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Abstract The complexity of optimal control problems requires the use of numerical methods to compute control and
optimal state trajectories for a dynamical system, aiming to optimize a particular performance index. Considering a real
viral advertisement, this article compares the dynamics of a viral marketing epidemic model with optimal control under
different cost scenarios and from two perspectives: using numerical methods based on the Pontryagin’s Maximum Principle
(indirect methods) and methods that treat the optimal control problem as a nonlinear constrained optimization problem
(direct methods). Based on the trade–off between the maximization of information spreading and the minimization of
the costs associated with it, an optimal control problem is formulated and studied. The existence and uniqueness of the
solution are proved. Our results show not only that the cost of implementing control policies is a crucial parameter for
the spreading of marketing messages, but also that low investment costs in control strategies fulfill the proposed trade–off
without compromising the financial capacity of a company.
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1. Introduction

Viral Marketing (VM) is a marketing strategy that takes advantage of network effects to fostering customers to
promote information product exchange among their social network [1].

The impact of network effects on consumers can be quite erratic, and marketing companies cannot always
guarantee the success of an advertising campaign. In this regard, research studies have been applied epidemiological
models beyond their conventional use, particularly on studying the dissemination of information content within a
certain population (see, e.g., [2, 3, 4, 5] and references cited therein). Other investigations have developed models
to study viral propagation of memes, via social communication, on a target population [6], spreading schemes
for VM within social networks [7], algorithms that minimize the number of initial seeds to generate maximum
awareness of products [8], or even approaches that try to better identify the seeds that can broadly spread a
marketing message [9]. Since companies generally face trade-off situations related to the conception of strategies
that maximize the spreading of information among consumers in a cost-effective way, it is relevant to conceive
mathematical techniques able to model these particular features. In this regard, in addition to applications in the
area of health (e.g., Human Respiratory Syncytial Virus (HRSV) [10] or Dengue [11]), Optimal Control Theory
[12] has been explored to assess the impact of control measures on information epidemics (see, e.g., [3, 4, 13, 14]).
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Hence, motivated by the unconventional application of optimal control strategies to information epidemics, this
papers studies an optimal control problem based on real–world numerical data from a viral marketing campaign,
considered to be the most viral video advertisement of all time in 2013 – Dove Real Beauty Sketches (see [15] for
more detailed information).

Concretely, since the costs related to the propagation of a marketing message should not be neglected, an
optimal control problem related to the maximization of information spreading with a low cost is formulated,
considering low, moderate and high costs of implementing spreading strategies. This formulation uses a controlled
SIR (Susceptible-Infected-Recovered) epidemiological model proposed in [4] and follows the work of Kandhway
and Kury [3]. However, whereas the model proposed in [4] considers a linear weighted control function, the
structure of the control is assumed to be quadratic throughout this article. Moreover, under different cost scenarios,
the dynamics of the state and control variables are assessed using numerical methods that, on the one hand, allow
to derive necessary optimality conditions for the existence of an optimal control (indirect methods), based on the
Pontryagin’s Maximum Principle, and, on the other hand, methods that parameterize the state and control variables,
treating the optimal control problem as a nonlinear optimization problem (NLP) – direct methods.

The article is organized as follows. In Section 2, the standard SIR epidemic model and its properties are discussed
under a VM context. In Section 3, the optimal control problem is formulated and its mathematical properties are
studied. Section 4 describes the numerical implementation of the model and the two types of numerical methods
used. Section 5 reports the numerical results and their discussion. Section 6 is devoted to conclusions.

2. SIR Epidemiological Model and Properties

Proposed in [16], the classical SIR model subdivides the population into three mutually-exclusive compartments:
susceptible individuals (S), infected individuals (I) and recovered individuals (R). This model is represented by
the following system of ordinary differential equations with initial values:

dS(t)

dt
= −β

S(t)I(t)

N

dI(t)

dt
= β

S(t)I(t)

N
− γI(t)

dR(t)

dt
= γI(t) ,



S(0) = S0 > 0

I(0) = I0 > 0

R(0) = R0 > 0 .

(1)

However, these compartments can be described under a marketing context. In fact, the marketing definition of
these compartments and model parameters was already discussed in a similar context (see, e.g., [4, 5, 6]). The
state variables S(t), I(t) and R(t) thus represent, respectively, the target population who can spread the marketing
message, the individuals who spread it into their social networks and the ones who stop diffusing it, over time t.
Regarding the model parameters, β and γ traduce the predisposition to share the marketing message by targeted
individuals and the interruption of the spreading process by infected individuals, respectively. Note that, when the
marketing message is appealing, individuals in the class S move to the class I at a rate β. Naturally, over time,
individuals in the class I stop sharing the marketing message and move to the class R at a rate γ. Moreover, the
total population size, N , is assumed to be constant over time t, that is, N = S(t) + I(t) +R(t). The value N was
estimated based on the number of YouTube users in 2013 [17].

After modeling the system (1) according to the maximum peak of infection reached in the campaign’s
data referred in [15] (first seven days of the campaign), the parameters β = 67.5244 and γ = 65.0751 were
estimated based on the FMINSEARCH function that implements the Nelder-Mead algorithm (see [18]), from
MATLAB optimization toolbox. Additionally, considering that at the beginning of the campaign almost everyone is
susceptible to have contact with the marketing message, the basic reproduction number for system (1) is given by

R0 =
β

γ
, and expresses, within a marketing context, the number of secondary message exchanges made by a single

infected individual, within a susceptible population. At this point, it can be proved that if R0 < 1 the marketing
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message is not widespread. On the contrary, if R0 > 1, the message is widely spread within the target population
(see, e.g., [19] for more details on the dynamics of R0). In this regard, for the estimated parameters β and γ, we
get R0 > 1 – which corroborates that Dove’s campaign was a viral marketing epidemic.

3. Optimal Control Problem

Based on the SIR model (1), let us now consider the fractions s(t), i(t) and r(t) such that s(t) = S(t)
N , i(t) =

I(t)
N and r(t) = R(t)

N , where s(t) + i(t) + r(t) = 1, ∀t ∈ [0, tf ], and tf is the considered campaign deadline.
Considering these fractions, the system (1) is mathematically and epidemiologically well posed (see [19] and
the references cited therein), ensuring the boundedness of state trajectories.

To the system (1), one control function u(·) is now added, resulting in a controlled SIR epidemiological model
given by the following system of ordinary differential equations:

ds(t)

dt
= −βs(t)i(t)− u(t)s(t)

di(t)

dt
= βs(t)i(t) + u(t)s(t)− γi(t)

dr(t)

dt
= γi(t) ,



s(0) = S(0)
N

i(0) = I(0)
N

r(0) = 0 .

(2)

The rate of change of the total population is given by
ds(t)

dt
+

di(t)

dt
+

dr(t)

dt
= 0 and the control function u(·)

represents the recruitment of susceptible individuals to act as spreaders within social networks (e.g., through
advertisements in mass media [3]) by marketing companies, purposing to maximize the levels of information
diffusion. The admissible control set Ω is defined by

Ω =

{
u(·) ∈ L2(0, tf ) | 0 6 u(t) 6 umax, ∀t ∈ [0, tf ]

}
.

For the bounded control u(·), the application of the control policy is maximum if u = umax and null if u = 0.
The main goal is to find the optimal value u∗ for the control u, in such a way that the state trajectories s, i and r
are the solution of the system (2) over [0, tf ], and maximize the objective functional (3). At this point, following
the work of [3], the optimal control problem consists in maximizing the fraction of individuals who had contact
with the marketing message at tf , by minimizing the intervention costs related to the implementation of the control
strategy u, i.e.,

max
Ω

J(u(·)) = i(tf ) + r(tf ) +

∫ tf

0

−Bu2(t) dt , (3)

subject to (2), where the nonnegative constant B represent the weight of the investment costs associated with
the control strategy u. Under a marketing perspective and assuming that the costs do not take a linear form, we
considered a quadratic structure for the weighted control function instead of a linear form as in [4].

Henceforth, let s∗(t), i∗(t), r∗(t) and λ∗
1(t), λ

∗
2(t), λ

∗
3(t) denote the optimal state and adjoint functions,

respectively.

Theorem 1
There exists an optimal control function u∗(·) ∈ Ω and a set of corresponding solutions (s∗(·), i∗(·), r∗(·)) that
maximize the objective functional (3) subject to (2).

Proof
This proof is based on the Cesari Theorem [20]. Hence, the following conditions must be satisfied:
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1. The set of solutions of the controlled system with initial conditions (2) with u ∈ Ω is not empty.
2. The set Ω is closed and convex.
3. The right hand side of the state system (2) is continuous, bounded above by a sum of the bounded function u

and the state variables, and can be written as a linear function in u with state variables as coefficients.
4. The integrand of the objective functional (3) is concave on Ω with respect to u and there exists constants

C0 > 0, C1 and C2 > 1 such that

−Bu2(t) 6 C1 − C0

∣∣u(t)∣∣C2
.

Firstly, preserving the initial conditions and noting that r(t) = 1− s(t)− i(t), the system (2) can be reduced to


ds(t)

dt
= −βs(t)i(t)− u(t)s(t)

di(t)

dt
= βs(t)i(t) + u(t)s(t)− γi(t) .

(4)

The Condition 2 is satisfied since Ω is closed and convex by definition. Condition 3 is satisfied as follows (see,
e.g., [21, 22] for similar arguments):
The reduced system (4) can be rewritten as

V (x) =̇
dx

dt
= Ax+B(x) , (5)

where the matrix A, the state vector x and the nonlinear function B(x) are defined as:

A =

(
−u(t) 0
u(t) −γ

)
, x =

[
s(t) i(t)

]T
and B(x) =

(
−βs(t)i(t) βs(t)i(t)

)T
.

In addition, notice that∣∣∣B(x)−B(x̃)
∣∣∣ = ∣∣∣∣∣

(
−β

[
i(t)

(
s(t)− s̃(t)

)
+ s̃(t)

(
i(t)− ĩ(t)

)]
β

[
i(t)

(
s(t)− s̃(t)

)
+ s̃(t)

(
i(t)− ĩ(t)

)] )T
∣∣∣∣∣

6 2
∣∣βi(t)∣∣∣∣s(t)− s̃(t)

∣∣+ 2
∣∣βs̃(t)∣∣∣∣i(t)− ĩ(t)

∣∣
6 C

(∣∣s(t)− s̃(t)
∣∣+ ∣∣i(t)− ĩ(t)

∣∣) ,
where C = max

{
2
∣∣βi(t)∣∣, 2∣∣βs̃(t)∣∣}. Therefore,

∣∣V (x)− V (x̃)
∣∣ 6 D

∣∣x− x̃
∣∣ , (6)

by taking D = C + ||A|| < ∞, which proves that V (x) is uniformly Lipschitz continuous. Hence, also attending
to the definition of Ω and the non-negativity of the state solutions, Condition 1 is satisfied. Since the state variables
s(t), i(t) and r(t) and the cost functional (3) take values in a compact interval [0, 1], and 0 6 u(t) 6 umax, ∀t ∈
[0, tf ], then V (x) is bounded above by a sum of the bounded function u and the state variables. Moreover, it is easy
to show that V (x) can be written as a linear function in u(t) with state variables as coefficients, thus proving the
Condition 3. Finally, Condition 4 is satisfied since the integrand of the functional (3) is concave on Ω and

−Bu2(t) 6 C1 − C0

∣∣u(t)∣∣C2
, (7)

if C0 = B, C1 = 1, C2 = 2 were chosen. Hence the proof is concluded.
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According to the Pontryagin’s Maximum Principle (PMP) [12] and considering the optimal control problem (2)
and (3), if u∗(·) is a control that is optimal for the problem, then there exists a Lipschitz continuous map called
covector λ : [0, tf ] → R3, λ(t) = (λ1(t), λ2(t), λ3(t)), such that

ds(t)

dt
=

∂H
∂λ1

,
di(t)

dt
=

∂H
∂λ2

,
dr(t)

dt
=

∂H
∂λ3

(8)

and

dλ1(t)

dt
= −∂H

∂s
,

dλ2(t)

dt
= −∂H

∂i
,

dλ3(t)

dt
= −∂H

∂r
, (9)

where the function H defined by

H
(
s(t), i(t), r(t), u(t), λ1(t), λ2(t), λ3(t)

)
= −Bu2(t)

+ λ1(t)
(
− βs(t)i(t)− u(t)s(t)

)
+ λ2(t)

(
βs(t)i(t) + u(t)s(t)− γi(t)

)
+ λ3(t)

(
γi(t)

)
(10)

is called the Hamiltonian.

Theorem 2
Given the optimal solution (s∗(t), i∗(t), r∗(t)) of the state system (2) and functional (3), associated with the optimal
control variable u∗(t) ∈ Ω, there exists adjoint functions λ1(t), λ2(t), λ3(t) such that

dλ1(t)

dt
= λ1(t)

(
βi∗(t) + u∗(t)

)
− λ2(t)

(
βi∗(t) + u∗(t)

)
dλ2(t)

dt
= λ1(t)

(
βs∗(t)

)
− λ2(t)

(
βs∗(t)− γ

)
− λ3(t)γ

dλ3(t)

dt
= 0 ,

(11)

with transversality conditions

λ1(tf ) = 0 and λ2(tf ) = λ3(tf ) = 1 . (12)

Further, the optimal control u∗ is characterized by

u∗(t) = min

{
max

{
s∗(t)

(
λ2(t)− λ1(t)

)
2B

, 0

}
, umax

}
. (13)

Proof

Following the PMP [12], and setting s(t) = s∗(t), i(t) = i∗(t), r(t) = r∗(t) and u(t) = u∗(t), the system (11)
comes from
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

dλ1(t)

dt
= −

∂H
(
s∗(t), i∗(t), r∗(t), u∗(t), λ1(t), λ2(t), λ3(t)

)
∂s

dλ2(t)

dt
= −

∂H
(
s∗(t), i∗(t), r∗(t), u∗(t), λ1(t), λ2(t), λ3(t)

)
∂i

dλ3(t)

dt
= −

∂H
(
s∗(t), i∗(t), r∗(t), u∗(t), λ1(t), λ2(t), λ3(t)

)
∂r

.

(14)

Since i(tf ) and r(tf ) are the only payoff terms of the functional (3), then λ2(tf ) = λ3(tf ) = 1 and λ1(tf ) = 0.
Moreover, the optimality condition

∂H
(
s∗(t), i∗(t), r∗(t), u∗(t), λ1(t), λ2(t), λ3(t)

)
∂u

= −2Bu∗(t) +
(
λ2(t)− λ1(t)

)
s∗(t) = 0 (15)

holds almost everywhere on [0, tf ]. Thus, by (15) and considering the boundedness condition of u on Ω, we obtain
(13).

Based on the above, it is possible to derive the optimality system, which consists on the state system with
initial conditions (2) coupled with the adjoint system (11) and transversality conditions (12) together with the
characterization (13).

Additionally, since the state and adjoint functions are bounded and the systems (2) and (11) preserve the Lipschitz
structure, u∗ is unique for tf sufficiently small (see, e.g., [23]). However, the uniqueness of optimality system holds
for any value of tf since the state system (2) is autonomous.

The optimal control and state can be obtained by solving the optimality system using numerical methods for
optimal control problems.

4. Numerical Implementation and Methods

To compute the solution of the optimality system and maximize the objective functional (3), two different
implementations are considered: indirect and direct methods. Under Dove’s campaign real data [15], these
implementations were compared in terms of model dynamics for the first seven days (t ∈ [0, 6]) using both the
parameter values β and γ estimated in Section 2 and the initial conditions

s(0) = 1− 3× 10−5

i(0) = 3× 10−5

r(0) = 0 .

(16)

Indirect methods to solve optimal control problems are based on the Pontryagin’s Maximum Principle to compute
the optimal solution. Therefore, these methods require the state system with initial values (2), and necessary
conditions (10), (11), (12) to find the solution of a given optimal control problem, by converting it into a boundary
value problem. On the other hand, direct methods use discretization with respect to time to solve optimal control
problems, in which the cost functional is directly optimized [24], treating the optimal control problem as a nonlinear
optimization problem (NLP) (see, e.g., [25]).

Some advantages and drawbacks can be pointed out to both indirect and direct methods. According to Trélat
[26], direct methods are more robust and less sensitive to the choice of the initial conditions than indirect methods,
being more easier to implement. However, in comparison with indirect methods, reaching to a desirable precision
is not so easy when direct methods are employed. In addition, the author states not only the possibility of obtain
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local minima when the direct discretization of an optimal control problem is employed, but also the necessity of a
large amount of memory, which in turn can lead to inefficiencies when, for instance, a large dimension problem is
considered. On the other hand, indirect methods provide high levels of numerical accuracy, but their implementation
can be quite difficult due to the necessity of computing derivatives and necessary conditions related to the PMP.

Based on the foregoing, in order to assess the dynamics of the model using both indirect and direct methods,
three distinct weight factors B = 10−1, B = 10 and B = 102 were considered to generate numerical simulations.
These factors traduce, respectively, a low, moderate and high investment cost scenario in recruiting susceptible
population to act as spreaders on the target population, by marketers. The choice of these values is related to the
formulation of investment cost scenarios that best describe and illustrate the marketing reality.

At this point, as an indirect numerical approach, Forward-Backward Sweep method (FBS) is considered.
Generally, this method uses a fourth order Runge-Kutta scheme to solve forward and backward in time the state
and adjoint equations in compliance with the differential equations in the optimality system (see, e.g. [27] for more
detailed information).

In contrast, to use direct methods, the problem (3) must be discretized with respect to time t. For that, a first
order Euler’s method is considered where the time t = kh, for k ∈ {0, 1, ...,M} moves forward in uniform steps
of length h and M is the the last index of the Euler’s scheme, corresponding to tf = 6. Note that higher order
discretization schemes can also be used despite of no notorious advantages arise [28].

Let f : [0, 1]3 → R3 be a C1 map. According to the Euler’s scheme, considering

dx

dt
= f

(
x(t)

)
, ∀t ∈ [0, 6] ,

where

x(t) =

 s(t)
i(t)
r(t)

 and f
(
x(t)

)
=

 −βs(t)i(t)− u(t)s(t)
βs(t)i(t) + u(t)s(t)− γi(t)

γi(t)

 ,

the update is given by

xn+1 ≃ xn + hf(xn) .

The approximation xn+1 of x(t) at the point tn+1 has an error committed proportional to h2. Moreover, it is
considered h = 0.006 since it gives a proper balance between accuracy and computational efficiency.

Hence, based on the trapezoidal rule, the problem (3) is discretized into the following nonlinear constrained
optimization problem:

maximize
Ω

i(M) + r(M)− 3B

M

(
u2(0) + u2(M) + 2

M−1∑
k=1

u2(k)

)

subject to

 s(k + 1)
i(k + 1)
r(k + 1)

 =

 s(k)
i(k)
r(k)

+ h

{ −βs(k)i(k)− u(k)s(k)
βs(k)i(k) + u(k)s(k)− γi(k)

γi(k)

}
,

(17)

where k = 0, 1, ...,M − 1.

KNITRO, IPOPT and LOQO were used as software packages to solve the discretized problem above. A short
description of these packages is given as follows.

KNITRO [29] is a nonlinear solver for large-scale linear, quadratic, and general smooth nonlinear optimization
problems with several variables, continuous and integer. For continuous problems, several algorithms are available
such as: direct interior-point, conjugate gradient interior-point and sequential linear-quadratic active-set algorithms.

IPOPT [30], for Interior Point OPTimizer, is a software package for large-scale nonlinear optimization, written
in FORTRAN and C, that implements a primal-dual interior-point method using line search methodologies based
on filter methods.
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LOQO [31], is an optimization solver for smooth constrained problems, supported to linear, quadratic, nonlinear,
convex or nonconvex objectives and constraints in continuous variables.

Using these solvers, the discretized problem (17) was modeled in the algebraic modeling language AMPL
[32] and numerically solved in NEOS Server platform [33]. The indirect method was implemented and solved
in MATLAB. It should be noted that, within the direct method, the CPU time can vary depending on the machine
used in NEOS server platform. Thus, this variable is not taken into account when analyzing the results.

5. Numerical Results and Discussion

This section reports and compares the computational results not only regarding the state and control variables of
the state system (2), but also for the cost functional (3), using both the indirect and direct numerical methods and
the three cost scenarios previously described.

Henceforth, each figure illustrates the solution obtained by each numerical method adopted for both control and
state variables. In the computational measurements, a local optimal solution was attained for all the solvers and
cost variations. The number of iterations and function evaluations spent by each direct solver for each weight factor
B is presented in Table 1. Table 2 reports the values obtained for the proposed objective functional using the four
considered solvers.

Table 1. Computational performance indicators of direct solvers.
B = 10−1 B = 10 B = 102Solver #iterations #evaluations #iterations #evaluations #iterations #evaluations

KNITRO 10 12 11 13 10 12
IPOPT 21 22 26 27 23 24
LOQO 21 21 28 28 26 26

Table 2. Cost functional values.
B = 10−1 B = 10 B = 102Solver ≈ J(u(t)) ≈ J(u(t)) ≈ J(u(t))

FBS 0.8836 0.44643 0.2739
KNITRO 0.8841 0.44643 0.2743
IPOPT 0.8841 0.44643 0.2743
LOQO 0.8689 0.44638 0.2734

Starting with the weight factor B = 10−1 (Fig. 1), all the solvers suggest that for a small investment cost in the
control u, the fraction of susceptible population decreases over time t, which means that the control measure
adopted is effective on encouraging individuals to spread the marketing message within their social network,
inducing, therefore, high levels of infection in a short period of time (see Fig. 1b). All the methods also show
that virtually all the target population tends to spread the message, since, for t = 6, the fraction of susceptible
population is almost null (see Fig. 1a) and the individuals tend to fully recover from previous infection states (see
Fig. 1c), meaning that they had previous contact with the marketing message.

In terms of the application of the control policy (Fig. 1d), mainly LOQO’s curve allows inferring that, when the
investment cost is low, the control u should be applied gradually from the beginning of the campaign in order to
attain the maximum peak of infection. In fact, the higher levels of cost functional (3) are obtained for B = 10−1

(see Table 2). It should be emphasized that despite of the dynamics of LOQO be different than the obtained with
the other solvers for the control signal u, its behavior on the state variables as well as on the cost functional is
consistent with the dynamics of all numerical solvers tested. The differences in the dynamics of the solvers can be
explained by the numerical steps that promote global convergence.

On the other hand, for a reasonable investment cost in implementing u (Fig. 2), all the solutions obtained show
that the levels of information spreading are lower than the ones obtained for B = 10−1 (see, Fig. 2b). In fact,
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Figure 1. Model dynamics using FBS, KNITRO, IPOPT and LOQO under a low investment cost in u. Parameter values:
B = 10−1 and umax = 1 .

whereas for B = 10−1 the majority of the individuals spreads or has contact with the marketing message, Fig. 2a
reveals that, for B = 10, about half of the target population is not stimulated to share the intended message, which
in turn induces lower levels of recovery (see Fig. 2c).

Figure 2d suggests that facing a reasonable investment cost in control actions, the control measures should be
applied with higher intensity at the beginning of the campaign and not over time as in the case of B = 10−1. In
terms of the proposed objective functional, for B = 10, all the solvers conducted to an approximated solution,
which is roughly half than the obtained for B = 10−1 (see Table 2). This fact is natural, since the adoption of this
control weight represents a bigger effort in terms of cost minimization. Regarding the factor B = 102, illustrated in
Fig. 3, the simulations related to the fraction of susceptible and recovered population were omitted in order to avoid
redundancy. However, for a high investment cost in u, the recorded levels of infection are the lowest (Fig. 3a). In
terms of the application of the control policy (Fig. 3b), the results are analogous to the ones obtained for B = 10
(Fig. 2d), but with a lower magnitude.

Transversally, whatever the factor B considered, it is possible to observe that different numerical solvers lead
to an analogous dynamics. These dynamics are exactly the same for KNITRO and IPOPT, which corroborates the
robustness of the obtained results, notwithstanding KNITRO leads to a smaller number of iterations and function
evaluations than IPOPT (see Table 1).
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Figure 2. Model dynamics for FBS, KNITRO, IPOPT and LOQO under a reasonable investment cost in u. Parameter values:
B = 10 and umax = 0.1 .
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Figure 3. Model dynamics for FBS, KNITRO, IPOPT and LOQO under a high investment cost in u. Parameter values:
B = 102 and umax = 0.025 .
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6. Conclusion

Using real numerical data, this paper formulates an optimal control problem to maximize the spreading of
information by minimizing costs. Indirect and direct numerical techniques to solve the problem are compared,
and the dynamics of the state and control variables under different cost scenarios are studied.

Our results support the conclusion that both indirect and direct methods lead to analogous behaviors in terms of
state variables, confirming the reliability of the obtained results. However, in what concerns to the control variable
u, the dynamics vary inasmuch as the investment costs in control policies have a direct influence on the objective
functional. At this point, numerical simulations showed that when the investment cost related to the adoption of u
decreases, the magnitude of u increases. In contrast, when the investment cost associated with the implementation
of u increases, the magnitude of u decreases. In addition, for all considered approaches, the cost of implementation
of control policies has a significative impact on the dissemination of the information content. Whenever this cost
increases, the fraction of population who has contact with the marketing message decreases. As a consequence, the
number of infected individuals (who has contact with the marketing message) is smaller. Therefore, the greater the
factor B, the smaller the objective functional.

On the other hand, we observed that the numerical estimation of β and γ may give rise to difficulties when real
data is considered. It should also be emphasized that despite of FBS be very intuitive, its flexibility might be a
problem since it requires explicit derivatives of necessary conditions. On the contrary, direct methods are easier to
implement but induce smaller levels of numerical accuracy.

All in all, optimal control strategies combined with indirect and direct numerical methods can be a fruitful tool
to study consumer’s response to several marketing strategies. As future work, it would be interesting to test other
solvers with additional optimal control measures or even perform a cost-effectiveness analysis considering delay
differential equations, in order to better describe the dynamics of information epidemics.
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