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Nonlinear Approximation in the Large Deviations Principle
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Abstract The Markov random processes and their approximations are considered. The main object of study is the
exponential generator of random processes with independent increments, which are the solution of the problems of large
deviations. These processes satisfy the conditions that make it possible to consider the Poisson and Lévy approximation.
Generators of random processes are normalized by nonlinear parameters. Found explicit form of normalization parameter
estimation.
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1. Introduction

The problem of large deviations was originated as a method of solving statistical problems associated with the
estimation of probability of rare events. The first work in this direction was the article by Cramér [1], but ultimately
the method was developed in the article by Chernoff [2]. Publications [3, 4] are also related to this problem. The
purpose of solving the problem of large deviations is finding of action functional

I(x) = I(x0) +

∫ ∞

0

L(x(s), x′(s))ds,

where x(s) is a Markov process, function L(x, u) defined by the exponential generator

L(x, u) = sup
p∈R

{pu−H(v, p)},

where p := φ′(u),H(v, φ′(u)) := HΓφ(u). In the writing [5] in the scheme of Poisson approximation processes
with independent increments without diffusion component were considered. Between jumps there were Markov
processes with linear normalizing factor.

These processes are defined by the generator

Γδ
εφ(u) = ε−1

∫
R

(
φ(u+ εv)− φ(u)

)
Γδ(dv).

in the scale of time t/ε.
In the articles [7]–[9] the generator of Markov process and their evolutions were considered in the scale of time

t/g1(ε) and t/g2(ε) in the Poisson and Lévi approximation.
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The purpose of this work is to find functions that normalize the generator of random process with independent
increments in the scale of time t/g2(ε) in the Large Deviations Principle.

These processes are defined by the generator

Γεφ(u) = (g2(ε))
−1

∫
R

(
φ(u+ g1(ε)v)− φ(u)

)
Γε(dv).

Besides this, in the Poisson approximation the next condition take places

(g2(ε))
−1g1(ε)f1(ε) → 1, ε → 0,

and in the Lévy approximation
(g3(ε))

−1g1(ε)f2(ε) → 1, ε → 0,

where g1(ε), g2(ε), g3(ε), f1(ε), f2(ε) are normalization function, such that g2(ε) = o(g1(ε)), g3(ε) = o(g2(ε)),
f2(ε) = o(f1(ε)), g1(ε), g2(ε), g3(ε), f1(ε), f2(ε) → 0, ε → 0.

2. Poisson approximation

We consider Markov processes with locally independent increments ηε(·) with trajectories in DR[0,∞):

ηε = g1(ε) η

(
t

g2(ε)

)
, t ≥ 0.

In this normalization g1(ε), g2(ε) → 0 as ε → 0.
These processes are defined by the generator

Γεφ(u) = (g2(ε))
−1

∫
R

(
φ(u+ g1(ε)v)− φ(u)

)
Γε(dv),

where φ(u) is a twice differentiable function on R which tends to 0 at infinity and with sup-norm, φ(u) ∈ C2
0 (R).

The kernel of intensity Γε belongs to the class C3(R). This kernel satisfies the condition Γε(0) = 0.
We consider the problem of large deviations in the scheme of Poisson approximation in the case where the

following conditions are satisfied:
(P1) Approximation of the mean values:

bε =

∫
R

v Γε(dv) = f1(ε) (b+ θεb)

and

cε =

∫
R

v2 Γε(dv) = f1(ε) (c+ θεc) ,

where b, c < ∞, |θεb | → 0, |θεc | → 0, f1(ε) → 0, ε → 0.
(P2) The Poisson approximation condition for the intensity kernel

Γε
q =

∫
R

q(v) Γε(dv) = f1(ε)
(
Γq + θεq

)
for all q(·) from C3(R)

The kernel Γq has the following representation:

Γq =

∫
R

q(v) Γ0(dv).
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Items θεb , θεc , θεq satisfied the conditions |θε| → 0, f1(ε) → 0 as ε → 0.
(P3) The limiting generator is without diffuse component

c =

∫
R

v2 Γ0(dv) = const.

(P4) Square-integrability condition

lim
c→∞

∫
|v|>c

v2 Γε(dv) = 0.

(P5) The exponential boundedness ∫
R

ep|v| Γq(dv) < ∞.

In the scheme of Poisson approximation the solution of the problem of large deviations for these processes are
defined by nonlinear exponential generator:

Hε
Γφ(u) = e

− φ(u)
g1(ε) g1(ε)Γ

εe
φ(u)
g1(ε) .

Lemma 1
The exponential generator in the scheme of Poisson approximation has the following asymptotical representation

Hε
Γφ(u) = HΓφ(u) + θεΓφ,

provided (g2(ε))
−1g1(ε)f1(ε) → 1, where φ(u) is from C3

0 (R) and |θεΓφ| → 0, as g1(ε), f1(ε) → 0, as ε → 0,

HΓφ(u) = bφ′(u) +

∫
R

(
evφ

′(u) − 1− vφ′(u)
)
Γ0(dv).

Proof
The generator of Markov processes has the next form

Γεφ(u) = (g2(ε))
−1

∫
R

(
φ(u+ g1(ε)v)− φ(u)

)
Γε(dv),

so, for the exponential generator

Hε
Γφ(u) = (g2(ε))

−1g1(ε)

∫
R

(
e∆εφ(u) − 1

)
Γε(dv),

where ∆εφ(u) = (g1(ε))
−1

(
φ(u+ g1(ε)v)− φ(u)

)
.

We can write the generator in the form

Hε
Γφ(u) = (g2(ε))

−1g1(ε)

∫
R

(
e∆εφ(u) − 1−∆εφ(u)− 1

2

(
∆εφ(u)

)2)
Γε(dv) +

(g2(ε))
−1g1(ε)

∫
R

(
∆εφ(u) +

1
2

(
∆εφ(u)

)2)
Γε(dv).

where the function e∆εφ(u) − 1−∆εφ(u)− 1
2

(
∆εφ(u)

)2 is from C3(R), and since

e∆εφ(u) − 1−∆εφ(u)− 1
2

(
∆εφ(u)

)2
v2

→ 0 as v → 0.

In addition, this function is continuous and bounded, because φ(u) is from C2
0 (R). So, from conditions P1 and

P2 we obtain:
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Hε
Γφ(u) = (g2(ε))

−1g1(ε)f1(ε)

∫
R

(
e∆εφ(u) − 1−∆εφ(u)−

1

2

(
∆εφ(u)

)2)
Γ0(dv)+

(g2(ε))
−1g1(ε)

∫
R

(
∆εφ(u)− vφ(u)− g1(ε)

v2

2
φ′′(u)

)
Γε(dv)+

(g2(ε))
−1g1(ε)f1(ε)bφ

′(u) +
1

2
(g2(ε))

−1(g1(ε))
2f1(ε)cφ

′′(u)+

(g2(ε))
−1g1(ε)

∫
R

(
1

2

(
∆εφ(u)

)2 − v2

2

(
φ′(u)

)2)
Γε(dv)+

(g2(ε))
−1g1(ε)f1(ε)

1

2
c
(
φ′(u)

)2
.

Applying the Taylor’s formula for φ(u) and making use of the condition P2:

Hε
Γφ(u) = (g2(ε))

−1g1(ε)f1(ε)

∫
R

(
evφ

′(u) − 1− vφ′(u)− v2

2

(
φ′(u)

)2)
Γ0(dv)+

(g2(ε))
−1g1(ε)f1(ε)

∫
R

(
evφ

′(u)g1(ε)
v2

2
φ′′(ũ)− g1(ε)

v2

2
φ′′(ũ) −

g1(ε)
v4

8

(
φ′′(ũ)

)2)
Γ0(dv)+

(g2(ε))
−1g1(ε)f1(ε)

∫
R

g1(ε)
v3

3!
φ′′′(ũ) Γ0(dv)+

(g2(ε))
−1g1(ε)f1(ε)bφ

′(u) +
1

2
g1(g2(ε))

−1(g1(ε))
2f1(ε)cφ

′′(ũ)+

(g2(ε))
−1g1(ε)f1(ε)

∫
R

g1(ε)
v4

4

(
φ′′(ũ)

)2
Γ0(dv)+

(g2(ε))
−1g1(ε)f1(ε)c

1

2

(
φ′(u)

)2
.

From condition P3 and the condition (g2(ε))
−1g1(ε)f1(ε) → 1 we obtain

Hε
Γφ(u) = HΓφ(u) + θεΓφ,

where
∣∣θεΓφ∣∣ → 0, as g1(ε), f1(ε) → 0.

Lemma is proved.

From this Lemma we have that the following Theorem holds true.

Theorem 1
The solution for the problem of large deviations for the process

ηε = g1(ε)

(
t

g2(ε)

)
, t ≥ 0,

Γεφ(u) = (g2(ε))
−1

∫
R

(
φ(u+ g1(ε)v)− φ(u)

)
Γε(dv)
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under conditions (P1-P5) and
(g2(ε))

−1g1(ε)f1(ε) → 1, ε → 0,

is determined by the limit generator HΓ of the form

HΓφ(u) = bφ′(u) +

∫
R

(
evφ

′(u) − 1− vφ′(u)
)
Γ0(dv).

Remark 1
Condition (g2(ε))

−1g1(ε)f1(ε) → 1 can be satisfied not only for trivial functions g2(ε) = ε2, g1(ε) = ε, f1(ε) = ε,
as in the article [6], but for more complex functions, such as g2(ε) = ε2, g1(ε) = sin ε, f1(ε) = cos ε.

3. Lévy approximation

Now consider another normalization for the family of Markov processes with trajectories in DR[0,∞)

ηε = g1(ε) η

(
t

g3(ε)

)
, t ≥ 0.

In this normalization g1(ε), g3(ε) → 0, as ε → 0.
These processes are defined by generator

Γεφ(u) = (g3(ε))
−1

∫
R

(
φ(u+ g1(ε)v)− φ(u)

)
Γε(dv),

where φ(u) is a twice differentiable function on R which tends to 0 at infinity and with sup-norm, φ(u) ∈ C2
0 (R).

The kernel of intensity Γε belongs to the class C3(R). This kernel satisfies the condition Γε(0) = 0.
The conditions of Lévy approximation are the following:
(L1) Approximation of the mean values:

bε =

∫
R

v Γε(dv) = f1(ε)b1 + f2(ε) (b+ θεb)

and
cε =

∫
R

v2 Γε(dv) = f2(ε) (c+ θεc)

where b < ∞, c < ∞, |θεb | → 0, |θεc | → 0, f1(ε), f2(ε) → 0. In this normalization f2(ε) = o(f1(ε)).
(L2) Lévy approximation condition for the intensity kernel

Γε
q =

∫
R

q(v) Γε(dv) = f2(ε)
(
Γq + θεq

)
for all q ∈ C3(R).

This kernel has the following representation:

Γq =

∫
R

q(v) Γ0(dv).

Items θεb , θεc , θεq satisfied the conditions |θε| → 0, f1(ε) → 0 as ε → 0.
(L3) Square-integrability condition

lim
c→∞

∫
|v|>c

v2 Γε(dv) = 0.

(L5) The exponential boundedness ∫
R

ep|v| Γq(dv) < ∞.
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Example 3.1
Consider the example of a family of Markov processes αε, for which

P{αε = f1(ε)α1} = p0 − f2(ε)p1,

P{αε = f2(ε)α} = q0, p0 + q0 = 1,

P{αε = d} = f2(ε)p1.

Check the conditions of Lévy approximation.
Firstly, find the first and the second moments for the family of Markov processes

bε = Eαε = p0f1(ε)α1 − f1(ε)f2(ε)α1p1 + q0f2(ε)α+ f2(ε)p1d =

f1(ε)(p0α1) + f2(ε)(αq0 + p1d) + o(f2(ε)).

cε = E(αε)2 = f2
1 (ε)α1(p0 − f2(ε)p1) + f2

2 (ε)α
2q0 + d2f2(ε)p1 =

f2(ε)(p1d
2) + o(f2

2 (ε)).

So, we have the next parameters for condition (L1):

b1 = p0α1,

b = αq0 + p1d,

c = p1d
2.

Now, find the intensity kernel

Γε
q = q(f1(ε)α1)p0 + q(f2(ε)α)q0 − q(f1(ε)α1)(−f2p1) + q(d)f2(ε)p1 = f2(ε)q(d)p1.

These moments satisfied the condition of approximation of the mean values. So, Γq = p1d
2.

Thus, we have all parameters for process αε in Lévi approximation.

Lemma 2
The exponential generator

Hε
Γφ(u) = e

− φ(u)
g1(ε) g1(ε)Γ

εe
φ(u)
g1(ε)

in the scheme of Lévy approximation has the next asymptotically representation

Hε
Γφ(u) = (g3(ε))

−1
g1(ε)f1(ε)b1φ

′(u) +HΓφ(u) + θεΓφ

with conditions (g3(ε))−1g1(ε)f2(ε) → 1, ε → 0, where φ(u) is from C3
0 (R) and

HΓφ(u) = (b− b0)φ
′(u) +

1

2
(c− c0)

(
φ′(u)

)2
+

∫
R

(
evφ

′(u) − 1
)
Γ0(dv),

b0 =
∫
R
v Γ0(dv), c0 =

∫
R
v2 Γ0(dv).

The neglected item
∣∣θεΓφ∣∣ → 0 as g1(ε) → 0.
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Proof
We can represent the exponential generator in the form

Hε
Γφ(u) = (g3(ε))

−1g1(ε)

∫
R

(
e∆εφ(u) − 1

)
Γε(dv),

where
∆εφ(u) = (g1(ε))

−1
(
φ(u+ g1(ε)v)− φ(u)

)
.

Rewrite the generator:

Hε
Γφ(u) =

(g3(ε))
−1g1(ε)

∫
R

(
e∆εφ(u) − 1−∆εφ(u)−

1

2

(
∆εφ(u)

)2)
Γε(dv)+

(g3(ε))
−1g1(ε)

∫
R

(
∆εφ(u) +

1

2

(
∆εφ(u)

)2)
Γε(dv).

Function e∆εφ(u) − 1−∆εφ(u)− 1
2

(
∆εφ(u)

)2 belongs to C3(R), since

e∆εφ(u) − 1−∆εφ(u)− 1
2

(
∆εφ(u)

)2
v2

→ 0 as v → 0.

In addition, this function is continuous and bounded, since φ(u) from C2
0 (R).

So, from conditions (L1) and (L2) we obtaine

Hε
Γφ(u) =

(g3(ε))
−1g1(ε)f2(ε)

∫
R

(
e∆εφ(u) − 1−∆εφ(u)−

1

2

(
∆εφ(u)

)2)
Γ0(dv)+

(g3(ε))
−1g1(ε)

∫
R

(
∆εφ(u)− vφ′(u)− g1(ε)

v2

2
φ′′(u)

)
Γε(dv)+

(g3(ε))
−1g1(ε)f1(ε)b1φ

′(u) + (g2(ε))
−1g1(ε)f2(ε)bφ

′(u)+

(g3(ε))
−1g21(ε)f2(ε)

1

2
cφ′′(u)+

(g3(ε))
−1g1(ε)

∫
R

(
1

2

(
∆εφ(u)

)2 − v2

2

(
φ′(u)

)2)
Γε(dv)+

(g3(ε))
−1g1(ε)f2(ε)

1

2
c
(
φ′(u)

)2
.

Applying the Taylor’s formula for φ(u) and making use the condition L2 we will have

Hε
Γφ(u) =

(g3(ε))
−1g1(ε)f2(ε)

∫
R

(
evφ

′(u) − 1− vφ′(u)− v2

2

(
φ′(u)

)2)
Γ0(dv)+

(g3(ε))
−1g1(ε)f2(ε)

∫
R

(
evφ

′(u)g1(ε)
v2

2
φ′′(ũ)− g1(ε)

v2

2
φ′′(ũ) −
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g1(ε)
v4

8

(
φ′′(ũ)

)2)
Γ0(dv)+

(g3(ε))
−1g1(ε)f2(ε)

∫
R

g1(ε)
v3

3!
φ′′′(ũ) Γ0(dv) + (g3(ε))

−1g1(ε)f1(ε)b1φ
′(u)+

(g3(ε))
−1g1(ε)f2(ε)bφ

′(u) + (g3(ε))
−1g21(ε)f2(ε)

1

2
cφ′′(ũ)+

(g3(ε))
−1g1(ε)f2(ε)

∫
R

g1(ε)
v4

4

(
φ′′(ũ)

)2
Γ0(dv)+

(g3(ε))
−1g1(ε)f2(ε)c

1

2

(
φ′(u)

)2
.

Using condition (L3) and (g3(ε))
−1g1(ε)f2(ε) → 1, finally we obtain

Hε
Γφ(u) = (g3(ε))

−1g1(ε)f1(ε)b1φ
′(u) +HΓφ(u) + θεΓφ,

where
∣∣θεΓφ∣∣ → 0 as g1(ε), f1(ε) → 0.

Lemma is proved.

From this Lemma we have that the following Theorem holds true.

Theorem 2
The solution for the problem of large deviations for the process

ηε = g1(ε)

(
t

g3(ε)

)
, t ≥ 0,

Γεφ(u) = (g3(ε))
−1

∫
R

(
φ(u+ g1(ε)v)− φ(u)

)
Γε(dv)

under conditions (L1-L5) and
(g3(ε))

−1g1(ε)f2(ε) → 1, ε → 0

is determined by the limit generator HΓ of the form

HΓφ(u) = (b− b0)φ
′(u) +

1

2
(c− c0)

(
φ′(u)

)2
+

∫
R

(
evφ

′(u) − 1
)
Γ0(dv).

4. Conclusions.

Thus, using normalization parameters as nonlinear functions we can found asymptotic representation for the
random process in Poisson and Lévy approximation. This normalization allows to find nonlinear exponential
generator that is the solution of the Large Deviations Principle.As normalization factors, we can take not only
ε, but other nonlinear functions f(ε) and g(ε), that satisfied the conditions

(g2(ε))
−1g1(ε)f1(ε) → 1, ε → 0,

and in the Lévy approximation
(g3(ε))

−1g1(ε)f2(ε) → 1, ε → 0.

This normalization allows us to consider more processes and their small and large deviations.
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