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1. Introduction

Fixed point theorems are a very performance tool of the present mathematical applications. Also, random fixed
point theorems are stochastic generalizations of Banach’s fixed point theorem and Banach’s type fixed point
theorems in complete metric spaces. Random nonlinear analysis is an important mathematical methodology which
is mainly concerned with the study of random nonlinear operators and their properties and its development
is required for study of wide classes of random operator equations. Random Techniques have been crucial in
various areas from pure mathematics to applied sciences. The study of random fixed point theorem was first
introduced by Prague school of probability in the 1950s. Later, Spacek [1] and Hans [2, 3] first proved random
fixed point theorems for random contraction mappings in separable complete metric spaces. Moreover, there
were many authors who have studied about random fixed point theorems and its application, for instance, in
[4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. In the sense of another fixed point theorems,
there are many mathematicians who studied common fixed point theorems in various mappings and spaces (see in
[22, 23, 24, 25, 26])

On the other hand, in 1970, Takahashi [27] first suggested the knowledge of convex metric spaces and first
studied the fixed point theorems for non-expansive mappings in this spaces. Later, the iterative processes for non-
expansive mappings in the hyperbolic type space was studied by Kirk and Goebel, see in [28, 29]. Later, many
paper of Liu [30, 31, 32] showed some sufficient and necessary conditions for two schemes of Ishikawa iterative
process of asymptotically quasi-non-expansive mappings to converge to fixed point in a convex Banach space.
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Next, Tian [33] give some sufficient and necessary conditions for Ishikawa iterative process of two asymptotically
quasi-non-expansive mappings which introduced by Das and Debats [34] to converge to fixed points in convex
metric spaces.

Recently, in a convex metric spaces, Khan [35] suggested the iterative process for common fixed points of
asymptotically quasi-non-expansive mappings {Ti : i ∈ J} where J = {1, 2, 3, ..., k} as follows:

xn+1 = W (Tn
k y(k−1)n, xn;αkn),

y(k−1)n = W (Tn
k−1y(k−2)n, xn;α(k−1)n),

y(k−2)n = W (Tn
k−2y(k−3)n, xn;α(k−2)n),

...
y2n = W (Tn

1 y1n, xn;α2n),

y1n = W (Tn
1 y0n, xn;α1n),

(1)

where y0n = xn and {αin} are real sequences in [0, 1] .
Also, Wang and Liu [36] introduced an Ishikawa type iterative process with errors to estimate the fixed point

mappings of T and S which were uniformly quasi-Lipschitzian mappings in generalized convex metric spaces as
follows:  xn+1 = W (xn, Syn, un, an, bn, cn),

yn = W (xn, Txn, vn, a
′
n, b

′
n, c

′
n),

(2)

where {an}, {bn}, {cn}, {a′n}, {b′n} and {c′n} are real sequences in [0, 1] such that an + bn + cn = a′n + b′n + c′n =
1 and {un}, {vn} are two bounded sequence.

Recently, the S-iterative process was suggested by Agarwal, O’Regan and Sahu [37] in a Banach space. They
proved that this iterative process converges faster than Mann iterative process and Ishikawa iterative process.

x1 ∈ K,

xn+1 = (1− αn)Txn + αnT (yn),

yn = (1− βn)xn + βnT (xn), n ∈ N,
(3)

where {αn} and {βn} are the sequences in (0, 1). Also, there were many authors who have studied about this
iterative process for estimate a fixed point in various spaces and them results showed that the rate of convergence
for this iterative process is much quicker than another iterative process (see e.g.,[38, 39, 40, 41, 42]).

Motivated and inspired by (1), (2) and (3), we modified the following random S-iterative process in a generalized
convex metric space. Let {Ti : i ∈ J} where J = {1, 2, 3, ..., k} be a finite family of random uniformly quasi-
Lipschitzian operators such that Ti : Ω×K → K, where K is a non-empty closed convex subset of a separable
generalized convex metric space (X, d) with a convex structure W (see in definition 3 and 4). Let ζ1 : Ω → K be a
measurable mapping, the sequence {ζn(ω)} is generated by

ζn+1 = W (Tn
k (ω, ζn(ω)), T

n
k (ω, χ(k−1)n(ω)), vkn(ω);αkn, βkn, γkn),

χ(k−1)n = W (ζn(ω), T
n
k−1(ω, χ(k−2)n(ω)), v(k−1)n(ω);α(k−1)n, β(k−1)n, γ(k−1)n),

χ(k−2)n = W (ζn(ω), T
n
k−2(ω, χ(k−3)n(ω)), v(k−2)n(ω);α(k−2)n, β(k−2)n, γ(k−2)n),

...
χ2n = W (ζn(ω), T

n
2 (ω, χ1n(ω)), v2n(ω);α2n, β2n, γ2n),

χ1n = W (ζn(ω), T
n
1 (ω, χ0n(ω)), v1n(ω);α1n, β1n, γ1n),

(4)
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where χ0n(ω) = ζn(ω), for any given i ∈ J , {αin}, {βin}, {γin} are real sequences in [0, 1] with αin + βin + γin =
1 and the bounded sequence {vin(ω)} : Ω → K is a sequence of measurable mappings which {vin(ω)} ∈ K,
∀ω ∈ Ω and ∀n ∈ N.

The purposes of this paper are to suggest the modified random S-iterative process and prove some stochastic
fixed point theorems of a finite family of random uniformly quasi-Lipschitzian operators in a generalized convex
metric space. In this paper was organized as follows. In section 2 and 3, we present preliminaries and main results,
respectively.

2. Preliminaries

Overview on this paper, we denote the notation that Tn(ω, x) is the n th iteration T (ω, T (ω, ...T (ω, x)...)) of T and
the letter I denotes the random mapping T : Ω×K → K defined by I(ω, x) = x and T 0 = I . First, we present
about the following definition of a random fixed point operator T .

Definition 1
[43] Let (Ω,Σ) be a measurable space with Σ be a σ-algebra of subsets of Ω, and let K be a non-empty subset of a
metric space (X, d).

i) A mapping ξ : Ω → X is measurable if ξ−1(U) ∈ Σ for any open subset U of X;
ii) the operator T : Ω×K → K is a random mapping iff for any fixed x ∈ K, T (·, x) : Ω → K is measurable

and continuous if ∀ω ∈ Ω, T (ω, x) : K → X is continuous;
iii) a measurable mapping ξ : Ω → X is a random fixed point of the random operator T : Ω×X → X iff

T (ω, ξ(ω)) = ξ(ω), ∀ω ∈ Ω.

By above definition 1, we denote the set of all random fixed points of a random operator T by RF (T ). Next, we
present about the following definitions of operator T that using in our main results.

Definition 2
Let K be a non-empty subset of a separable metric space (X, d) and T : Ω×K → K be a random operator. The
operator T is called

i) an asymptotically nonexpansive random operator if there exists a sequence of measurable mappings
{kn(ω)} : Ω → [1,∞) with limn→∞ kn(ω) = 0 such that

d(Tn(ω, x), Tn(ω, y)) ≤ (1 + kn(ω))d(x, y)

for all ω ∈ Ω and x, y ∈ K;
ii) a uniformly L-Lipschitzian random operator if

d(Tn(ω, x), Tn(ω, y)) ≤ Ld(x, y)

for all ω ∈ Ω, x, y ∈ K and L is positive constant;
iii) an asymptotically nonexpansive random operator if there exists a sequence of measurable mappings

{kn(ω)} : Ω → [1,∞) with limn→∞ kn(ω) = 0 such that

d(Tn(ω, η(ω)), ξ(ω)) ≤ (1 + kn(ω))d(η(ω), ξ(ω))

for all ω ∈ Ω, where ξ : Ω → K is a random fixed point of operator T and η : Ω → K is any measurable
mapping;

iv) a uniformly quasi-Lipschitzian random operator if

d(Tn(ω, η(ω)), ξ(ω)) ≤ Ld(η(ω), ξ(ω))

for all ω ∈ Ω, where ξ : Ω → K is a random fixed point of operator T , η : Ω → K is any measurable mapping
and L is positive constant;
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v) an semi-compact random mapping if for any sequence of measurable mappings {ξn(ω)} : Ω → K, with
limn→∞ d(T (ω, ξn(ω)), ξn(ω)) = 0, for all ω ∈ Ω there exists a subsequence {ξnj} of {ξn} which converges
pointwise to ξ, where ξ : Ω → K is a measurable mapping.

Now, we present about the following definition of a convex structure in a metric space and a generalized convex
metric space.

Definition 3
[27] A convex structure in a metric space (X, d) is a mapping W : X ×X × [0, 1] → X satisfying, for any
x, y, u ∈ X and any λ ∈ [0, 1]

d(u,W (x, y, λ)) ≤ λd(u, x) + (1− λ)d(u, y).

A metric space together with a convex structure is said to be a convex metric space. A non-empty subset K of X is
called convex if W (x, y, λ) ∈ K for any (x, y, λ) ∈ K ×K × [0; 1].

Definition 4
[33, 36] Let X be a metric space, I = [0, 1], {αn}, {βn}, {γn} be real sequence in [0, 1] with αn + βn + γn = 1. A
mapping W : X3 × I3× → X is called a convex structure on X , if it satisfies the following conditions: for each
(x, y, z;αn, βn, γn) ∈ X3 × I3 and u ∈ X ,

d(u,W (x, y, z;αn, βn, γn)) ≤ αnd(u, x) + βnd(u, y) + γnd(u, z).

A metric space together with a convex structure is called a generalized convex metric space.

In the sense of random fixed point, a non-empty subset K of X is called convex if W (x, y, z;αn, βn, γn) ∈ K
for any (x, y, z;αn, βn, γn) ∈ X3 × I3. The mapping W : K3 × I3 → X is called a random convex structure if for
any measurable mappings ξ, η, ζ : Ω → K and each fixed αn, βn, γn ∈ [0, 1] with αn + βn + γn = 1, the mapping
W (ξ(·), η(·), ζ(·)) : Ω → K is measurable.

The last, we present the following lemmas for proving the main results as follow.

Lemma 1
[44] Let X be a separable metric space and Y a metric space. If f : Ω×X → Y is measurable in ω ∈ Ω and
continuous in x ∈ X , and if x : Ω → X is measurable, then f(·, x(·)) : Ω → Y is measurable.

Lemma 2
[31] Let {pn}, {qn}, {rn} be sequences of nonnegative real numbers satisfying the following conditions:

pn+1 ≤ (1 + qn)pn + rn,
∑∞

n=0 qn < ∞,
∑∞

n=0 rn < ∞

we have

i) limn→∞ pn exists;
ii) if lim infn→∞ pn = 0, then limn→∞ pn = 0.

3. The main results

In this section, we state and prove some stochastic fixed point theorems of a finite family of random uniformly
quasi-Lipschitzian operators in a generalized convex metric space as follow.

Lemma 3
Let K be a nonempty closed convex subset of a separable generalized convex metric space (X, d). Let {Ti : i ∈ J}
where J = {1, 2, 3, ..., k} be a finite family of uniformly quasi- Lipschitzian random mappings Li > 0. Suppose
that the sequence {ζn(ω)} is as in (4) and

∑∞
n=0(βkn + γkn) < ∞. If F = ∩k

i=1RF (Ti) ̸= ∅, then
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1. there exist two positive constants M0,M1, such that;

d(ζn+1(ω, ζ(ω)) ≤ (1 + ΘnM0)d(ζn(ω), ζ(ω)) + ΘnM1 (5)

where Θn = βkn + γkn and αkn ≤ γnk, for all ζ(ω) ∈ F and n ∈ N;
2. there exist a positive constants M2, such that;

d(ζn+m(ω), ζ(ω)) ≤ M2d(ζn(ω), ζ(ω)) +M1M2Σ
n+m−1
j=n Θj , (6)

for all ζ(ω) ∈ F and n ∈ N.

Proof

1. Let ζ(ω) ∈ F . Since {vin(ω)} are bounded sequences in K for any j ∈ J , there exists M > 0 such that

M = supω∈Ω max1≤i≤k d(vin(ω), ζ(ω)).

Let L = max1≤i≤k{Li} > 0. From the sequence in (4), we get

d(χ1n(ω), ζ(ω))

= d(W (ζn(ω), T
n
1 (ω, χ0n(ω)), v1n(ω);α1n, β1n, γ1n), ζ(ω))

≤ α1nd(ζn(ω), ζ(ω)) + β1nd(T
n
1 (ω, χ0n(ω)), ζ(ω)) + γ1nd(v1n(ω), ζ(ω))

≤ α1nd(ζn(ω), ζ(ω)) + β1nLd(χ0n(ω), ζ(ω)) + γ1nM
= α1nd(ζn(ω), ζ(ω)) + β1nLd(ζ0n(ω), ζ(ω)) + γ1nM
≤ d(ζn(ω), ζ(ω)) + Ld(ζ0n(ω), ζ(ω)) +M
= (1 + L)d(ζn(ω), ζ(ω)) +M.

For 1 ≤ i ≤ k − 1, suppose that

d(χin(ω), ζ(ω)) = (1 + L)id(ζn(ω), ζ(ω)) + Σi−1
j=0L

jM

holds. Then

d(χ(i+1)n(ω), ζ(ω))

= d(W (ζn(ω), T
n
i+1(ω, χin(ω)), v(i+1)n(ω);α(i+1)n, β(i+1)n, γ(i+1)n), ζ(ω))

≤ α(i+1)nd(ζn(ω), ζ(ω)) + β(i+1)nd(T
n
i+1(ω, χin(ω)), ζ(ω))

+γ(i+1)nd(v(i+1)n(ω), ζ(ω))

≤ α(i+1)nd(ζn(ω), ζ(ω)) + β(i+1)nLd(χin(ω), ζ(ω))

+γ(i+1)nd(v(i+1)n(ω), ζ(ω))

≤ α(i+1)nd(ζn(ω), ζ(ω)) + β(i+1)nL{(1 + L)id(ζn(ω), ζ(ω)) + Σi−1
j=0L

jM}
+γ(i+1)nd(v1n(ω), ζ(ω))

≤ {α(i+1)n + β(i+1)nL(1 + L)i}d(ζn(ω), ζ(ω)) + β(i+1)nLΣ
i−1
j=0L

jM+ γ(i+1)nM
≤ {1 + L(1 + L)i}d(ζn(ω), ζ(ω)) + Σi

j=1L
jM+M

= {1 + L(1 + L)i}d(ζn(ω), ζ(ω)) + Σi
j=1L

jM+ L0M
≤ {(1 + L)i}d(ζn(ω), ζ(ω)) + Σi

j=1L
jM.
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Therefore, for any 1 ≤ i ≤ k, by mathematical induction, we get

d(χin(ω), ζ(ω)) ≤ (1 + L)id(ζn(ω), ζ(ω)) + Σi−1
j=0L

jM.

Then, it follows from (4) that

d(ζn+1(ω), ζ(ω))

= d(W (Tn
k (ω, ζn(ω)), T

n
k (ω, χ(k−1)n(ω)), vkn(ω);αkn, βkn, γkn), ζ(ω))

≤ αknd(T
n
k (ω, ζn(ω)), ζ(ω)) + βknd(T

n
k (ω, χ(k−1)n(ω)), ζ(ω))

+γknd(vkn(ω), ζ(ω))

≤ αknLd(ζn(ω), ζ(ω)) + βknLd(χ(k−1)n(ω), ζ(ω))

+γknd(vkn(ω), ζ(ω))

≤ αknLd(ζn(ω), ζ(ω)) + βknL{(1 + L)k−1d(ζn(ω), ζ(ω))

+Σk−2
j=0L

jM}+ γknM

≤ {αknL+ βknL(1 + L)k−1}d(ζn(ω), ζ(ω)) + βknLΣ
k−2
j=0L

jM+ γknM

≤ {αknL+
βknL(1 + L)k

1 + L
}d(ζn(ω), ζ(ω)) + (βkn + γkn)(Σ

k−2
j=0L

jM+M)

≤ {αknL(1 + L)

1 + L
+

βknL(1 + L)k

1 + L
}d(ζn(ω), ζ(ω)) + ΘnΣ

k−1
j=0L

jM

≤ {αkn(1 + L) + βkn(1 + L)k}d(ζn(ω), ζ(ω)) + +ΘnΣ
k−1
j=0L

jM

≤ {1 + αkn(1 + L)k + βkn(1 + L)k}d(ζn(ω), ζ(ω)) + ΘnΣ
k−1
j=0L

jM

≤ {1 + (βkn + γkn)(1 + L)k}d(ζn(ω), ζ(ω)) + ΘnΣ
k−1
j=0L

jM
= (1 + ΘnM0)d(ζn(ω), ζ(ω)) + ΘnM1

where Θn = βkn + γkn, M0 = (1 + L)k and M1 = Σk−1
j=0L

jM.
2. By 1 + x ≤ ex for any x ≥ 0, we get

d(ζn+m(ω), ζ(ω))

≤ (1 + Θn+m−1M0)d(ζn+m−1(ω), ζ(ω)) + Θn+m−1M1

≤ eΘn+m−1M0{(1 + Θn+m−2M0)d(ζn+m−2(ω), ζ(ω)) + Θn+m−2M1}
+Θn+m−1M1

≤ eΘn+m−1M0eΘn+m−2M0d(ζn+m−2(ω), ζ(ω)) + Θn+m−2M1 +Θn+m−1M1

≤ e(Θn+m−1+Θn+m−2)M0d(ζn+m−2(ω), ζ(ω)) + e(Θn+m−1M0(Θn+m−2 +Θn+m−1)M1

...

≤ eM0Σ
n+m−1
j=1 Θjd(ζn+m−2(ω), ζ(ω)) + eM0Σ

n+m−1
j=1 ΘjM1Σ

n+m−1
j=1 Θj

≤ eM0Σ
∞
j=1Θjd(ζn+m−2(ω), ζ(ω)) + eM0Σ

∞
j=1ΘjM1Σ

n+m−1
j=1 Θj

≤ M2d(ζn+m−2(ω), ζ(ω)) +M1M2Σ
n+m−1
j=1 Θj ,

where M2 = eM0Σ
∞
j=1Θj .

Stat., Optim. Inf. Comput. Vol. 5, March 2017



P. SAIPARA, W. KUMAM AND P. CHAIPUNYA 71

Theorem 1
Let K be a non-empty closed convex subset of a separable complete generalized convex metric space (X, d)
with a random convex structure W . Let {Ti : i ∈ J} : Ω×K → K be a finite family of continuous uniformly
quasi-Lipchitzian random operators with Li > 0. Suppose that the sequence {ζn(ω)} is generated by (4) and
Σ∞

n=1(βkn + γkn) < ∞. If F =
∩k

i=1 RF (Ti) ̸= ∅, then {ζn(ω)} converges to a common fixed point of {Ti : i ∈ J}
if and only if lim infn→∞ d(ζn(ω),F) = 0, where d(x,F) = inf{d(x, y) : ∀y ∈ F}.

Proof
By lemma 3, we have

d(ζn+1(ω,F) ≤ (1 + ΘnM0)d(ζn(ω),F) + ΘnM1.

Because Σ∞
n=1(βkn + γkn) < ∞, by Lemma 2, thus limn→∞ d(ζn(ω),F) exists. From hypothesis,

lim infn→∞ d(ζn(ω),F) = 0, we get

limn→∞ d(ζn(ω),F) = 0.

Now, we prove that {ζn(ω)} is a Cauchy sequence. Actually, for each ε > 0, there exists a constant N0 such that
for all n ≥ N0, we get

d(ζn(ω),F) ≤ ε
4M2

and Σ∞
n=N0

Θn ≤ ε
4M1M2

.

Especially, there exists ϱ1(ω) ∈ F and N1 > N0, where N1 is constant such that

d(ζN1(ω), ϱ1(ω)) ≤ ε
4M2

.

By Lemma 3, we get

d(ζn+m(ω), ζn(ω))

= d(ζn+m(ω), ϱ(ω)) + d(ϱ(ω), ζn(ω))

≤ M2d(ζN1
(ω), ζ(ω)) +M1M2Σ

n+m−1
j=N1

Θj +M2d(ζN1
(ω), ζ(ω))

+M1M2Σ
n−1
j=N1

Θj

≤ 2M2d(ζN1(ω), ζ(ω)) +M1M2(Σ
n+m−1
j=N1

Θj +Σn−1
j=N1

Θj)

≤ 2M2d(ζN1(ω), ζ(ω)) + 2M1M2Σ
∞
j=N1

Θj

≤ 2M2(
ε

4M2
) + 2M1M2(

ε

4M1M2
) = ε.

That is {ζn(ω)} is a Cauchy sequence in closed convex subset of complete generalized convex metric spaces.
Therefore, {ζn(ω)} converges to a point of K. Suppose limn→∞ ζn(ω) = ϱ(ω), ∀ω ∈ Ω. Since Ti are continuous by
Lemma 1, we know that for any measurable mapping f : Ω → K,Tn

i (ω, f(ω)) : Ω → K are measurable mappings.
So, {ζn(ω)} is a sequence of measurable mappings. Hence, ϱ : Ω → K is also measurable. Now, we show that
ϱ(ω) ∈ F . From

d(ϱ(ω),F) ≤ d(ζn(ω), ϱ(ω)) + d(ζn(ω),F).

Since d(ζn(ω), ϱ(ω)) = 0 and d(ζn(ω),F) = 0, so, we get d(ϱ(ω),F) = 0. Hence, ϱ(ω) ∈ F .

From definition 2, if T is an asymptotically quasi-nonexpansive random operator, then T is a uniformly quasi-
Lipschitzian random operator ((L = supn≥1{kn})). And if RF (T ) ̸= ∅, then every uniformly L-Lipschitzian
random operator is a uniformly quasi-Lipschitzian random operator, we get the following corollary.
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Corollary 1
Let K be a non-empty closed convex subset of a separable complete generalized convex metric space (X, d)
with a random convex structure W . Let {Ti : i ∈ J} : Ω×K → K be a finite family of continuous asymptotically
quasi-nonexpansive random operator with Li > 0. Suppose that the sequence {ζn(ω)} is generated by (4) and
Σ∞

n=1(βkn + γkn) < ∞. If F =
∩k

i=1 RF (Ti) ̸= ∅, then {ζn(ω)} converges to a common fixed point of {Ti : i ∈ J}
if and only if lim infn→∞ d(ζn(ω),F) = 0, where d(x,F) = inf{d(x, y) : ∀y ∈ F}.

Theorem 2
Let K be a non-empty closed convex subset of a separable complete generalized convex metric space (X, d) with
a random convex structure W . Let {Ti : i ∈ J} : Ω×K → K be a finite family of continuous uniformly quasi-
Lipchitzian random mappings with Li > 0. Suppose that the sequence {ζn(ω)} generated by (4), Σ∞

n=1(βkn +

γkn) < ∞ and F =
∩k

i=1 RF (Ti) ̸= ∅. If for some given 1 ≤ l ≤ k,

(i) limn→∞ d(Tl(ω, ζn(ω)), ζn(ω)) = 0;
(ii) there exists a positive constant M3 such that

d(Tl(ω, ζn(ω)), ζn(ω)) ≥ M3d(ζn(ω),F).

Then {ζn(ω)} converges to a common fixed point of {Ti : i ∈ J}.

Proof
By condition (i), we get

limn→∞ d(Tl(ω, ζn(ω)), ζn(ω)) = 0,

that is,

d(Tl(ω, ζn(ω)), ζn(ω)) = 0.

Also, by condition (ii), we get

M3d(ζn(ω),F) ≤ d(Tl(ω, ζn(ω)), ζn(ω)) = 0,

that is,

M3d(ζn(ω),F) = 0.

Thus, follow proof from Theorem 3, we get, {ζn(ω)} converges to a common fixed point of {Ti : i ∈ J}. This
completes the proof.

Theorem 3
Let K be a non-empty closed convex subset of a separable complete generalized convex metric space (X, d) with
a random convex structure W . Let {Ti : i ∈ J} : Ω×K → K be a finite family of continuous uniformly quasi-
Lipchitzian random mappings with Li > 0. Suppose that the sequence {ζn(ω)} generated by (4), Σ∞

n=1(βkn +

γkn) < ∞ and F =
∩k

i=1 RF (Ti) ̸= ∅. If

(i) for all 1 ≤ i ≤ k; limn→∞ d(Tl(ω, ζn(ω)), ζn(ω)) = 0;
(ii) for some 1 ≤ l ≤ k; Tl is semi-compact.

Then {ζn(ω)} converges to a common fixed point of {Ti : i ∈ J}.

Proof
By conditions (i) and (ii), there exists a subsequence {ζnj (ω)} ⊂ {ζn(ω)} such that limj→∞ ζnj = ζ∗(ω), ∀ω ∈ Ω,
where ζ∗(ω) ∈ K. Since Ti are continuous for i ∈ J . So, {ζn(ω)} is a sequence of measurable mappings. Hence,
ζ∗ : Ω → K is also measurable. Since limj→∞ d(Ti(ω, ζnj (ω)), ζnj (ω)) = d(Ti(ω, ζ

∗(ω)), ζ∗(ω)) = 0, we get,
ζ∗(ω) ∈ F , ∀ω ∈ Ω. By Lemma 6, we get
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d(ζn+1(ω), ζ
∗(ω)) ≤ (1 + ΘnM0)d(ζn(ω), ζ

∗(ω)) + ΘnM1.

Since Σ∞
n=1Θn < ∞, by Lemma 2, there exists ρ ≥ 0 such that

lim
n→∞

d(ζn(ω), ζ
∗(ω)) = ρ. (7)

Since lim infn→∞ d(ζn(ω), ζ
∗(ω)) = 0, we get

lim
n→∞

ζn(ω) = ζ∗(ω),

that is

lim
n→∞

d(ζn(ω) = ζ∗(ω)) = 0. (8)

By (7) and (8), we get ρ = 0.

Hence, {ζn(ω)} converges to common fixed point of {Ti : i ∈ J}. This completes the proof.
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