathematical formulation of CCR, in general, is given as:

Eccr
k =Max

∑s
r=1 uryrk∑m
i=1 vixik

sub to ∑s
r=1 uryrj∑m
i=1 vixij

≤ 1 ; j = 1 , 2 , 3 , . . . n. (2.1.1)

ur ≥ 0; r = 1 , 2 , 3 , . . . s and vi ≥ 0; i = 1 , 2 , 3 , . . . m.

Where ur and viare the unknown weights given to the inputs and outputs respectively.

The mathematical model (2.1.1) is in the fractional form has an infinite number of solutions. In order to avoid
fractional form, we are using transformation given by Charnes and Cooper. There is two type of setting based on
the denominator normalization and numerator normalization. The denominator normalization is known as input-
oriented of CCR model and involves setting:

t =
1∑m

i=1 vixik
, µr = tur and νi = t vi ⇒

s∑
r=1

µryrj =

∑s
r=1 uryrj∑m
i=1 vixik

and
m∑
i=1

νixij =

∑m
i=1 vixij∑m
i=1 vixik

. . . (Ta)

By using the transformation (Ta) in the mathematical model (2.1.1), the modified model is input-oriented CCR-
DEA model given by Charnes, Cooper, and Rhodes[8].

Eccr
k = Max

s∑
r=1

µryrk

sub to
m∑
i=1

νixik = 1 (2.1.2)

s∑
r=1

µryrj −
m∑
i=1

νixij ≤ 0, j = 1, ...n

ur, vi ≥ ϵ r = 1, ..., s. and i = 1, ...,m.

Where µr and νi are the unknown weights given to the inputs and outputs respectively.
Similarly, numerator normalization involves the setting:

t =
1∑s

r=1 uryrk
, µr = tur and νi = t vi ⇒

s∑
r=1

µryrj =

∑s
r=1 uryrj∑s
r=1 uryrk

and
m∑
i=1

νixij =

∑m
i=1 vixij∑s
r=1 uryrk

. . . (Tb)
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Output-oriented CCR model is given as:

Eccr
k = Min

m∑
i=1

νixik

sub to
s∑

r=1

µryrk = 1 (2.1.3)

s∑
r=1

µryrj −
m∑
i=1

νixij ≤ 0, j = 1, ...n

ur, vi ≥ ϵ , r = 1, ..., s. and i = 1, ...,m.

The models (2.1.2) and (2.1.3) are in multiplier form of CCR model. By using the concept of Duality in the linear
programming, we will get envelopment from of (2.1.2) and (2.1.3).Thus the Envelopment from input-oriented of
CCR model showing in equation (2.1.2) is given below:

Eccr
k = Min θk

sub to
n∑

j=1

yrjλj − s+r = yrk ; r = 1, ...s (2.1.4)

n∑
j=1

xijλj + s−i = θkxik ; i = 1, ...m

s+r ≥ 0 , s−i ≥ 0 and λj ≥ 0 ; j = 1, ...n.

Similarly , envelopment from output-oriented of CCR model showing in equation (2.1.3) is given below:

Eccr
k = Max ϕk

sub to
n∑

j=1

yrjλj − s+r = ϕkyrk ; r = 1, ...s (2.1.5)

n∑
j=1

xijλj + s−i = xik ; i = 1, ...m

s+r ≥ 0 , s−i ≥ 0 and λj ≥ 0 ; j = 1, ...n.

Another, transformation to convert the fractional form into linear form by applying using affine transformation
with setting:

t =
1

ϕk

∑m
i=1 viyik

, µr = tur and νi = t vi ⇒

s∑
r=1

µryrj =

∑s
r=1 uryrj

ϕk

∑m
i=1 vixik

and
m∑
i=1

νixij =

∑m
i=1 vixij

ϕk

∑m
i=1 vixik

. . . (Tc)
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The envelopment from of Input-oriented CCR model is given below:

Eccr
k = Max ϕk

s∑
r=1

µryrk

sub to
m∑
i=1

νixik =
1

ϕk
(2.1.6)

s∑
r=1

µryrj −
m∑
i=1

νixij ≤ 0, j = 1, ...n.

µr ≥ 0 ; r = 1, ..., s.

νi ≥ 0 ; i = 1, ...,m.

Similarly, affine transformation for output-orientation CCR envelopment model:

t =
1

θk
∑s

r=1 uryrk
, µr = tur and νi = t vi ⇒

s∑
r=1

µryrj =

∑s
r=1 uryrj

θk
∑s

r=1 uryrk
and

m∑
i=1

νixij =

∑m
i=1 vixij

θk
∑s

r=1 uryrk
. . . (Td)

Output-oriented CCR envelopment model given as:

Eccr
k = Min θk

m∑
i=1

νixik

sub to
s∑

r=1

µryrk =
1

θk
(2.1.7)

s∑
r=1

µryrj −
m∑
i=1

νixij ≤ 0, j = 1, ...n.

µr ≥ 0 ; r = 1, ..., s.

νi ≥ 0 ; i = 1, ...,m.

Dual of modal (2.1.6) and (2.1.7) can be written as:

Eccr
k = Min

θk
ϕk

sub to
n∑

j=1

yrjλj − s+r = ϕkyrk ; r = 1, ...s (2.1.8)

n∑
j=1

xijλj + s−i = θkxik ; i = 1, ...m

s+r ≥ 0 , s−i ≥ 0 , ϕk ̸= 0 and λj ≥ 0 ; j = 1, ...n.
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Where s+r and s−i are input and output slacks.
If ϕk = 1 then the model (2.1.8) is input- oriented CCR envelopment model, and if θk = 1 then, the model (2.1.8)

is output-oriented CCR envelopment model. Since, we know that Min( 1
ϕk

) is same as Max(ϕk). By the definition
of CCR-efficiency for input-oriented CCR envelopment model. if θk = 1. Then the DMU under evaluation is
CCR-efficient, otherwise DMU is inefficient. In the same manner, if ( θkϕk

= 1) then the envelopment model (2.1.8)

envelopment model with mixed-orientation is efficient. Thus if ( θ
∗
k

ϕ∗
k

= 1) then neither current input level can be
reduced nor current output level can be expended. This indicates that DMUk is on the frontier. Otherwise, DMUk

is dominated by the frontier.
The concept of efficiency given Pareto-Koopmans states that a DMUk under evaluation is efficient if,

1. (θ∗k / ϕ∗
k) = 1 .

2. All slacks are zero. i.e., s+r = 0 , s−i = 0 ∀ i , j ∈ Z+

If one of the slack is non-zero, then DMUk under evaluation is weakly efficient. This means DMUk can improve
by reducing the current level of input and expend the outputs. The identification of possible input excesses and
output shortfalls can be improved by solving the mixed-oriented CCR envelopment model (2.1.8) for two phases.
In the first phase, we are getting the optimal feasible solution of mixed-oriented CCR envelopment mode. In the
second phase, we are using the knowledge of optimal solution and solve for all slacks. Phase Second of CCR
envelopment model is given below;

Max

[
m∑
i=1

s−i +

s∑
j=1

s+r

]
sub to

n∑
j=1

yrjλj − s+r = ϕkyrk ; r = 1, ...s (2.1.9)

n∑
j=1

xijλj + s−i = θkxik ; i = 1, ...m

s+r ≥ 0 , s−i ≥ 0 and λj ≥ 0 ; j = 1, ...n.

Thus, the envelopment model (2.1.8) and (2.1.9) represent a two-phase of DEA process with mixed-orientation.
From equation (2.1.8) and (2.1.9) we will get Two phase of CCR envelopment model as shown below equation
(2.1.10).

Eccr
k = Min

θk
ϕk

− ϵ

[
m∑
i=1

s−i +

s∑
j=1

s+r

]
sub to

n∑
j=1

yrjλj − s+r = ϕkyrk ; r = 1, ...s (2.10)

n∑
j=1

xijλj + s−i = θkxik ; i = 1, ...m

s+r ≥ 0 , s−i ≥ 0 , ϕk ̸= 0 and λj ≥ 0 ; j = 1, ...n.

If ϕk is taking as a constant then model (2.1.10) is input-oriented CCR envelopment model. If θk is taking as a
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constant then model (2.1.10) is output-oriented CCR envelopment model. In the phase 2nd, we are subtracting

ϵ

[∑m
i=1 s

−
i +

∑s
j=1 s

+
r

]
for input-oriented and adding the same factor for output-oriented in the objective

function. Where the ϵ is non-Archimedean constant Charnes [8]. In phase first we solve envelopment model (2.1.10)
for θk or ϕk by putting one of them as fixed to one. In phase 2nd, we are using the estimated value of both θ∗k and
ϕ∗
k to solve the model (2.1.10) for (λj , s

+
r and s−i ∀ i , j and r ). The DMUk is efficient if θ∗k = 1 and ϕ∗

k = 1
and all slacks are zero. Otherwise, DMUk is considered inefficient.

2.2. Variable Returns to Scale Model (VRS)

As previously stated, the CRS data envelopment model assumes that the DMU’s are operating at an optimal scale.
This model permits a measure of global technical efficiency to be obtained without variations in returns to scale.
In the real world however, this optimal behavior is often precluded by some factors such as in the imperfect
competition and constraints in finance etc. To take this circumstance into account Banker Charnes and Cooper
[6] have extended DEA to the case of VRS. This model distinguishes between pure technical efficiency (TE)
and scale efficiency (SE), and identifies if increasing, decreasing or constant returns to scale are present. As a
consequence, the assumptions of CRS envelopment model has changed by adding one more constraint know as
convexity constraint.

Ebcc
k = Min θk

sub to
n∑

j=1

yrjλj − s+r = yrk ; r = 1, ...s (3.1)

n∑
j=1

xijλj + s−i = θkxik ; i = 1, ...m

n∑
j=1

λj = 1 ; j = j = 1, ...n.

λj ≥ 0 , s+r ≥ 0 and s−i ≥ 0.

The multiplier form of BCC-model is obtained by using the CC-transformation as shown in the previous section
in equation (Ta) and (Tb) for input-oriented and output -oriented BCC-models respectively. By exploring the
concept of duality in Data Envelopment Analysis given by Charnes and Cooper [6], for converting the multiplier
form into the envelopment form. The efficiency criterion is given by Pareto-Koopmans [1] states that a DMUk

under evaluation is efficient if,

1. BCC model with orientations.

• Ebcc
k = 1 ⇒ (θk = 1) → input− oriented BCC −model.

• Ebcc
k = 1 ⇒ (ϕk = 1) → output− oriented BCC −model.

2. All slacks are zero. i.e., s+r = 0 , s−i = 0 ∀ i , j ∈ Z+ .

Both the conditions (1) and (2) must be satisfied, then only DMUk is fully technical efficient and if, condition (1)
only is satisfied then the DMUk is said weakly efficient. Otherwise, if condition (1) also not satisfies the DMUk

is said to be inefficient.
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3. BCC Data Envelopment Analysis Model with mixed-orientation

The BCC variable returns to scale DEA model given by Banker,Charnes and Cooper [6] is applicable for both
input-oriented and output-oriented respectively. In the input-oriented BCC-model, where we tries to minimizing the
input level (resources) in order to produce the same level of output (production). Similarly, in the output-oriented
BCC-model we are maximize output level (production) by utilizing fixed amount of inputs (resources). But there
are many combinations of inputs and outputs lying between input and output orientations coming under mixed-
oriented which are more satiable for the optimal efficiency. In the mixed-orientation we are trying to improve the
efficiency by changing both input and outputs of DMUk under evaluation. For the graphical representation of
mixed-orientation see figure 1.

The DMU A,B,C,D,E and F are efficient in the constant returns to scale DEA-model, while

Figure 1. Input , Output and Mixed orientations in Constant and variable Return scale production.

DMU H,C,G and F are efficient in the variable returns to scale DEA-model and other DMUs are inefficient.
DMU C is efficient in both the situations. In CRS, the value input orientation is same as the value of output
orientation. But it is not true VRS as shown DMUj and DMUK in Fig.1. The inefficient DMUs can achieve
their targets (efficiency) by using any of the orientation, but mixed-orientation is only orientation through which
the inefficient DMUs gets the global optimization of value efficiency.

3.1. Mathematical formulation of BCC-model with mixed-orientation

In both the orientations. viz, input-oriented and output-oriented give only the local optimization. But global
optimization has to be achieved in a mixed orientation. The convexity constraint

∑n
j=1 λj = 1 ; j = 1, ...n.

imposed in the envelopment form of BCC (variable returns to scale) DEA model [6], can also be imposed to obtain
the envelopment form of a mixed-oriented variable returns to scale DEA model (3.1) from the mixed-oriented
constant returns to scale DEA model (2.8). The envelopment form of BCC-model with mixed-orientation is as
follows:

Ebcc
k = Minimise

θk
ϕk
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sub to
n∑

j=1

yrjλj − s+r = ϕkyrk ; r = 1, ...s (3.2.1)

n∑
j=1

xijλj + s−i = θkxik ; i = 1, ...m

n∑
j=1

λj = 1 ; j = j = 1, ...n.

s+r ≥ 0 , s−i ≥ 0 , ϕk ̸= 0 and λj ≥ 0

where Ebcc
k is the efficiency of DMUk.

The efficiency score of inefficient DMUs in CCR-model with mixed-orientation lying between the input
and output orientations efficiency scores. The constancy of the value of θk/ϕk does not apply for variable returns
to scale DEA-model because θk (value of input-orientation) in BCC-model does not equal to 1/ϕk (ϕk value of
output-orientation). Since the projected value of inefficient DMUk is lying on the line segment joining the values
of two orientations. Since the value of θk lies between ( θki ≤ θk ≤ 1 ) where θkI is the input oriented value
of Kth −DMU , and value of ϕk lies between ( 1 ≤ ϕk ≤ ϕko ) . Where ϕko is the output-oriented value of
Kth −DMU in the BCC-model. The value of (θk / ϕk) is calculated by using the input-oriented and output-
oriented BCC-models or put ϕk = 1 in (3.2.1). While 1

ϕk
is the efficiency score of output BCC DEA model.

4. Least Distance Measure (LDM)

Both the basic models CCR [8] under the assumption of CRS and BCC [6] under the assumption of VRS
are applicable either an input-orientation (i.e. indicate that an inefficient DMU is made efficient through the
proportional reduction of its inputs while its outputs proportions are held constant), or output-orientation (i.e.
an inefficient unit is made efficient through the proportional increase of its outputs, while the inputs proportions
remain unchanged). In CRS situation, the efficiency value of DMU ′s using input-oriented DEA-model is same as
efficiency value of DMU ′s using output-oriented DEA-model. But it is not true in BCC (VRS) DEA model. Since
though input-oriented and output-oriented DEA-models of an inefficient DMU ′s achieves only local optimization
efficiency score, while global optimization efficiency score achieves only by using mixed-oriented (varying both
inputs level and outputs level) simultaneously in the DEA-models. In CRS DEA-model, the efficiency value of
inefficient DMU ′s using mixed-orientation is lying between other two orientations. But in VRS, the efficiency
score of inefficient DMU ′s lies between other two orientations graphically, but not numerically. This section
addresses Least-Distance measure (LDM) with mixed-orientation of inefficient DMUs.

The set of observation satisfying the Pareto-efficiency conditions and their convex combination is defined
as strongly efficient set Et, such that,

Et =

[
(xt , yt)

/
Max

[
s∑

r=1

s+r +

m∑
i=1

s−i

]]
= 0

sub to

s−i = xit −
n∑

j=1

xijλj ; i = 1, ...m. (4.1)
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s+r =

n∑
j=1

yrjλj − yrt; r = 1, ...s

n∑
j=1

λj = 1; λj ≥ 0 ∀ j = 1, ...n.

where Xij is the ith input, yrj is the rth output of jth DMU and Et is a strongly efficient set of k DMUs [9]. The
classified DEA-efficient DMUs as strongly (extremely) efficient if and only if, the maximum number of the non-
zero optimal virtual multiplier for a DMU in the set is equal to the dimension of performance space. The concept
of least-distance is derived from the extremely (strongly) efficient set Et, and it is more suitable in a primal space
rather than in dual space.

Least-Distance measure is given by Baek, and Lee, [5] the objective function of Least-Distance Measure converts
the distance between the evaluated DMU(xk , yK) and the strongly efficient set Et (targeted set) is described as
follows:

θk =Max

1 − 1

m+ s

{
m∑
i=1

(
xt
i − xk

i

R−
i

)2

+

s∑
r=1

(
ytr − ykr

R+
r

)2
} 1

2


sub to

[xt , yt] ∈ Et (4.2)

where R−
i = max

j
{xij} − min

j
{xij}.

R+
r = max

j
{yrj} − min

j
{yrj}.

xij and yrj arethe i
th inputand rth outputof jth DMUrespectively.

xk and yK are inputs and outputs of the kth inefficient DMU (DMU under evaluation), k ∈ j = 1, 2, ..n. (xt, yt )
are inputs and outputs of tth strongly efficient DMU (targeted DMU), t ∈ [j = 1, 2, .., n].
The first and foremost activity in LDM is to define the strongly efficient set of DMUs and then evaluate the
inefficient DMU by calculating the least- distance benchmark between them. The limitation associated with both
orientation in the CCR and BCC envelopment models overcome by using the LDM and it satisfy the conditions of
good efficiency measure [20] which are defined as follows;

• (P1). (θ = 1) if and only if, DMUk is fully efficient. i.e., θ asymptotically converges to 0 if and only if
DMUk is fully inefficient, such that 0 ≤ θ ≤ 1.

• (P2). θ is strongly monotonic.
• (P3). θ satisfying the translation invariant property.
• (P4). θ is unit invariant.

4.1. Least- Distance measure (LDM) algorithm

The algorithm of LDM includes four steps.
Step 1:- Solve the additive DEA model for each DMU and categorize each DMU as either Pareto efficient or

Stat., Optim. Inf. Comput. Vol. 4, December 2016



Q. F. DAR, T. R. PADI, AND A. M . TALI. 339

inefficient. The Pareto efficient DMU (Xt, yt) have zero as the optimal value of additive DEA and defined set Et,
such that Et satisfy model (4.1). For each Pareto inefficient DMU∗, and go to next step.
Step 2:- Make combination composed of (m+ s) components of set Et, where m and s are the number of inputs
and outputs respectively. If the number of components of set Et equal to t, then (tCm+s) combinations are available
[20].
Step 3:- For each combination compute the quadratic equation as shown below and obtain optimal solution as
(x∗, y∗) [5]

Min

{
m∑
i=1

(
xt
i − xk

i

R−
i

)2

+

s∑
r=1

(
ytr − ykr

R+
r

)2
}

sub to

x = XE
t λ (4.1.1)

y = Y E
t λ

etλ = 1

λ ≥ 0

Where XE
t and Y E

t is the input and output matrix of tth combination of set E, xt = (x1, x2, x3, ..., xm) yt =
(y1, y2, y3, ..., ys)
Step 4:- sort the array of (x,, y,) is an increasing order according to the objective of the model (4.1) and solve the
additive DEA by adding each (x,, y,) one by one. The first (x,, y,) evaluated as being additive efficient is defined
as (x∗, y∗), and then (x∗, y∗) is the nearest projection point from (xk, yk) to the strongly efficient set Et. Then,

θ =1 − 1

m+ s

{
m∑
i=1

(
xt
i − xk

i

R−
i

)2

+

s∑
r=1

(
ytr − ykr

R+
r

)2
} 1

2

Where θ becomes the efficiency measure in the Least-Distance Measure [5]. The quadratic model (4.1.1) can be
transformed into a linear programming problem.

5. Empirical illustration

This section provides an empirical illustration which helps to clarify the difference between CRS and VRS with
mixed-orientation of inputs and outputs and comparative advantage of LDM upon the conventional DEA models.
The financial data of 24 Islamic Banking institutions [25] is used as an empirical illustration which consists
of three inputs and two outputs, out of 24 banks, only 6 banks (1, 4, 14, 16, 18 and 21) are inefficient in both
situations of BCC with CRS and VRS, as shown in (Table 1).

5.1. Results and Conclusion

The efficiency value of input and output orientations for inefficient DMU ′s under the CRS is same. But it not true
in general for VRS as shown in the Table 1 under column (4 and 8) for each inefficient DMUs. This shows
the optimal value of inputs and outputs in the mixed-orientation model is not usually lying between the two
orientations. The input and output-oriented DEA models achieved the local optimal solution of efficiency, where as
the mixed-orientation DEA model of inefficient DMU’s provide the global optimal solution of inputs and outputs
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as shown in (Table 2). The benchmarking information under the input-oriented BCC- Approach is fixed at least
one output (either △ y1 = 0 or △ y2 = 0 or both); where as in mixed-orientation we are able to change both
input and output simultaneously as shown in (Table 2) under Least- Distance Measure. The paper focused on least
distance between the initial value (given value of inputs and out puts) and benchmarking value (targeted value of
inputs and outputs) of inefficient DMUs. The least- distance measure provided the nearest benchmark of inputs
and outputs in the inefficient DMUs; as shown in (Table 2) by comparing the Li (input-oriented distance), Lo

(output-oriented distance) and L (least-distance).

Table I. Results of BCC-Model (CRS and VRS) of inefficient banks using mixed orientation.

DMU’s Constant Returns to Scale Results Variable Returns to Scale Results
θ (1) ϕ (2) θ

ϕ (3) ϕ
θ (4) θ (5) ϕ (6) θ

ϕ (7) ϕ
θ (8)

Bank 1 0.9786 1 0.9786 1.0218 0.9407 1 0.9907 1.0094
1 1.0218 0.9786 1.0218 1 1.0888 0.9185 1.0875

Bank 4 0.5441 1 0.5441 1.8378 0.5783 1 0.5783 1.7293
1 1.8377 0.5441 1.8378 1 1.7109 0.5845 1.7109

Bank 14 0.7621 1 0.7621 1.3122 0.7835 1 0.7835 1.2764
1 1.3121 0.7621 1.3122 1 1.2989 0.7699 1.2989

Bank 16 0.9265 1 0.9265 1.0794 0.9269 1 0.9269 1.0789
1 1.0793 0.9265 1.0794 1 1.0792 0.9266 1.0792

Bank 18 0.9256 1 0.9259 1.0800 0.9531 1 0.9531 1.0492
1 1.0800 0.9259 1.0800 1 1.0463 0.9557 1.0463

Bank 21 0.8866 1 0.8866 1.1279 0.9221 1 0.9221 1.0845
1 1.1279 0.8866 1.1279 1 1.0829 0.9234 1.0829

Note:- θ is output - oriented value efficiency calculated by putting ϕ = 1 in the model (3.2.1), while 1
ϕ is

input-oriented efficiency value calculated by putting θ = 1 in the model (3.2.1). The benchmarking information
of inefficient DMUs by using BCC DEA technique and Least-Distance Measure technique, are as shown in
(Table 2).

Table II. Comparison of Benchmarking information of DEA -BCC Approach with Least- Distance Measure Approach

DMU’s Input-Oriented BCC- Approach
Lo

Least- Distance Measure Approach
△x1 △x2 △x3 △y1 △y2 Li △x1 △x2 △x3 △y1 △y2 L

Bank 1 76 1159 464 0 0 1251 2474 15 820 2 327 7 883
Bank 4 150 15675 2373 4257 0 16415 27066 268 15355 1115 4723 1031 16138

Bank 14 705 9625 1575 0 0 9778 19487 128 8524 27 3745 91 9312
Bank 16 429 7977 3656 0 0 8785 19132 649 445 184 8298 731 8369
Bank 18 969 21944 1160 0 0 21995 36272 154 20215 209 5740 1050 21100
Bank 21 490 36877 2380 1380 0 39463 73736 906 16725 1381 1069 2149 33560

Note: △ means the change of each variable to remove inefficient, i.e., △ = initial − optimal. L denotes the
distance between given value and targeted value; Li and LO are the input and output oriented distances using BCC
DEA-model.
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