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Abstract A condition-based maintenance policy is considered for a deteriorating system including both of preventive
and corrective maintenance actions. The gamma process is used to model stochastic degradation in the probability space.
Although, the cost of preventive maintenance is considered as an uncertain variable due to incomplete information, and its
distribution is estimated based on the opinions of some experts using the Delphi method. The optimal policy is determined by
minimizing the expected cost rate function. Since in this function, there are both random variables discussing in a probability
space, and an uncertain variable, which is considered in an uncertain space, we have to study the optimal policy in a chance
space which is a combination of probability and uncertain spaces. The proposed methodology is explained in an illustrative
example. Finally, the results are applied to a real data set.
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1. Introduction

Maintenance plays an important role in industry. Recent developments in the industry have led to intense
competition among manufacturers to provide high-quality products. Considering this issue, manufacturers must
increase the quality and reliability of their production systems to achieve success. System failure creates heavy
costs for manufacturers. In addition, replacing the entire system is expensive and it is unreasonable to do after
each failure. Therefore, it is very important to provide maintenance solutions to keep the system in optimal
operating conditions. In fact, optimal maintenance solutions increase the operating time of the system and improve
its reliability. To read more about the types of maintenance policies, one may refer to [4, 11].

All systems and equipment in various branches of industry such as production lines, aviation and shipping
systems are subject to degradation. Therefore, many failure mechanisms can be interpreted using degradation
models. The level of erosion of a system or its components can be measured continuously or at different inspection
times. Many researchers have used the theory of stochastic processes, especially gamma and Wiener processes, to
develop degradation models. To study about the mathematical features of the gamma process, one may refer to [2].
Noortwijk [15] used the gamma process in maintenance. Pandey et al. [18] discussed a maintenance analysis based
on gamma stochastic process.

In recent years, condition-based maintenance (CBM) policies based on degradation models have been developed.
A CBM is a preventive maintenance strategy that relies on the monitoring, or periodic or aperiodic inspection of
assets or equipment to determine when a maintenance action is necessary. It involves the use of sensors and other
monitoring equipment to collect data on the performance of equipment. The CBM policies end up in a more
efficient and cost-effective maintenance actions against performing maintenance on a fixed schedule or when an
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equipment is failed because of unexpected downtime and emergency repairs. Li et al. [6] did a comprehensive
review on CBM policies.

Maintenance policies are mainly categorized into two major classes: corrective maintenance (CM) that is
performed whenever the system fails, and preventive maintenance (PM) which is an action performed to a system
which is still operating but may function in unsatisfactory working conditions. In fact, a PM can reduce the
possibility of a sudden failure of a system and make a system function properly. So, the PM is economic, especially
when the failures are serious and will result in heavy losses. Recently, Wei et al. [24] studied a continuous flow
manufacturing system with two machines subjected to condition-based PM. Also, Peng et al. [19] considered a
manufacturer performing PM on a product according to a one- or two-dimensional policy.

In this paper, a condition-based maintenance policy is considered for a system that its degradation level is
inspected periodically, and a PM or CM action is done if the system degradation level reaches or exceeds the
thresholds M or L (M < L), respectively, at some inspection time. The gamma process is used to model stochastic
degradation. The expected cost rate criterion is used to obtain the optimal maintenance policy. The cost of CM is
considered to be fixed. However, the cost of PM is assumed to have different uncertain values depending on the
opinion of each expert or repairman. Note that the decisions are usually made in a state of uncertainty in the real
world. In other words, in practice, we encounter with phenomena whose results cannot be predicted in advance.
How to model uncertainty is an important research topic not only in the field of mathematics and statistics but also
in the field of science and engineering. If there are sufficient information including enough frequencies about a
phenomenon, the probability theory is the best tool to model the uncertainty. In many situations, the information
may be insufficient, vague, imprecise or contradictory. Various types of incomplete information lead to various
types of uncertainty. Various theories such as fuzzy theory [23, 26], possibility theory [1, 27] and uncertainty
theory [7, 8] have been presented to investigate the variables and systems that are not sufficiently and accurately
known. All these theories are placed in a general framework called measures of uncertainty. The fuzzy measures are
used in dealing with uncertainty caused by imprecise information. The theory of possibility is used in dealing with
uncertainty caused by incomplete information. The Uncertainty theory covers all aspects of uncertain information.
Uncertainty theory is inferred with three basic concepts ”uncertain measure”, ”uncertain variable” and ”uncertainty
distribution”. The uncertain measure is a set function to measure the degree of belief of an uncertain event. An
uncertain variable is a function that is defined on an uncertain space to express imprecise quantities. Uncertainty
distribution is used to describe uncertain variables in an easy way. In general, uncertainty distribution plays the
role of an interface between uncertainty theory and experts. Yao and Zhou [25] proposed a concept of uncertain
random renewal process, and applied the methodology to a block replacement policy. Zhang et al. [28] developed
belief reliability metric to evaluate reliability of uncertain random systems which are affected by both aleatory
and epistemic uncertainties. Recently, Shahraki et al. [20] discussed the block replacement policy and used the
experts’ judgments to estimate the parameters of failure time distribution. In the situations that we encounter with
both probability and uncertainty spaces simultaneously in analysing a system or a phenomenon, we should use the
chance theory suggested by Liu [9].

As previously mentioned, in our proposed maintenance policy, the system degradation is a random process which
is discussed in a probability space, while the PM cost is considered as an uncertain variable due to insufficient
frequencies. Hence, we have to use the chance theory to get the accurate analysis; otherwise, the accuracy of the
results wouldn’t be guaranteed.

To determine the uncertainty distribution of the PM cost, we use the subjective judgment of some experts. One
of the important methods to determine the uncertainty distribution is the Delphi method. Accepting that group
experience is more valid than individual experience, the Delphi method is a process mostly used in research and
economics, that aims collecting opinions on a particular research question or specific topic in order to reach a
consensus. The premise of this method is that pooled intelligence can enhance individual judgement. In practice,
the researcher chooses a panel of experts, and develops a series of iterative questionnaires. Panellists reply
anonymously to the iterative questionnaires, where every questionnaire sent represent a round. In the first round,
experts evaluate the issues independently and express their opinions based on their knowledge and personal
experience. The anonymity of people is essential in the Delphi method. This means that no one knows who else is
participating in this survey. In the second round, the feedback from the previous round is provided to the experts
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so that they can re-evaluate the same items and make new judgments about changing their opinions. The opinions
of experts tend to be compatible when they see the opinions of other experts. Finally, a composite survey can
be obtained according to the opinion of all experts. For more details about the Delphi method, one may refer to
[16, 17, 22].

The rest of this paper is organized as follows. In Section 2, some preliminaries are presented regarding the gamma
process, and uncertainty concepts. The maintenance policy is described in Section 3, and some main results are
presented. In Section 4, we compare the chance order of the cost function for two systems. In Section 5, the
method of determining the uncertainty distribution according to the Delphi method is explained. A real data set
is used to illustrate the proposed method in Section 6, and the optimal inspection period is determined. Finally,
some conclusions are expressed in Section 7. The potential challenges in implementing the proposed CBM policy
in practical settings are also discussed in this section.

2. Preliminaries

In this section, some fundamental concepts about Gamma degradation process, uncertain variables and chance
space are presented. These are all useful for defining the proposed maintenance policy and obtaining optimal
scheme.

2.1. Gamma processes

Gamma process is a stochastic process that can be used as an effective method to model gradual damage such as
wear, corrosion, erosion and deterioration. Let α(t) be a non-decreasing, right-continuous, real-valued function for
t ≥ 0, with α(0) = 0. The gamma process with shape function α(t) > 0 and scale parameter β > 0, denoted by
Ga(α(t), β), is a continuous-time stochastic process {X(t); t ≥ 0} with the following properties:
(1) X(0) = 0 with probability one;
(2) X(s)−X(t) ∼ Ga(α(s)− α(t), β), for all s > t ≥ 0.
(3) X(t) has independent increments, i.e., X(s2)−X(s1) is independent of X(t2)−X(t1), for t1 < t2 < s1 < s2.
The probability density function (pdf) of X(t) is given by:

g(x;α(t), β) =
xα(t)−1e−

x
β

βα(t)Γ(α(t))
, x > 0, (1)

where Γ(α) =
∫∞
0

yα−1e−ydy stands for the complete gamma function.
If degradation of a system is monitored during time, failure time T may be defined as the first instant the degradation
reaches the pre-specified threshold level L. If the degradation of the system during time follows a gamma process
with the pdf (1), the cumulative distribution function (cdf) of the system failure time is

Pr(T ≤ t) = Pr(X(t) ≥ L)

=

∫ ∞

L

g(x;α(t))dx

=
Γ(α(t), L

β )

Γ(α(t))
:= G(L;α(t), β), (2)

where Γ(α, x) =
∫∞
x

tα−1e−tdt is the incomplete gamma function for x > 0 and α > 0.

2.2. Uncertain variables

The uncertainty theory as a branch of mathematics was founded by Liu [7] and refined by Liu [8]. Let Θ be a
nonempty set, and L a σ-algebra over Θ. Each element Λ in L is called an event. A set function M : L → [0, 1] is
called an uncertain measure if it satisfies the following axioms (Liu [7]):
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(1) (Normality axiom) M{Θ} = 1 for the universal set Θ.
(2) (Duality axiom) M{Λ}+M{Λc} = 1 for any event Λ.
(3) (Subadditivity axiom) For every countable sequence of events Λ1,Λ2, . . . ,

M{
∞⋃
i=1

Λi} ≤
∞∑
i=1

M{Λi}.

The triplet (Θ,L,M) is called an uncertainty space.
(4) (Product axiom) Let (Θj ,Lj ,Mj) be uncertainty spaces for j = 1, 2, . . . . The product uncertain measure M is
also an uncertain measure satisfying

M{
∞∏
j=1

Λj} =

∞∧
j=1

Mj{Λj}.

where Λj is an arbitrarily chosen event from Lj , for j = 1, 2, . . . , and
∧∞

j=1 is the minimum operator.

Definition 1
(Liu [7]) An uncertain variable η is a function from an uncertainty space (Θ,L,M) to the set of real numbers such
that {η ∈ B} is an event for any Borel set B of real numbers. Further, the uncertainty distribution Ψ of an uncertain
variable η is defined by

Ψη(x) = M(η ≤ x).

for any real number x.

Definition 2
(Liu [8]) The expected value of an uncertain variable η with regular uncertainty distribution Ψ is defined by

E[η] =

∫ 1

0

Ψ−1(α)dα. (3)

where Ψ−1(α) is the inverse uncertainty distribution of η.

2.3. Chance space

Uncertainty and randomness are two basic types of indeterminacy. Chance theory was pioneered by Liu [9] for
modeling complex systems with not only uncertainty but also randomness. This subsection will recall from Liu [9]
the concepts of chance measure, uncertain random variable, chance distribution, and expected value.

Let (Θ,L,M) be an uncertainty space, and let (Ω,A, P r) be a probability space. Then, the product space

(Θ,L,M)× (Ω,A, P r) = (Θ× Ω,L ×A,M× Pr)

is a chance space, where Θ× Ω is the set of all ordered pairs of the form (γ, ω), where γ ∈ Θ and ω ∈ Ω, L ×A is
the product σ-algebra, and M× Pr is the product measure.

Definition 3
The chance measure of an event Ξ ∈ L ×A is defined as

Ch{Ξ} =

∫ 1

0

Pr{ω ∈ Ω|M{γ ∈ Θ|(γ, ω) ∈ Ξ} ≥ x}dx.

satisfying normality, duality and monotonicity properties, i.e.,
(1) Ch{Θ× Ω} = 1,
(2) Ch{Ξ}+ Ch{Ξc} = 1 for any event Ξ,
(3) Ch{Ξ1} ≤ Ch{Ξ2} for any events Ξ1 ⊂ Ξ2,
respectively.
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Definition 4
An uncertain random variable ξ is a measurable function from a chance space (Θ,L,M)× (Ω,A, P r) to the set
of real numbers such that ξ ∈ B is an event in L ×A for any Borel set B.

Theorem 1
Let ξ be an uncertain random variable on the chance space (Θ,L,M)× (Ω,A, P r), and let B be a Borel set. Then,
{ξ ∈ B} is an uncertain random event with chance measure

Ch{ξ ∈ B} =

∫ 1

0

Pr{ω ∈ Ω|M{γ ∈ Θ|ξ(γ, ω) ∈ B} ≥ x}dx.

Definition 5
The chance distribution and the expected value of an uncertain random variable ξ are defined by

Φξ(x) = Ch{ξ ≤ x}, x ∈ ℜ

and

E[ξ] =

∫ +∞

0

Ch{ξ ≥ x}dx−
∫ 0

−∞
Ch{ξ ≤ x}dx,

respectively, provided that at least one of two integrals is finite.

Liu [10] showed that if X is a random variable defined on the probability space (Ω,A, P r) and η is an uncertain
variable defined on the uncertainty space (Θ,L,M), then, the summation X + η is an uncertain random variable.
Further, for any real numbers a and b, we have

E[aX + bη] = aE[X] + bE[η]. (4)

In the next section, the maintenance policy used in this paper is first described in details. Then, the expected cost
rate function is constructed.

3. Maintenance policy

Consider a deteriorating system that starts operating at time zero without any degradation and is subjected to
changes in random evolving environments. The system is inspected at period times τ, 2τ, 3τ, . . . , where τ is the
inspection time interval. If the degradation at the kth inspection time is less than M (i.e.,X(kτ) < M), no action
is taken. If it is realized that the degradation level exceeds a threshold M but not reaches L, where M < L, i.e.,
M ≤ X(kτ) < L a PM is performed at time kτ . However, the system is considered to be failed if the amount of
its degradation reaches or exceeds the threshold level L. Suppose that N represents the number of inspections until
the system fails. That is,

N = inf{k;X(kτ) ≥ L}. (5)

At the failure time T = Nτ , the system is replaced by a new one, that is, a CM is performed, and a cycle of
maintenance is completed. A summary of the proposed maintenance policy is presented in Figure 1 that shows that
the system started working at time zero with no degradation level. In Figure1(a), the degradation of the system
takes place between the M and L levels at time jτ . So, a PM is performed at this time. Figure1(b) shows that the
degradation of the system reaches zero at time jτ . Then, at time kτ , it is realized that the degradation of the system
is again placed between M and L, and another PM repair is done for the system. So, the degradation level reaches
zero again at time kτ , which is seen in Figure1(c). Further, it is observed that the degradation level of the system is
lower than M before the inspection time (N − 1)τ , while it is suddenly exceeds L at the next inspection time Nτ ;
hence, a CM is done at this time.

To determine the objective expected cost rate, let us denote the costs of each inspection and CM by cI and cF ,
respectively. The PM cost of a system somehow depends on the repairmen, so we assume that the PM repair
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Figure 1. A summary of proposed maintenance policy.

cost is an uncertain variable. Let us denote the number of PMs occurred in one cycle by NP , where the ith
(i = 1, 2, · · · , NP ) one costs ηi. Also, assume ηi’s are iid uncertain variables. It is reasonable to assume that
cI < ηi < cF .

Note that in a cycle of operation, one CM, N inspections and Np PMs each with costs cF , cI and ηi(1 ≤ i ≤ NP ),
respectively, are performed. Therefore, the total cost in one cycle of the proposed maintenance policy is

C(T ) = NcI +

NP∑
i=1

ηi + cF , (6)

that is obviously a combination of two random variables (N and NP ) and some uncertain variables (η1, · · · , ηNP
).

So, C(T ) is an uncertain random variable.
In our policy, it is of interest to find the optimal τ that minimizes the long-run expected cost per time unit. By
elementary renewal theory, it is known that our objective function is equal to the ratio of the expected cost on only
one renewal cycle, over the expected length of that cycle. Therefore, the expected cost rate is

ECR(τ) =
E(C(T ))

E(T )
=

E(C(T ))

τE(N)
, (7)

where C(T ) is as defined in (6). Using (4), we have

E(C(T )) = E

(
NcI +

NP∑
i=1

ηi + cF

)

= cIE(N) + E

(
NP∑
i=1

ηi

)
+ cF . (8)

Moreover, from Theorem 5 of Yao and Zhou [25], we get

E

(
NP∑
i=1

ηi

)
= E(NP )E(η1). (9)

So, by substituting (9) in (8), we have

E(C(T )) = cIE(N) + E(NP )E(η1) + cF .
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Therefore, the expected cost rate (7) can be rewritten as follows

ECR(τ) =
cIE(N) + E(NP )E(η1) + cF

τE(N)
. (10)

Now, we need to calculate the expected values of N , NP and η1. If the uncertainty distribution of η1 is known,
its expected value is easily calculated. However, the uncertainty distribution is usually unknown and needs to be
estimated. Toward this end, we use the Delphi method, where the procedure is illustrated in Section 5. The expected
values of N and NP are given in Lemmas 1 and 2, respectively. Eventually, the optimal inspection time interval τ∗

is derived by minimizing the expected cost rate (10). The proposed procedure is investigated on a real data set in
Section 6.

Lemma 1
Assume the degradation follows a gamma process. The expected number of total inspections in a cycle is given by

E(N) = Σ∞
n=1n

∫ L

0

G(L− x; ∆α(nτ), β)g(x;α((n− 1)τ), β)dx,

where g(·) and G(·) are as defined in (1) and (2), respectively. Also, ∆α(nτ) = α(nτ)− α((n− 1)τ).

Proof. First of all note that according to the monotone path property of gamma process, we get

X(τ) ≤ X(2τ) ≤ · · · ≤ X(Nτ),

with probability one. So, using (5) and the properties of gamma process, the probability mass function (pmf) of the
random variable N at point n (n = 1, 2, ...), is obtained as

φ(n) : = Pr(N = n)

= Pr
(
X((n− 1)τ) < L,X(nτ) ≥ L

)
=

∫ L

0

Pr
(
X(nτ) > L|X((n− 1)τ) = x

)
g
(
x;α(n− 1)τ, β

)
dx

=

∫ L

0

Pr
(
X(nτ)−X((n− 1)τ) > L− x

)
g
(
x;α(n− 1)τ, β

)
dx

=

∫ L

0

Ḡ
(
L− x; ∆α(nτ), β

)
g
(
x;α(n− 1)τ, β

)
dx, (11)

where the last equality is obtained using the fact that the increment ∆X(nτ) = X(nτ)−X((n− 1)τ) follows
Ga(∆α(nτ), β) process. So, using the formula E(N) = Σ∞

n=1nP (N = n), the proof is complete. 2

Remark 1
It is obvious that in the special case of α(τ) = ατ , the increment ∆X(nτ) follows Ga(ατ, β) distribution for all
n ≥ 1. That is, in this case, the increments ∆X(τ),∆X(2τ), · · · are all identically distributed.

Lemma 2
The expected number of total PMs in a cycle is given by

E(NP ) = Σ∞
n=1φ(n)

(
Σn−1

i=1 (Ḡ(M ;α(iτ), β)− Ḡ(L;α(iτ), β))

)
,

where Ḡ(M ;α(iτ), β) and φ(n) are as defined in (2) and (11), respectively. Moreover, for any sequence of constant
value, {ai; i ≥ 1}, we have

∑0
i=1 ai = 0.
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Proof. Note that NP can be written as NP = ΣN−1
i=1 Ii, where Ii = 1 if a PM is performed at the ith inspection time,

and Ii = 0 otherwise. In addition, N is independent of I1, I2, ..., IN−1. Therefore, to calculate E(NP ), we get

E(NP ) = E(ΣN−1
i=1 Ii)

= E[E(ΣN−1
i=1 Ii|N)]

= Σ∞
n=1E

(
Σn−1

i=1 Ii|N = n
)
φ(n)

= Σ∞
n=1

(
Σn−1

i=1 E(Ii)
)
φ(n)

= Σ∞
n=1

(
Σn−1

i=1 Pr(M ≤ X(iτ) < L)
)
φ(n).

Hence, the proof is complete. 2

In the next section, we investigate some ordering properties of two systems with different PM costs, and various
number of inspections and PMs. The results are useful to compare the total maintenance cost of the systems.

4. Maintenance cost ordering

As stated in the previous section, the system maintenance cost is a function of random variables and some uncertain
variables. So, the maintenance cost of the system is an uncertain random variable. Comparing and ordering of
uncertain random variables give a guideline to make decisions in uncertain random environments. Therefore, we
compare the maintenance cost of two different systems in this section. Consider system I with PM costs ηi’s, the
number of inspections N and number of PMs Np, and take into account system II with similar variables η′i, N

′

and N ′
p, respectively. Our goal is to compare the chance order of the cost function (6) for two systems I and II that

are given by

C(T ) = NcI +

NP∑
i=1

ηi + cF and C ′(T ) = N ′cI +

N ′
P∑

i=1

η′i + cF ,

respectively. For this purpose, we first recall the following definitions and theorem from [3, 13, 21].

Definition 6
The random variable τ1 is said to be stochastically smaller than the random variable τ2 in random dominance,
denoted by τ1 ⪯st τ2, if

Pr(τ1 > t) ≤ Pr(τ2 > t) for any t.

Definition 7
The uncertain variable η1 is said to be smaller than the uncertain variable η2 in uncertain dominance, denoted by
η1 ⪯un η2, if

M(η1 > t) ≤ M(η2 > t) for any t. (12)

Definition 8
The uncertain random variable ξ1 is said to be smaller than the uncertain random variable ξ2 in chance ordering,
denoted by ξ1 ⪯ch ξ2, if

Ch(ξ1 > t) ≤ Ch(ξ2 > t) for any t.

Theorem 2
Let τ1, · · · , τm and τ ′1, · · · , τ ′m be two sets of independent random variables, and let η1, · · · , ηn and η′1, · · · , η′n be
two sets of independent uncertain variables. If τi ⪯st τ

′
i (i = 1, 2, · · ·m) and ηj ⪯un η′j (j = 1, 2, · · · , n), then

f(τ1, · · · , τm, η1, · · · ηn) ⪯ch f(τ ′1, · · · , τ ′m, η′1, · · · η′n),

where f : Rm+n −→ R is strictly monotone function component-wise.

Now, we compare the total cost of the proposed systems in the next theorem.
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Theorem 3
If N ⪯st N

′, Np ⪯st N
′
p, and ηi ⪯un η′i (i = 1, 2, . . . ), then

C(T ) ⪯ch C ′(T ).

Proof. Note that
∑NP

i=1 ηi and
∑NP

i=1 η
′
i are uncertain random variables. Hence, using Theorem 2 and that Np ⪯st

N ′
p, we get

NP∑
i=1

ηi ⪯ch

NP∑
i=1

η′i ⪯ch

N ′
P∑

i=1

η′i. (13)

Let us denote by Φξ(·) the chance distribution function of any uncertain random variable ξ. Also, denote the cdf of
the random variable N by ΥN (·). For the chance distribution function of the uncertain random variables C(T ), we
have

ΦC(T )(t) = Ch(C(T ) ≤ t)

= Ch(NcI +

NP∑
i=1

ηi + cF ≤ t)

=

∫ +∞

−∞
Ch(

NP∑
i=1

ηi ≤ t− cF − ycI | N = y)dΥN (y)

=

∫ +∞

−∞
Φ∑NP

i=1 ηi
(t− cF − ycI)dΥN (y),

where the last equality is deduced from the independence of N and NP . Using (13) and Definition 8, Φ∑NP
i=1 ηi

(·) ≥
Φ∑N′

P
i=1 η′

i

(·). Therefore,

ΦC(T )(t) ≥
∫ +∞

−∞
Φ∑N′

P
i=1 η′

i

(t− cF − ycI)dΥN (y).

On the other hand, from N ⪯st N
′ and using Definition 6, we get ΥN (·) ≥ ΥN ′(·). Hence,

ΦC(T )(t) ≥
∫ +∞

−∞
Φ∑N′

P
i=1 η′

i

(t− cF − ycI)dΥN ′(y)

= ΦC′(T )(t) for any t.

So, from Definition 8, the proof is complete. 2

Now, let X(t) and X ′(t) show the degradation of systems I and II at time t, which follow Γ(ατ, β) and Γ(α′τ, β)
processes, respectively. Since the number of PMs in the proposed maintenance policy is less than the number of
inspections, it is reasonable to assume that the conditional distribution of NP given N = n, is a truncated poisson
process with rate λ such that NP ≤ n− 1. Similarly, assume that N ′

P given N ′ = n obeyes a truncated poisson
process with rate λ′, such that N ′

P ≤ n− 1. Further, let ηi and η′i be independent uncertain variables with linear
uncertainty distribution functions L(0, 1) and L(2, 3), respectively, such that

Ψη(x) =

 0, x < 0,
x, 0 ≤ x < 1,
1, x ≥ 1,

and Ψη′(x) =

 0, x < 2,
x− 2, 2 ≤ x < 3,
1, x ≥ 3.

Therefore,

Ψη(x)−Ψη′(x) =


0, x < 0,
x, 0 ≤ x < 1,
1, 1 ≤ x < 2,
3− x, 2 ≤ x < 3,
0, x ≥ 3,

Stat., Optim. Inf. Comput. Vol. 12, November 2024



S. SHAHRAKI DEHSOUKHTEH AND M. RAZMKHAH 1631

It is obvious that Ψη(x)−Ψη′(x) ≥ 0 for any real number x. Hence, using Definition 7, η ⪯un η′.
In the following theorem, we express some sufficient conditions on the basis of the degradation parameter and

poisson rate of PM actions to compare the total costs of the two proposed systems.

Theorem 4
If α′ < α and λ < λ′, then

C(T ) ⪯ch C ′(T ).

Proof. Using (11), for all positive integer values of y, we get

S(y) = ΥN (y)−ΥN ′(y)

=

y∑
n=1

∫ L

0

[
Ḡ
(
L− x;ατ, β

)
g
(
x;α(n− 1)τ, β

)
− Ḡ

(
L− x;α′τ, β

)
g
(
x;α′(n− 1)τ, β

)]
dx,

where ΥN (·) stands for the cdf of N . For other values of y, S(y) = 0. Using numerical methods, it can be shown
that when α′ < α, S(y) > 0 for all possible values of y and given value of β. Therefore, according to Definition 6,
we get N ⪯st N

′. In addition, the cdf of Np may be derived as

ΥNp
(y) =

y∑
x=0

Pr(Np = x)

=

y∑
x=0

∞∑
n=1

Pr (NP = x | N = n)φ(n)

=

y∑
x=1

∞∑
n=x+1

(λ(n− 1)τ)xe−λ(n−1)τ/x!∑n−1
i=0 (λ(n− 1)τ)ie−λ(n−1)τ/i!

φ(n),

where φ(n) is as derived in (11). Similarly, the cdf of N ′
P may be obtained. It is not difficult to show that for given

β,

ΥNp
(y) ≥ ΥN ′

p
(y), for all y,

as long as α′ < α and λ < λ′. This means that Np ⪯st N
′
p. Since all sufficient conditions of Theorem 3 are hold, it

is concluded that C(T ) ⪯ch C ′(T ). Hence, the proof is complete. 2

Using the approach presented in this section, two different systems with individual PM costs and degradation
processes may be compared based on total maintenance costs. But, in order to find the optimal maintenance policy,
we need to know the uncertainty distribution of PM costs of the proposed policy. To do this in mind, the process of
determining the uncertainty distribution is explained in the next section.

5. Uncertainty distribution of PM cost

Since the cost of PM actions are uncertain variable, the process of determining the uncertainty distribution based
on the opinions and expertise of experts in the relevant field is stated in this section. A questionnaire is designed
to collect experimental data from experts. For each expert, the distribution of experimental uncertainty is first
determined (see, Subsection 5.1). Then, by using the Delphi method, the combined uncertainty distribution is
obtained according to the opinions of all experts (the details are presented in Subsection 5.2). Finally, an example
is presented in Subsection 5.3 to illustrate the computational process of obtaining uncertainty distribution of PM
cost.

5.1. Expert’s experimental data

In order to obtain expert experimental data through a questionnaire, one or more experts (for example, system
repairmen) should be asked to answer questions about the PM cost individually. Toward this end, we ask an expert
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about the possible value x of the PM cost η, and the degree of their belief that η is less than x. Denoting the expert’s
degree of belief by α, an expert’s experimental datum is (x, α). More precisely, we first ask an expert how much
do you think the minimum cost of each PM action is. Suppose the answer we receive from the expert is x1, then
we get the expert’s experimental datum (x1, 0). Then, we ask what do you think the maximum cost of each PM
action is. When the answer we receive is xn, the experimental datum is (xn, 1). To get the intermediate cost data
and belief values, we ask the following question. What is the possible cost of a PM action in your opinion? If the
answer is xi, we would ask the expert about the degree of their belief that the real cost is less than xi. Assuming
that the answer is αi, the experimental datum is (xi, αi). By repeating improved questions n times, experimental
data for an expert are obtained as

(x1, α1), (x2, α2), . . . , (xn, αn). (14)

Assuming the lowest degree of belief is 0 and the highest degree of belief is 1, the rest of the values are arranged
in ascending order between 0 and 1. For more details, interested readers may refer to Chapter 4 of Liu [7]. That
is, the experimental data in (14) satisfy the conditions x1 < x2 < · · · < xn, and 0 ≤ α1 ≤ α2 ≤ · · · ≤ αn ≤ 1. Liu
[8] presented the experimental uncertainty distribution as

Ψ(x) =


0, x ≤ x1,

αi +
(αi+1−αi)(x−xi)

(xi+1−xi)
, xi ≤ x ≤ xi+1, 1 ≤ i < n,

1, x ≥ xn.

(15)

Hence, using (3), the expected value of η is

E(η) =
α1 + α2

2
x1 +Σn

i=2

αi+1 − αi−1

2
xi + (1− αn−1 + αn

2
)xn.

If there are M experts, it is sensible to have M experimental uncertainty distributions Ψ1(x), . . . ,ΨM (x). So, it
is of interest to estimate the uncertainty distribution of PM costs according to the opinion of all experts. This is
done by combining uncertain statistics and the Delphi method, which emphasizes the use of the group experience
of experts.

5.2. Delphi method

The Delphi method is a structured communication technique, originally developed as a systematic, interactive
forecasting method that relies on a panel of experts. The work steps of the Delphi method are such that a researcher
first selects a group of experts who have sufficient knowledge and experience on the subject under investigation. In
the next step, the researcher explains the problem he wants to solve comprehensively and accurately to the experts.
Then, according to Algorithm 1 below, experts’ opinions are asked in several rounds to reach a consensus. Here,
we perform the Delphi method to obtain the uncertainty distribution Ψ(x) of PM cos η.

Algorithm 1.

Step 1. The M domain experts provide their experimental data based on the first round of the questionnaire,

(xij , αij), i = 1, . . . ,M, j = 1, 2, . . . , ni.

where xij stands for the jth possible value provided by the ith expert, and αij denotes the ith expert’s belief
degree that η is less then xij .

Step 2. For i = 1, . . . ,M , use the ith expert’s experimental data (xi1, αi1), (xi2, αi2), . . . , (xini
, αini

) to obtain
the uncertainty distributions Ψi.

Step 3. Denote by n the number of all various values of PM cost represented by all experts. Precisely, denote
by x1 < x2 < · · · < xn the sorted union of all PM costs stated by the experts. That is,

⋃M
i=1

⋃ni

k=1 {xik} =
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Table 1. Experts’ experimental data about PM cost

Expert 1 (40,0.40) (50,0.60) (60,0.85) (70,0.95) (80,1)
Expert 2 (40,0.30) (50,0.65) (60,0.80) (70,0.90) (80,1)
Expert 3 (45,0.40) (55,0.50) (65,0.65) (75,0.95) (80,0.975)
Expert 4 (45,0.45) (50,0.65) (60,0.80) (70,0.85) (80,1)
Expert 5 (50,0.30) (60,0.70) (70,0.85) (80,0.95)
Expert 6 (45,0.25) (55,0.60) (65,0.80) (75,0.90) (80,0.95)

Table 2. Values of Ψi(x) calculated for various values of x

x
40 45 50 55 60 65 70 75 80

Ψ1(x) 0.4 0.5 0.60 0.725 0.85 0.90 0.95 0.975 1
Ψ2(x) 0.3 0.475 0.65 0.725 0.80 0.85 0.90 0.95 1
Ψ3(x) 0 0.40 0.45 0.50 0.575 0.65 0.80 0.95 0.975
Ψ4(x) 0 0.45 0.65 0.725 0.80 0.825 0.85 0.925 1
Ψ5(x) 0 0 0.30 0.50 0.70 0.775 0.85 0.90 0.95
Ψ6(x) 0 0.25 0.425 0.60 0.70 0.80 0.85 0.90 0.95

{x1, . . . , xn}. For j = 1, 2, . . . , n, compute

αj =
1

M

M∑
i=1

Ψi(xj), (16)

and

dj =
1

M

M∑
i=1

(Ψi(xj)− αj)
2. (17)

Step 4. If dj is less than a given level ε > 0 for all j, then go to Step 5. Otherwise, all domain experts receive the
summary αj obtained in Step 3 in addition to the reasons of other experts for their opinions. Accordingly, a
set of revised experimental data are provided by going to Step 2.

Step 5. Use the integrated data
(x1, α1), (x2, α2), . . . , (xn, αn)

to obtain the uncertainty distribution Ψ according to equation (15).

5.3. Explanatory example

Here, we determine the uncertainty distribution of PM cost with the help of experts’ opinions and the Delphi
method in an example. Toward this end, assume that six experts are invited to analyse the PM cost in a completely
hypothetical way. Each expert estimates the cost of PM repair as well as degree of belief based on her/his own
knowledge and expertise. Following the steps described in Algorithm 1, we consider ε = 0.03. We also assume the
weight of all experts to be the same. The experimental data of the experts about PM cost are as reported in Table 1.

By reviewing the opinions of all experts presented in Table 1, the various estimated PM cost by the experts
are 40, 45, 50, 55, 60, 65, 70, 75 and 80. Based on these data, six experimental uncertainty distributions Ψi(x),
1 ≤ i ≤ 6, may derived according to equation (15). The results are reported in Table 2.

According to the Step 3 of Algorithm 1 and with the help of (16) and (17), we calculate the values of αj and dj .
The results are presented in Table 3.

By checking the values of d1, . . . , d9 in Table 3 and comparing them with ε = 0.03, we see that d2 > 0.03. So,
we should provide the feedback of the first round of opinions to the experts so that each expert can re-estimate
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Table 3. Values of αj and dj .

j 1 2 3 4 5 6 7 8 9
xj 40 45 50 55 60 65 70 75 80
αj 0.1167 0.3458 0.5125 0.6292 0.7375 0.8000 0.8667 0.9333 0.9792
dj 0.0281 0.0305 0.0170 0.0103 0.0083 0.0060 0.0022 0.0007 0.0005

Table 4. Revised experimental data about PM cost.

Expert1 (40,0.40) (50,0.60) (60,0.85) (70,0.95) (80,1)
Expert2 (40,0.30) (50,0.65) (60,0.80) (70,0.90) (80,1)
Expert3 (40,0.25) (45,0.40) (55,0.50) (65,0.65) (75,0.95) (80,0.975)
Expert4 (40,0.30) (45,0.50) (50,0.65) (60,0.80) (70,0.85) (80,1)
Expert5 (40,0.15) (45,0.30) (50,0.45) (55,0.55) (60,0.70) (70,0.85) (80,0.95)
Expert6 (40,0.15) (45,0.30) (50,0.5) (55,0.60) (60,0.70) (65,0.80) (70,0.85) (75,0.90) (80,0.95)

Table 5. Value of revised Ψi(x) calculated for various values of x.

40 45 50 55 60 65 70 75 80
Ψ1(x) 0.4 0.5 0.60 0.725 0.85 0.90 0.95 0.975 1
Ψ2(x) 0.3 0.475 0.65 0.725 0.80 0.85 0.90 0.95 1
Ψ3(x) 0.25 0.0.40 0.45 0.50 0.575 0.65 0.80 0.95 0.975
Ψ4(x) 0.30 0.50 0.65 0.725 0.80 0.825 0.85 0.925 1
Ψ5(x) 0.15 0.30 0.45 0.55 0.70 0.775 0.85 0.90 0.95
Ψ6(x) 0.15 0.30 0.50 0.60 0.70 0.80 0.85 0.90 0.95

Table 6. Revised values of αj and dj .

j 1 2 3 4 5 6 7 8 9
xj 40 45 50 55 60 65 70 75 80
αj 0.2583 0.4125 0.5500 0.6375 0.7375 0.8000 0.8667 0.9333 0.9792
dj 0.0078 0.0074 0.0075 0.0085 0.0083 0.0060 0.0022 0.0007 0.0005

the PM cost and her/his degree of belief based on the opinions of other experts. The revised experimental data of
experts about PM cost are reported in Table 4.

Similarly, from the data presented in Table 4, six revised experimental uncertainty distributions may derived
according to equation (15). By reviewing the opinions of all experts, all the revised estimated PM cost by 6 experts
are 40, 45, 50, 55, 60, 65, 70, 75 and 80. The values of revised Ψi(x) are reported in Table 5.

Similarly, we calculate the revised values of αj and dj . The results are presented in Table 6. From Table 6, it
is observed that dj < ε = 0.03, for j = 1, . . . , 6, so, and we no longer need to provide feedback on the opinions
to the experts. Hence, the integrated experts’ experimental data (xi, αi), i = 1, . . . , n, are obtained as (40,0.2583),
(45,0.4125), (50,0.5500), (55,0.6375), (60,0.7375), (65,0.800), (70,0.8667), (75,0.9333) and (80,0.9792).
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Based on these data, the experimental uncertainty distribution of PM cost is obtained as follows:

Ψ(x) =



0, x ≤ 40,
0.0308x− 0.9753, 40 ≤ x ≤ 45,
0.0275x− 0.825, 45 ≤ x ≤ 50,
0.0155x− 0.225, 50 ≤ x ≤ 55,
0.02x− 0.4725, 55 ≤ x ≤ 60,
0.0125x− 0.0125, 60 ≤ x ≤ 65,
0.0133x− 0.0671, 65 ≤ x ≤ 70,
0.0133x− 0.0657, 70 ≤ x ≤ 75,
0.0092x+ 0.2448, 75 ≤ x ≤ 80,
1, x ≥ 80.

(18)

Now, the value of E(η) may be obtained according to equation (16). Using the empirical distribution (18), we
get E(η) = 52.21875. Our goal is to obtain the optimal inspection time by minimizing the cost function (10). In
this function, the value of E(η) is unknown, and since η is an uncertain variable, its distribution was estimated
according to the Delphi method based on experts’ opinions. By placing the calculated value of E(η) in equation
(10), we can minimize this function with respect to τ and get the optimal value τ∗. Using this value, the optimal
inspection time and minimum cost may be calculated for any real example.

6. Application to a real data set

Here, we use the fatigue crack growth data to investigate the proposed method in this paper. This data set contains
21 sample paths that was previously used by some authors such as Hudak et al. [5] and Lu and Meeker [12]. These
data have been measured at predetermined inspection times t0 = 0, t1 = 0.01, ..., t12 = 0.12 million cycles that
are considered as degradation data. Let us denote the degradations by Di(tj), i = 1, ..., 21, j = 0, 1, ..., 12. Here,
we consider the data up to inspection time t9 = 0.09. It was observed that the initial crack length at time t0 = 0
is equal to 0.9. Since the degradation have to be started from zero, we subtract the degradation data from 0.9.
Hence, we get, Xi(tj) = Di(tj)− 0.9, i = 1, ..., 21, j = 0, 1, ..., 9. Nezakati and Razmkhah [14] showed that each
sample of these data follows a gamma process. It is obvious that by averaging all paths, the degradation process
X(tj) =

1
21

∑21
i=1 Xi(tj) still follows a gamma process. The observed values of X(tj) at times t0 < t2 < ... < t9

are

0, 0.0295, 0.0652, 0.1014, 0.1405, 0.1824, 0.2314, 0.2814, 0.3500, 0.4238, (19)

respectively. Figure 2 shows the plot of X(tj) versus time. From this figure, one of the linear, exponential or power
functions seems to be appropriate to model the average degradation. Therefore, we consider a Gamma process for
X(tj) with scale parameter β and set the shape parameter α(t) as one of different forms of αt, eαt and tα.

To check the exact behavior of degradation data, in the sequel, the maximum likelihood estimates (MLEs) of the
unknown parameters α and β are studied. Since, the gamma increments ∆(tj) = X(tj)−X(tj−1), j ≥ 1, have
gamma distributions, the likelihood function of the parameters α and β is

Lik(α, β) =

ni∏
i=1

d
α(tj)−α(tj−1)−1
i e−

di
β

βα(tj)−α(tj−1)Γ(α(tj)− α(tj−1))
,

where di is the observed value of ∆(tj), and α(t) may be one of the functions αt, tα or eαt. The MLEs of the
unknown parameters α and β as well as the AIC based on different forms of α(t) are presented in Table 7. The
p-value for the null hypothesis that the data come from a Ga(α(t), β) process is also reported in this table.

According to the values of AIC and p-values presented in Table 7, a gamma process with shape parameter
α(t) = αt seems to be suitable for the data. So, we accept that the data in (19) follow a gamma process with mean
αβt = 4.7075t at time t.

Stat., Optim. Inf. Comput. Vol. 12, November 2024



1636 A CONDITION-BASED MAINTENANCE POLICY IN CHANCE SPACE

0.00 0.02 0.04 0.06 0.08

0
.0

0
.1

0
.2

0
.3

0
.4

Cycles(million)

A
ve

ra
g
e
 d

e
g
ra

d
a
ti
o
n

Figure 2. Average fatigue crack growth (inches).

Table 7. Values of MLE and AIC criterion.

α(τ) = ατ α(τ) = τα α(τ) = eαt

α̂ 1185.77 0.3069 33.8041
β̂ 0.00397 0.8875 0.0202

AIC -322.7251 -39.0839 -12.8035
p− value 0.9134 1.22×10−5 0.3387

To perform the maintenance policy proposed in the paper, let us assume the average fatigue crack growth data
in (19) as degradation of a system. Moreover, assume that if it is realized that the crack growth reaches or exceeds
L = 0.25 in some inspection time tj , the system will be considered as a failed system. Also, if the crack growth lies
between M and L, a PM repair is done for the system. Note that the crack growth had been measured at inspection
times tj = jτ , j ≥ 0, where τ = 0.01. The question arises here is that what the optimal inspection period τ we
would assign if we had the chance to apply the proposed maintenance policy. Toward this end, we would minimize
the expected cost rate function in (10) for some choices of cI and cF . Moreover, the assumptions of Subsection 5.3
are considered to find the expected PM cost. The optimal inspection time and the corresponding minimum expected
cost rate are reported in Table 8 for L = 0.25, M = 0.15, 0.20 and some choices of cI and cF . From this table, it is
observed that:

• For fixed cI (or cF ), when cF (or cI ) increases, both of the optimal inspection time and the minimum expected
cost rate increases for both M = 0.15 and M = 0.20.
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Table 8. The optimal inspection time and the minimum cost for M = 0.15, 0.2, L = 0.25, α(τ) = ατ and some choices of
cI and cF .

M=0.15 M=0.20
cI cF τ∗ ECR(τ∗) τ∗ ECR(τ∗)

5 70 0.0190 421.3892 0.0251 398.7245
100 0.0198 426.9763 0.0263 421.7547
120 0.0210 429.2351 0.0268 423.4387
150 0.0243 433.2541 0.0279 430.5792

10 70 0.0192 425.8724 0.0259 410.9517
100 0.0199 428.9341 0.0265 426.3409
120 0.0221 430.3972 0.0271 427.7963
150 0.0249 436.1823 0.0284 433.9743

15 70 0.0215 430.7210 0.0235 414.2863
100 0.0223 435.3894 0.0238 431.6307
120 0.0225 241.4571 0.0242 435.7862
150 0.0231 453.1471 0.0256 439.8307

20 70 0.0223 430.9971 0.0237 421.1031
100 0.0233 437.4973 0.0245 435.3947
120 0.0235 448.7634 0.0253 441.6329
150 0.0238 458.9132 0.0261 452.4218

• For given cI and cF , when the threshold level M increases, the optimal inspection interval τ∗ increases,
while the minimum cost rate decreases. This means that in addition to having smaller minimum expected
cost rate, a larger inspection time period is required if M increases.

7. Discussion and conclusions

A maintenance policy was considered for a system subject to the gamma process. The PM cost of repairs was
considered to be an uncertain variable, and its uncertainty distribution was determined based on the Delphi method.
The expected cost rate criterion was applied to obtain the optimal maintenance policy. Since there were some
random variables and an uncertain variable in the proposed cost function, the optimal policy was studied in a
chance space. The maintenance costs of two different systems were compared in terms of chance ordering. Finally,
the procedure was performed on a real data set following a gamma process. The model parameters were estimated
using the maximum likelihood method. The optimal inspection interval was determined for some choices of costs
and given degradation threshold. It was seen that when one of the parameters cI , cF or M increases while others are
fixed, the value of optimal inspection interval increases. This means that the higher costs or larger PM threshold,
the later inspection.

It is of worthwhile to note that during the use of the Delphi method, a series of challenges may arise in the
proposed procedure in the paper. Some of these challenges which should be carefully implemented are described
below:

• In practice, the right agreement from the consensus of experts’ opinions is not defined.
• The right participating experts would not be chosen.
• There is no guidance and agreed standards on how to interpret and analyse the results.
• The number of rounds of Delphi method presented in Algorithm 1 may be prolonged due to distraction and

fatigue of experts’ opinions.

Despite existing the above-mentioned challenges in the process of determining the distribution of any uncertain
variable, it is suggested to investigate any statistical or engineering problem in an uncertain or a chance space when
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there are no enough information or frequencies about the problem of interest. By the same reason, we preferred to
study our maintenance policy in a chance space. The results of this paper may be extended to the following cases:

1. It was assumed that the degradation paths follow the gamma process. The behavior of other processes, such
as inverse Gaussian process or Wiener processes may be also studied.

2. A maintenance model for a multi-component system may be extended in which the PM cost of the
components are different uncertain variables.

3. A perfect repair action was done as a PM in the proposed maintenance policy in this paper. Other types of
imperfect or minimal repairs may also be studied in different uncertain environments.

4. In this paper, we just assumed that the cost of PM is an uncertain variable depending on the experts’ opinions,
while the costs of CM and inspection were assumed to be constant. Though, one can imagine the situation
that costs of PM, CM and inspections are all uncertain variables. This problem is the subject of our future
research works.
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