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Abstract The asymptotic behavior of a non-autonomous oscillating system described by a differential equation of the
fourth order with small non-linear periodical external perturbations of “white noise”, non-centered and centered “Poisson
noise” types is studied. Each term of external perturbations has own order of a small parameter ε. If the small parameter is
equal to zero, then the general solution of the obtained non-stochastic fourth order differential equation has an oscillating
part. We consider the given differential equation with external stochastic perturbations as the system of stochastic differential
equations and study the limit behavior of its solution at the time moment t/εk, as ε → 0. The system of averaging stochastic
differential equations is derived and its dependence on the order of the small parameter in each term of external perturbations
is studied. The non-resonance and resonance cases are considered.
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1. Introduction

Studying of oscillation processes has a great importance in different areas of mechanics, physics, technics, and
economics. As examples of the oscillation systems we can consider vibration of constructions and mechanisms,
electromagnetic oscillations in radio-technology and optics, auto-oscillation in control systems, sound and ultra-
sound vibrations. It worth to mention that oscillatory models in finance are studied in Ping Chen, Sardar M.N.
Islam [1] and in C. Ye, J.P. Huang [2].

The averaging method proposed by N.M.Krylov, N.N.Bogolyubov and Yu.A.Mytropolskij ([3], [4]) is one of the
main tool in studying of the deterministic oscillating systems under the action of a small non-linear perturbations.
The case of small random ”white noise” type disturbances in oscillating systems of the second order is considered
in the paper of Yu.A.Mytropolskij, V.G.Kolomiets [5]. The autonomous and non-autonomous oscillating systems
of the second order under the action of ”white noise” and Poisson type noise perturbations are studied in the
papers of O.V.Borysenko ([6], [7]). The particular case of the third order oscillating systems are investigated in
the articles of O.D.Borysenko, O.V.Borysenko [8], O.D.Borysenko, O.V.Borysenko and I.G.Malyshev ([9], [10]).
The limit behavior of autonomous and non-autonomous third order oscillating system under the action of an
external small nonlinear random disturbances such as multidimensional ”white noise“ and ”Poisson noise“ was
studied in ([11], [12]). The autonomous forth order stochastic oscillating systems is considered in the papers of
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134 NON-AUTONOMOUS RANDOM OSCILLATING SYSTEMS OF THE FOURTH ORDER

O.D.Borysenko, O.V.Borysenko ([13] – [15]). The averaging method on the infinite interval for the system of Ito
stochastic differential equations is studied in [16].

The non-autonomous oscillating systems of the fours order under the action of “white noise”, centered and non-
centered Poisson type noises perturbations are studied in ([17], [18]). It is considered the behavior, as ε→ 0, of the
oscillating system driven by stochastic differential equation

xIV (t) + b1x
′′′(t) + b2x

′′(t) + b3x
′(t) + b4x(t) =

= εk0f0(µ0t, x(t), x
′(t), x′′(t), x′′′(s)) + fε(t, x(t), x

′(t), x′′(t), x′′′(s))
(1)

with non-random initial conditions x(0) = x
(1)
0 , x′(0) = x

(2)
0 , x′′(0) = x

(3)
0 , x′′′(0) = x

(4)
0 , where ε > 0 is a small

parameter, fε(t,x(t)), x(t) = (x(t), x′(t), x′′(t), x′′′(t)) is a random function such that

t∫
0

fε(s,x(s)) ds =

m∑
i=1

εki

t∫
0

fi(µis,x(s)) dwi(s) + εkm+1

t∫
0

∫
R

fm+1(µm+1s,x(s), z) ν̃1(ds, dz)

+ εkm+2

t∫
0

∫
R

fm+2(µm+2s,x(s), z) ν2(ds, dz),

ki > 0, i = 0,m+ 2; fi, i = 0,m+ 2 are non-random functions periodic on µit, i = 0,m+ 2 with period
2π; wi(t), i = 1,m are independent one-dimensional Wiener processes; ν̃i(dt, dy) = νi(dt, dy)−Πi(dy)dt,
Eνi(dt, dy) = Πi(dy)dt, i = 1, 2; νi(dt, dy), i = 1, 2 are the independent Poisson measures independent on
wi(t), i = 1,m; Πi(A), i = 1, 2 are a finite measures on Borel sets in R.

We will study the asymptotic behavior of the oscillating system (1), as ε→ 0, in the case when there exists
stable harmonic oscillations at the system under condition ε = 0. Under this condition corresponding characteristic
equation has a form

λ4 + b1λ
3 + b2λ

2 + b3λ+ b4 = 0.

The following cases were considered previously:
1) ([17]) b1 > 0, b3 > 0, b1b2 > b3, b21 > 4(b2 − b3

b1
), b21b4 = b3(b1b2 − b3). In this case the characteristic equation

has a roots

λ1 = −η1, λ2 = −η2, λ3,4 = ±iω, where

η1,2 =
1

2

(
b1 ±

√
b21 − 4

(
b2 −

b3
b1

))
, ω2 =

b3
b1
.

2) ([18]) b1 > 0, b3 > 0, b4 > b1b3/4, b21b4 = b3(b1b2 − b3). In this case the characteristic equation has a roots

λ1 = −η + iν, λ2 = −η − iν, λ3,4 = ±iω, where

η =
b1
2
, ν =

1

2

√
b1(4b4 − b1b3)

b3
, ω2 =

b3
b1
.

The main results of this paper are following. We investigate the asymptotic behavior of the oscillating system (1),
as ε→ 0, in the case when the characteristic equation has multiple real root and two conjugate pure imaginary roots
(Theorem 3), and in the case of two pairs of imaginary adjoined roots of the characteristic equation (Theorem 4).
In both situations, we consider the non-resonance and resonance cases.
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O.D. BORYSENKO AND O.V. BORYSENKO 135

We will consider the equation (1) as the system of stochastic differential equations

dyi(t) = yi+1(t)dt, i = 1, 3

dy4(t) =

−(b · y(t)) + εk0f0(µ0t,y(t)) + εkm+2

∫
R

fm+2(µm+2t,y(t), z)Π2(dz)

 dt
+

m∑
i=1

εkifi(µit,y(t))dwi(t) + εkm+1

∫
R

fm+1(µm+1t,y(t), z)ν̃1(dt, dz)

+εkm+2

∫
R

fm+2(µm+2t,y(t), z)ν̃2(dt, dz),

(2)

y(t) = (y1(t), . . . , y4(t)),b = (b4, b3, b2, b1), yi(0) = x
(i)
0 , i = 1, 4, (b · y(t)) – is an inner product of vectors b

and y(t).
The rest of this paper is organized as follows. In Section 2, we present the previously obtained results deals with

cases 1) and 2) for equation (1). In Section 3, we will study the case of multiple real root and two conjugate pure
imaginary roots of the characteristic equation, and in Section 4, we consider the case of two pairs of imaginary
adjoined roots of the characteristic equation.

In what follows we will use the constant K > 0 for the notation of different constants, which do not depend on
ε.

2. Previously obtained results

Case 1) ([17]). If ε = 0, then the equation (1) has general solution in the form

x(t) = C1e
−η1t + C2e

−η2t +A1 cosωt+A2 sinωt

Let us denote

C(t) = (C1(t), C2(t), A1(t), A2(t)), Θ(t) = (e−η1t, e−η2t, cosωt, sinωt),

and let us consider the following representation of the solution y(t) to the system (2):

yi(t) =

(
C(t) · d

i−1

dti−1
Θ(t)

)
, i = 1, 4. (3)

We can solve the system of linear equations (3) with respect to (N1(t), N2(t), A1(t), A2(t)), where Ni(t) =
Ci(t)e

−ηit, i = 1, 2 and using the Ito formula we derive the system of stochastic differential equations:

dN1(t) = −η1N1(t) dt+
1

(η2 − η1)(η21 + ω2)
dH(t),

dN2(t) = −η2N2(t) dt−
1

(η2 − η1)(η22 + ω2)
dH(t),

dA1(t) =
−ω(η1 + η2) cosωt+ (ω2 − η1η2) sinωt

ω(η21 + ω2)(η22 + ω2)
dH(t),

dA2(t) =
−ω(η1 + η2) sinωt− (ω2 − η1η2) cosωt

ω(η21 + ω2)(η22 + ω2)
dH(t),
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136 NON-AUTONOMOUS RANDOM OSCILLATING SYSTEMS OF THE FOURTH ORDER

dH(t) =

εk0 f̃0(µ0t,N(t), A(t), ωt) + εkm+2

∫
R

f̃m+2(µm+2t,N(t), A(t), ωt, z)Π2(dz)

 dt
+

m∑
i=1

εki f̃i(µit,N(t), A(t), ωt)dwi(t) + εkm+1

∫
R
f̃m+1(µm+1t,N(t), A(t), ωt, z)ν̃1(dt, dz)

+ εkm+2

∫
R
f̃m+2(µm+2t,N(t), A(t), ωt, z)ν̃2(dt, dz),

where N(t) = (N1(t), N2(t)), A(t) = (A1(t), A2(t)); f̃i(µit,N(t), A(t), ωt), i = 0,m are obtained from
fi(µit,y(t)), i = 0,m and f̃i(µit,N(t), A(t), ωt, z), i = m+ 1,m+ 2 are obtained from fi(µit,y(t), z), i =
m+ 1,m+ 2 using (3).

Theorem 1
([17]) Let Πi(R) <∞, i = 1, 2, t ∈ [0, t0], k = min(k0, 2k1, . . . , 2km+1, km+2). Let us suppose, that functions
fj , j = 0,m+ 2 bounded and satisfy Lipschitz condition on yi, i = 1, 4. If given below matrix σ̄2(A1, A2) is non-
negative definite, then:
1. Let µi = pi

qi
ω for all i = 0,m+ 2, where pi and qi are some relatively prime integers. If k0 = 2ki = km+2, i =

1,m+ 1, then the stochastic process ξε(t) = (N1(t/ε
k), N2(t/ε

k), A1(t/ε
k), A2(t/ε

k)) weakly converges, as
ε→ 0, to the stochastic process ξ̄(t) = (0, 0, Ā1(t), Ā2(t)), where Ā(t) = (Ā1(t), Ā2(t)) is the solution to the
system of stochastic differential equations

dĀ(t) = ᾱ(Ā(t))dt+ σ̄(Ā(t))dw̄(t), Ā(0) = (A1(0), A2(0)), (4)

where

ᾱ(A1, A2) =
1

4π2

 ∑
p0n+q0l=0

2π∫
0

2π∫
0

f̂0(ψ,A1, A2, ϕ)Ψ(ϕ)e−i(nψ+lϕ) dϕ dψ

+
∑

pm+2n+qm+2l=0

2π∫
0

2π∫
0

∫
R

f̂m+2(ψ,A1, A2, ϕ, z)Ψ(ϕ)e−i(nψ+lϕ) Π2(dz) dϕ dψ

 ,
σ̄2(A1, A2) =

1

4π2

 m∑
j=1

∑
pjn+qj l=0

2π∫
0

2π∫
0

f̂2j (ψ,A1, A2, ϕ)Ψ(ϕ)ΨT (ϕ)e−i(nψ+lϕ) dϕ dψ

+
∑

pm+1n+qm+1l=0

2π∫
0

2π∫
0

∫
R

f̂2m+1(ψ,A1, A2, ϕ, z)Ψ(ϕ)ΨT (ϕ)e−i(nψ+lϕ) Π1(dz) dϕ dψ


Ψ(ϕ) =

1

ω(η21 + ω2)(η22 + ω2)

(
−ω(η1 + η2) cosϕ+ (ω2 − η1η2) sinϕ
−ω(η1 + η2) sinϕ− (ω2 − η1η2) cosϕ

)
,

f̂j(ψ,A1, A2, ϕ) = f̃j(ψ, 0, 0, A1, A2, ϕ), j = 0,m,

f̂i(ψ,A1, A2, ϕ, z) = f̃i(ψ, 0, 0, A1, A2, ϕ, z), i = m+ 1,m+ 2.

ΨT (ϕ) is the vector transpose to the vector Ψ(ϕ), w̄(t) = (w̄i(t), i = 1, 2), w̄i(t), i = 1, 2 are independent one-
dimensional Wiener processes.
2. If k < k0 then in the averaging equation (4) we must put f̃0 ≡ 0; if k < 2ki for some i = 1,m, then in the
averaging equation (4) we must put f̃i ≡ 0 for such i; if k < 2km+1 then in the averaging equation (4) we must put
f̃m+1 ≡ 0; if k < km+2 then in the averaging equation (4) we must put f̃m+2 ≡ 0.
3. If µj ̸= pj

qj
ω for some j = 0,m+ 2 and any relatively prime integers pj and qj , then in averaging coefficients in

(4) we must put l = n = 0 in corresponding sums containing f̂j .
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Case 2) ([18]). If ε = 0, then the equation (1) has general solution in the form

x(t) = e−ηt(C1 cos νt+ C2 sin νt) +A1 cosωt+A2 sinωt.

Let us denote

C(t) = (C1(t), C2(t), A1(t), A2(t)), Φ(t) = (e−ηt cos νt, e−ηt sin νt, cosωt, sinωt),

and let us consider the following representation of the solution y(t) to the system (2):

yi(t) =

(
C(t) · d

i−1

dti−1
Φ(t)

)
, i = 1, 4. (5)

We can solve the system of linear equations (5) with respect to (N1(t), N2(t), A1(t), A2(t)), where Ni(t) =
Ci(t)e

−ηt, i = 1, 2 and using the Ito formula we derive the system of stochastic differential equations:

dN1(t) = −ηN1(t) dt+
2ην cos νt+ (ν2 − ω2 − η2) sin νt

ν[(η2 + ν2)2 + 2(η2 − ν2)ω2 + ω4]
dH(t),

dN2(t) = −ηN2(t) dt+
2ην sin νt− (ν2 − ω2 − η2) cos νt

ν[(η2 + ν2)2 + 2(η2 − ν2)ω2 + ω4]
dH(t),

dA1(t) = − 2ηω cosωt+ (η2 + ν2 − ω2) sinωt

ω[(η2 + ν2)2 + 2(η2 − ν2)ω2 + ω4]
dH(t),

dA2(t) =
−2ηω sinωt+ (η2 + ν2 − ω2) cosωt

ω[(η2 + ν2)2 + 2(η2 − ν2)ω2 + ω4]
dH(t),

dH(t) =

εk0 f̃0(µ0t,N(t), A(t), ωt) + εkm+2

∫
R

f̃m+2(µm+2t,N(t), A(t), ωt, z)Π2(dz)

 dt
+

m∑
i=1

εki f̃i(µit,N(t), A(t), ωt)dwi(t) + εkm+1

∫
R
f̃m+1(µm+1t,N(t), A(t), ωt, z)ν̃1(dt, dz)

+ εkm+2

∫
R
f̃m+2(µm+2t,N(t), A(t), ωt, z)ν̃2(dt, dz),

where N(t) = (N1(t), N2(t)), A(t) = (A1(t), A2(t)); f̃i(µit,N(t), A(t), ωt), i = 0,m are obtained from
fi(µit,y(t)), i = 0,m and f̃i(µit,N(t), A(t), ωt, z), i = m+ 1,m+ 2 are obtained from fi(µit,y(t), z), i =
m+ 1,m+ 2 using (5).

Theorem 2
([18]) Let Πi(R) <∞, i = 1, 2, t ∈ [0, t0], k = min(k0, 2k1, . . . , 2km+1, km+2). Let us suppose, that functions
fj , j = 0,m+ 2 bounded and satisfy Lipschitz condition on yi, i = 1, 4. If given below matrix σ̄2(A1, A2) is non-
negative definite, then:
1. Let µi = pi

qi
ω for all i = 0,m+ 2, where pi and qi are some relatively prime integers. If k0 = 2ki = km+2, i =

1,m+ 1, then the stochastic process ξε(t) = (N1(t/ε
k), N2(t/ε

k), A1(t/ε
k), A2(t/ε

k)) weakly converges, as
ε→ 0, to the stochastic process ξ̄(t) = (0, 0, Ā1(t), Ā2(t)), where Ā(t) = (Ā1(t), Ā2(t)) is the solution to the
system of stochastic differential equations

dĀ(t) = ᾱ(Ā(t))dt+ σ̄(Ā(t))dw̄(t), Ā(0) = (A1(0), A2(0)), (6)

where

ᾱ(A1, A2) =
1

4π2

 ∑
p0n+q0l=0

2π∫
0

2π∫
0

f̂0(ψ,A1, A2, ϕ)Υ(ϕ)e−i(nψ+lϕ) dϕ dψ

+
∑

pm+2n+qm+2l=0

2π∫
0

2π∫
0

∫
R

f̂m+2(ψ,A1, A2, ϕ, z)Υ(ϕ)e−i(nψ+lϕ) Π2(dz) dϕ dψ

 ,
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138 NON-AUTONOMOUS RANDOM OSCILLATING SYSTEMS OF THE FOURTH ORDER

σ̄2(A1, A2) =
1

4π2

 m∑
j=1

∑
pjn+qj l=0

2π∫
0

2π∫
0

f̂2j (ψ,A1, A2, ϕ)Υ(ϕ)ΥT (ϕ)e−i(nψ+lϕ) dϕ dψ+

+
∑

pm+1n+qm+1l=0

2π∫
0

2π∫
0

∫
R

f̂2m+1(ψ,A1, A2, ϕ, z)Υ(ϕ)ΥT (ϕ)e−i(nψ+lϕ) Π1(dz) dϕ dψ

 ,
Υ(ϕ) =

1

ω[(η2 + ν2)2 + 2(η2 − ν2)ω2 + ω4]

(
−2ηω cosϕ− (η2 + ν2 − ω2) sinϕ
−2ηω sinϕ+ (η2 + ν2 − ω2) cosϕ

)
ΥT (ϕ) is the vector transpose to the vector Υ(ϕ), w̄(t) = (w̄i(t), i = 1, 2), w̄i(t), i = 1, 2 are independent one-
dimensional Wiener processes.
2. If k < k0 then in the averaging equation (6) we must put f̃0 ≡ 0; if k < 2ki for some i = 1,m, then in the
averaging equation (6) we must put f̃i ≡ 0 for such i; if k < 2km+1 then in the averaging equation (6) we must put
f̃m+1 ≡ 0; if k < km+2 then in the averaging equation (6) we must put f̃m+2 ≡ 0.
3. If µj ̸= pj

qj
ω for some j = 0,m+ 2 and any relatively prime integers pj and qj , then in averaging coefficients in

(6) we must put l = n = 0 in corresponding sums containing f̂j .

3. The case of multiple real root and two conjugate pure imaginary roots of characteristic equation

From Borysenko O. and Malyshev I. [19], using the obvious modifications we obtain following results.

Lemma 1
Let for each x ∈ Rd there exists

lim
T→∞

1

T

∫ T+A

A

f(t, x) dt = f̄(x)

uniformly with respect to A, the function f̄(x) is bounded and continuous, the function f(t, x) is bounded and
continuous in x uniformly with respect to (t, x) in any region t ∈ [0,∞), |x| ≤ K, and stochastic process ξ(t) ∈ Rd
is continuous, then

lim
ε→0

∫ t

0

f
(s
ε
, ξ(s)

)
ds =

∫ t

0

f̄(ξ(s)) ds

almost surely for all arbitrary t ∈ [0, t0].

Remark 1
Let f(t, x, z) is bounded and uniformly continuous in x with respect to t ∈ [0,∞) and z ∈ R in every compact set
|x| ≤ K,x ∈ Rd. Let Π(·) be a finite measure on the σ-algebra of Borel sets in R and let

lim
T→∞

1

T

∫ T+A

A

f(t, x, z) dt = f̄(x, z),

uniformly with respect to A for each x ∈ Rd, z ∈ R, where f̄(x, z) is bounded, uniformly continuous in x with
respect to z ∈ R in every compact set |x| ≤ K. Then for any continuous process ξ(t) ∈ Rd we have

lim
ε→0

∫ t

0

∫
R
f
(s
ε
, ξ(s), z

)
Π(dz)ds =

∫ t

0

∫
R
f̄(ξ(s), z)Π(dz)ds

almost surely for all arbitrary t ∈ [0, t0].

In this section we will study the following case:

b1 > 0, 4b2 > b21, b3 = b1

(
b2 −

b21
4

)
, b4 = b21

(
b2 − b21

4

)
4

.
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Characteristic equation has a roots

λ1,2 = −η, λ3,4 = ±iω, where η = b1/2, ω2 = 4b4/b
2
1.

If ε = 0 then the equation (1) has general solution in the form

x(t) = C1e
−ηt + C2te

−ηt +A1 cosωt+A2 sinωt.

Let us consider the following representation of the solution y(t) to the system (2):

y1(t) = N1(t) +A1(t) cosωt+A2(t) sinωt,
y2(t) = −ηN1(t) +N2(t)−A1(t)ω sinωt+A2(t)ω cosωt,
y3(t) = η2N1(t)− 2ηN2(t)−A1(t)ω

2 cosωt−A2(t)ω
2 sinωt,

y4(t) = −η3N1(t) + 3η2N2(t) +A1(t)ω
3 sinωt−A2(t)ω

3 cosωt,

(7)

where
N1(t) = (C1(t) + tC2(t))e

−ηt, N2(t) = C2(t)e
−ηt.

We can solve the system of linear equations (7) with respect to (N1(t), N2(t), A1(t), A2(t)) and using the Ito
formula we derive the system of stochastic differential equations:

dN1(t) = [−ηN1(t) +N2(t)] dt+
2η

(η2 + ω2)2
dH(t),

dN2(t) = −ηN2(t) dt+
1

(η2 + ω2)
dH(t),

dA1(t) =
(ω2 − η2) sinωt− 2ηω cosωt

ω(η2 + ω2)2
dH(t),

dA2(t) = − (ω2 − η2) cosωt+ 2ηω sinωt

ω(η2 + ω2)2
dH(t),

(8)

dH(t) =

εk0 f̃0(µ0t,N(t), A(t), ωt) + εkm+2

∫
R

f̃m+2(µm+2t,N(t), A(t), ωt, z)Π2(dz)

 dt
+

m∑
i=1

εki f̃i(µit,N(t), A(t), ωt)dwi(t) + εkm+1

∫
R
f̃m+1(µm+1t,N(t), A(t), ωt, z)ν̃1(dt, dz)

+ εkm+2

∫
R
f̃m+2(µm+2t,N(t), A(t), ωt, z)ν̃2(dt, dz),

where N(t) = (N1(t), N2(t)), A(t) = (A1(t), A2(t)); f̃i(µit,N(t), A(t), ωt), i = 0,m are obtained from
fi(µit,y(t)), i = 0,m and f̃i(µit,N(t), A(t), ωt, z), i = m+ 1,m+ 2 are obtained from fi(µit,y(t), z), i =
m+ 1,m+ 2 using (7).

Theorem 3
Let Πi(R) <∞, i = 1, 2, t ∈ [0, t0], k = min(k0, 2k1, . . . , 2km+1, km+2). Let us suppose, that functions fj , j =
0,m+ 2 bounded and satisfy Lipschitz condition on yi, i = 1, 4. If given below matrix σ̄2(A1, A2) is non-negative
definite, then:
1. Let µi = pi

qi
ω for all i = 0,m+ 2, where pi and qi are some relatively prime integers. If k0 = 2ki = km+2, i =

1,m+ 1, then the stochastic process ξε(t) = (N1(t/ε
k), N2(t/ε

k), A1(t/ε
k), A2(t/ε

k)) weakly converges, as
ε→ 0, to the stochastic process ξ̄(t) = (0, 0, Ā1(t), Ā2(t)), where Ā(t) = (Ā1(t), Ā2(t)) is the solution to the
system of stochastic differential equations

dĀ(t) = ᾱ(Ā(t))dt+ σ̄(Ā(t))dw̄(t), Ā(0) = (A1(0), A2(0)), (9)
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where

ᾱ(A1, A2) =
1

4π2

 ∑
p0n+q0l=0

2π∫
0

2π∫
0

f̂0(ψ,A1, A2, ϕ)Ξ(ϕ)e
−i(nψ+lϕ) dϕ dψ

+
∑

pm+2n+qm+2l=0

2π∫
0

2π∫
0

∫
R

f̂m+2(ψ,A1, A2, ϕ, z)Ξ(ϕ)e
−i(nψ+lϕ) Π2(dz) dϕ dψ

 ,
σ̄2(A1, A2) = B̄(A1, A2) =

1

4π2

 m∑
j=1

∑
pjn+qj l=0

2π∫
0

2π∫
0

f̂2j (ψ,A1, A2, ϕ)Ξ(ϕ)Ξ
T (ϕ)e−i(nψ+lϕ) dϕ dψ

+
∑

pm+1n+qm+1l=0

2π∫
0

2π∫
0

∫
R

f̂2m+1(ψ,A1, A2, ϕ, z)Ξ(ϕ)Ξ
T (ϕ)e−i(nψ+lϕ) Π1(dz) dϕ dψ

 ,
Ξ(ϕ) =

1

ω(η2 + ω2)2

(
(ω2 − η2) sinϕ− 2ηω cosϕ
−(ω2 − η2) cosϕ− 2ηω sinϕ

)
f̂j(ψ,A1, A2, ϕ) = f̃j(ψ, 0, 0, A1, A2, ϕ), j = 0,m,

f̂i(ψ,A1, A2, ϕ, z) = f̃i(ψ, 0, 0, A1, A2, ϕ, z), i = m+ 1,m+ 2.

ΞT (ϕ) is the vector transpose to the vector Ξ(ϕ), w̄(t) = (w̄i(t), i = 1, 2), w̄i(t), i = 1, 2 are independent one-
dimensional Wiener processes.
2. If k < k0 then in the averaging equation (9) we must put f̃0 ≡ 0; if k < 2ki for some i = 1,m, then in the
averaging equation (9) we must put f̃i ≡ 0 for such i; if k < 2km+1 then in the averaging equation (9) we must put
f̃m+1 ≡ 0; if k < km+2 then in the averaging equation (9) we must put f̃m+2 ≡ 0.
3. If µj ̸= pj

qj
ω for some j = 0,m+ 2 and any relatively prime integers pj and qj , then in averaging coefficients in

(9) we must put l = n = 0 in corresponding sums containing f̂j .

Proof. Let us make a change of variable t→ t/εk at the system (8) and obtain for the process ξε(t) =
(Nε

1 (t), N
ε
2 (t), A

ε
1(t), A

ε
2(t)) = (N1(t/ε

k), N2(t/ε
k), A1(t/ε

k), A2(t/ε
k)) the system of stochastic differential

equations

dNε
1 (t) = [−η1

εk
Nε

1 (t) +
1

εk
Nε

2 (t)]dt+
2η

(η2 + ω2)2
dHε(t),

dNε
2 (t) = −η2

εk
Nε

2 (t)dt+
1

(η2 + ω2)
dHε(t),

dAε1(t) = Ξ1(ωt/ε
k)dHε(t),

dAε2(t) = Ξ2(ωt/ε
k)dHε(t),

dHε(t) =

εk0−kf̃0(µ0t

εk
, ξε(t),

ωt

εk

)
+ εkm+2−k

∫
R

f̃m+2

(
µm+2t

εk
, ξε(t),

ωt

εk
, z

)
Π2(dz)

 dt
+

m∑
i=1

εki−k/2f̃i

(
µit

εk
, ξε(t),

ωt

εk

)
dwεi (t) + εkm+1

∫
R
f̃m+1

(
µm+1t

εk
, ξε(t),

ωt

εk
, z

)
ν̃ε1(dt, dz)

+ εkm+2

∫
R
f̃m+2

(
µm+2t

εk
, ξε(t),

ωt

εk
, z

)
ν̃ε2(dt, dz),

where Ξi(ϕ), i = 1, 2 is a components of vector Ξ(ϕ), wεi (t) = εk/2wi(t/ε
k), i = 1,m, ν̃εi (t, A) = νi(t/ε

k, A)−
Πi(A)t/ε

k, i = 1, 2, here A is a Borel set in R. For each ε > 0 the processes wεi (t), i = 1,m are independent one-
dimensional Wiener processes, and ν̃εi (t, A), i = 1, 2 are the independent centered Poisson measures independent
on wεi (t), i = 1,m.
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We have Nε
2 (t) = exp{−ηt/εk}C2(t/ε

k), and the process Cε2(t) = C2(t/ε
k) satisfies the stochastic differential

equation

dCε2(t) = − eηt/ε
k

η2 + ω2
dHε(t),

where |Cε2(0)| ≤ K.
So, from boundedness of functions fi, i = 0,m+ 2 and condition Πi(R) <∞, i = 1, 2 we have the estimate

E|Nε
2 (t)|2 ≤ K

[
e−

2ηt

εk + εk
(
1− e−

2ηt

εk

)(
t(ε2(k0−k) + ε2(km+2−k)) +

m+2∑
i=1

ε2ki−k
)]

. (10)

For the processCε(t) = Nε
1 (t)e

ηt/εk = C1(t/ε
k) + C2(t/ε

k)t/εk, using the Ito formula, we obtain the stochastic
differential equation

Cε(t) = C1(0) +
1

εk

∫ t

0

e
ηs

εk Nε
2 (s)ds+

2η

(η2 + ω2)2

∫ t

0

e
ηs

εk dHε(s),

then for the stochastic process Nε
1 (t) we have

Nε
1 (t) = e−

ηt

εk C1(0) +
e−

ηt

εk

εk

∫ t

0

e
ηs

εk Nε
2 (s)ds+

2ηe−
ηt

εk

(η2 + ω2)2

∫ t

0

e
ηs

εk dHε(s).

From (10) we derive

E

∣∣∣∣∣e−
ηt

εk

εk

∫ t

0

e
ηs

εk Nε
2 (s)ds

∣∣∣∣∣ ≤ K

(
te−

ηt

εk

εk
+
εk/2

η

(
1 +

√
t
)(

1− e−
ηt

εk

))
, (11)

and also we have the estimate

E

∣∣∣∣∣ 2ηe−
ηt

εk

(η2 + ω2)2

∫ t

0

e
ηs

εk dHε(s)

∣∣∣∣∣ ≤ K

(
(εk0 + εkm+2)

(
1− e−

ηt

εk

)
+

m+2∑
i=1

εki
√

1− e−
2ηt

εk

)
. (12)

Because |C1(0)| ≤ K, from (10), (11) and (12) we obtain limε→0E|Nε
2 (t)|2 = 0, limε→0E|Nε

1 (t)| = 0 and it
is sufficient to study the behavior, as ε→ 0, of solution to the system of stochastic differential equations

dAεi (t) = Ξi

(
ωt

εk

)
dĤε(t), i = 1, 2 (13)

with initial conditions Aε1(0) = A1(0), Aε2(0) = A2(0), where

dĤε(t) =

εk0−kf̂0(µ0t

εk
, Aε1(t), A

ε
2(t),

ωt

εk

)
+ εkm+2−k

∫
R

f̂m+2

(
µm+2t

εk
, Aε1(t), A

ε
2(t),

ωt

εk
, z

)
Π2(dz)

 dt
+

m∑
i=1

εki−k/2f̂i

(
µit

εk
, Aε1(t), A

ε
2(t),

ωt

εk

)
dwεi (t) + εkm+1

∫
R

f̂m+1

(
µm+1t

εk
, Aε1(t), A

ε
2(t),

ωt

εk
, z

)
ν̃ε1(dt, dz)

+εkm+2

∫
R

f̂m+2

(
µm+2t

εk
, Aε1(t), A

ε
2(t),

ωt

εk
, z

)
ν̃ε2(dt, dz), f̂j(ψ,A1, A2, ϕ) = f̃j(ψ, 0, 0, A1, A2, ϕ), j = 0,m,

f̂i(ψ,A1, A2, ϕ, z) = f̃i(ψ, 0, 0, A1, A2, ϕ, z), i = m+ 1,m+ 2.

Let us denote Aε(t) = (Aε1(t), A
ε
2(t)). Using conditions on coefficients of equation (13) and properties of

stochastic integrals we obtain estimates

E||Aε(t)||2 ≤ K

[
1 + t2

(
ε2(k0−k) + ε2(km+2−k)

)
+ t

m+2∑
i=1

ε2ki−k

]
,
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E||Aε(t)−Aε(s)||2 ≤ K

[
|t− s|2

(
ε2(k0−k) + ε2(km+2−k)

)
+ |t− s|

m+2∑
i=1

ε2ki−k

]
.

Similarly for the process ζε(t) = (ζ
(1)
ε (t), ζ

(2)
ε (t)), where

ζ(i)ε (t) =

t∫
0

Ξi

(ωs
εk

)
dMε(s), i = 1, 2,

dMε(t) =

m∑
i=1

εki−k/2f̂i

(
µit

εk
, Aε1(t), A

ε
2(t),

ωt

εk

)
dwεi (t) +

∫
R

f̂m+1

(
µm+1t

εk
, Aε1(t), A

ε
2(t),

ωt

εk
, z

)
ν̃ε1(dt, dz)

+εkm+2

∫
R

f̂m+2

(
µm+2t

εk
, Aε1(t), A

ε
2(t),

ωt

εk
, z

)
ν̃ε2(dt, dz),

we derive estimates

E||ζε(t)||2 ≤ Kt

m+2∑
i=1

ε2ki−k, E||ζε(t)− ζε(s)||2 ≤ K|t− s|
m+2∑
i=1

ε2ki−k.

Therefore for stochastic process ηε(t) = (Aε(t), ζε(t)) conditions of weak compactness [20] are fulfilled:

lim
h↓0

lim
ε→0

sup
|t−s|<h

P{|ηε(t)− ηε(s)| > δ} = 0

for any δ > 0, t, s ∈ [0, T ],
lim
N→∞

lim
ε→0

sup
t∈[0,T ]

P{|ηε(t)| > N} = 0.

So for any sequence εn → 0, n = 1, 2, . . . there exists a subsequence εm = εn(m) → 0,m = 1, 2, . . ., probability
space, stochastic processes Āεm(t) = (Āεm1 (t), Āεm2 (t)), ζ̄εm(t), Ā(t) = (Ā1(t), Ā2(t)), ζ̄(t) defined on this
space, such that Āεm(t) → Ā(t), ζ̄εm(t) → ζ̄(t) in probability, as εm → 0, and finite-dimensional distributions of
Āεm(t), ζ̄εm(t) are coincide with finite-dimensional distributions of Aεm(t), ζεm(t). Since we are interested in limit
behaviour of distributions, we can consider processes Aεm(t), and ζεm(t) instead of Āεm(t), ζ̄εm(t).

From (13) we obtain equation

Aεm(t) = A(0) +

t∫
0

αεm(s,Aεm(s)) ds+ ζεm(t), A(0) = (A1(0), A2(0)), (14)

where αε(t, A) = (α
(1)
ε (t, A1, A2), α

(2)
ε (t, A1, A2)),

α(i)
ε (t, A1, A2) = Ξi

(
ωt

εk

)εk0−kf̂0(µ0t

εk
, A1, A2,

ωt

εk

)
+ εkm+2−k

∫
R

f̂m+2

(
µm+2t

εk
, A1, A2,

ωt

εk
, z

)
Π2(dz)

 ,
i = 1, 2.

It should be noted that process ζε(t) is the vector-valued square integrable martingale with matrix characteristic⟨
ζ(l)ε , ζ(n)ε

⟩
(t) =

m∑
j=1

t∫
0

σ(l,j)
ε (s,Aε1(s), A

ε
2(s))σ

(n,j)
ε (s,Aε1(s), A

ε
2(s)) ds

+
1

εk

t∫
0

∫
R

γ(l)ε (s,Aε1(s), A
ε
2(s), z) γ

(n)
ε (s,Aε1(s), A

ε
2(s), z) Π1(dz)ds

+
1

εk

t∫
0

∫
R

δ(l)ε (s,Aε1(s), A
ε
2(s), z) δ

(n)
ε (s,Aε1(s), A

ε
2(s), z) Π2(dz)ds, l, n = 1, 2,
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where
σ(l,j)
ε (s,A1, A2) = εkj−k/2Ξl

(ωs
εk

)
f̂j

(µjs
εk

, A1, A2,
ωs

εk

)
,

γ(l)ε (s,A1, A2, z) = εkm+1Ξl

(ωs
εk

)
f̂m+1

(µm+1s

εk
, A1, A2,

ωs

εk
, z
)
,

δ(l)ε (s,A1, A2, z) = εkm+2Ξl

(ωs
εk

)
f̂m+2

(µm+2s

εk
, A1, A2,

ωs

εk
, z
)
, l = 1, 2.

For processes Aε(t) and ζε(t) following estimates hold true

E||Aε(t)−Aε(s)||4 ≤ K
[
(ε4(k0−k) + ε4(km+2−k))|t− s|4 + E||ζε(t)− ζε(s)||4

]
, (15)

E||ζε(t)− ζε(s)||4 ≤ K

[
m+2∑
j=1

ε4kj−2k|t− s|2 +
(
ε4km+1−3k/2 + ε4km+2−3k/2

)
|t− s|3/2

+
(
ε4km+1−k + ε4km+2−k

)
|t− s|

]
,

(16)

E||Aε(t)−Aε(s)||8 ≤ K, E||ζε(t)− ζε(s)||8 ≤ K. (17)

Here we used the estimate for stochastic integrals with respect to Wiener process:

E

 t∫
s

f(τ)dw(τ)

2n

≤ [n(2n− 1)]n|t− s|n−1E

 t∫
s

f2n(τ) dτ

 , n ≥ 1.

For estimating of stochastic integrals with respect to centered Poisson measures we used the Ito formula for the
process (∫ t

0

∫
R
εkm+i f̂m+iν̃

ε
i (dτ, dz)

)4n

, i = 1, 2, n = 1, 2

Since Aεm(t) → Ā(t), ζεm(t) → ζ̄(t) in probability, as εm → 0, then, using (17), from (15) and (16) we obtain
estimates

E||Ā(t)− Ā(s)||4 ≤ K(|t− s|4 + |t− s|2),

E||ζ̄(t)− ζ̄(s)||4 ≤ C|t− s|2.

Therefore processes Ā(t) and ζ̄(t) satisfy the Kolmogorov’s continuity condition [21].
Let us consider the case k0 = 2ki = km+2, i = 1,m+ 1 and µi = piω/qi for all i = 0,m+ 2, where pi and qi

are some relatively prime integers. Under these conditions from Fourier series expansion of integrand functions on
variables µit/εk, i = 0,m+ 2 and ωt/εk in corresponding terms, we obtain for l, n = 1, 2

lim
ε→0

1

t

t∫
0

α(l)
ε (s,A1, A2)ds = ᾱl(A1, A2),

lim
ε→0

1

t

t∫
0

 m∑
j=1

σ(l,j)
ε (s,A1, A2)σ

(n,j)
ε (s,A1, A2) +

1

εk

∫
R

γ(l)ε (s,A1, A2, z)γ
(n)
ε (s,A1, A2, z)Π1(dz)

+
1

εk

∫
R

δ(l)ε (s,A1, A2, z)δ
(n)
ε (s,A1, A2, z)Π2(dz)

 ds = B̄ln(A1, A2),

(18)

where functions ᾱl(A1, A2), l = 1, 2 and B̄(A1, A2) = {B̄ln(A1, A2), l, n = 1, 2} are defined in the conditions of
theorem.
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Since Aεm(t) → Ā(t), ζεm(t) → ζ̄(t) in probability, as εm → 0, processes Ā(t), ζ̄(t) are continuous, functions
fj , j = 0,m+ 2 bounded and satisfy Lipschitz condition on yi, i = 1, 4, function Ξ(ϕ) is bounded, then from
Lemma 1, Remark 1 and relationships (14), (18) it follows

Ā(t) = A(0) +

t∫
0

ᾱ(Ā1(s), Ā2(s))ds+ ζ̄(t), A(0) = (A1(0), A2(0)), (19)

almost surely, where ζ̄(t) = (ζ̄(1)(t), ζ̄(2)(t)) is continuous vector-valued martingale with matrix characteristic

⟨ζ̄(i), ζ̄(j)⟩(t) =
t∫

0

B̄ij(Ā1(s), Ā2(s))ds, i, j = 1, 2.

Hence [22] there exists Wiener process w̄(t) = (w̄i(t), i = 1, 2), such that

ζ̄(t) =

t∫
0

σ̄(Ā1(s), Ā2(s)) dw̄(s), σ̄(A1, A2) =
{
B̄(A1, A2)

}1/2
. (20)

Relationships (19), (20) mean that process Ā(t) satisfies equation (9). Under conditions of theorem the equation
(9) has unique solution. Therefore process Ā(t) does not depend on choosing of sub-sequence εm → 0, and finite-
dimensional distributions of process Aεm(t) converge to finite-dimensional distributions of process Ā(t). Since
processes Aεm(t) and Ā(t) are Markov processes then using the conditions for weak convergence of Markov
processes [21] we finish the proof of statement 1) of the theorem.

Let us consider the cases k < k1 or k < km+2. Then the corresponding terms in the coefficients α(i)
ε (t, A1, A2),

i = 1, 2 of equation (14) tend to zero, as ε→ 0.
In the case k < 2ki for some i = 1,m, we have in (18)

σ(l,i)
ε (s,Aε1, A

ε
2)σ

(n,i)
ε (s,Aε1, A

ε
2) = O(ε2ki−k), l, n = 1, 2

for such i = 1,m.
In the case k < 2km+1 we have in (18)

1

εk

∫
R

γ(l)ε (s,A1, A2, z)γ
(n)
ε (s,A1, A2, z)Π1(dz) = O(ε2km+1−k), l, n = 1, 2.

In all cases we have k < 2km+2, and therefore

lim
ε→0

1

εk

∫
R

δ(l)ε (s,A1, A2, z)δ
(n)
ε (s,A1, A2, z)Π2(dz) = 0, l, n = 1, 2.

If µj ̸= pj
qj
ω for some j = 0,m+ 2 and any relatively prime integers pj and qj , then in (18) we obtain in

corresponding averaged coefficient only one term for n = l = 0, instead of sum over all n, l such that pjn+ qj l = 0.
Repeating with obvious modifications the proof of statement 1) of theorem we obtain proof of the statements 2)

and 3). 2

4. The case of two pairs of imaginary adjoined roots of characteristic equation

In this section we will study the following case:

b1 = 0, b3 = 0, b2 > 0, b4 > 0, b22 > 4b4.
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Characteristic equation has a roots

λ1,2 = ±iω1, λ3,4 = ±iω2, where ω2
1 =

1

2

(
b2 +

√
b22 − 4b4

)
, ω2

2 =
1

2

(
b2 −

√
b22 − 4b4

)
.

If ε = 0 then the equation (1) has general solution in the form

x(t) = A11 cosω1t+A12 sinω1t+A21 cosω2t+A22 sinω2t.

Let us denote

A(t) = (A11(t), A12(t), A21(t), A22(t)), Φ(t) = (cosω1t, sinω1t, cosω2t, sinω2t)

and let us consider the following representation of the solution y(t) to the system (2):

yi(t) =

(
A(t) · d

i−1

dti−1
Φ(t)

)
, i = 1, 4. (21)

We can solve the system of linear equations (21) with respect to (A11(t), A12(t), A21(t), A22(t)) and using the
Ito formula we derive the system of stochastic differential equations:

dA(t) = Θ(ω1t, ω2t) dH(t), (22)

where

Θ(ϕ1, ϕ2) =
1

ω2
1 − ω2

2

(
sinϕ1
ω1

,−cosϕ1
ω1

,− sinϕ2
ω2

,
cosϕ2
ω2

)
,

dH(t) =

εk0 f̃0(µ0t, A(t), ω1t, ω2t) + εkm+2

∫
R

f̃m+2(µm+2t, A(t), ω1t, ω2t, z)Π2(dz)

 dt
+

m∑
i=1

εki f̃i(µit, A(t), ω1t, ω2t)dwi(t) + εkm+1

∫
R
f̃m+1(µm+1t, A(t), ω1t, ω2t, z)ν̃1(dt, dz)

+ εkm+2

∫
R
f̃m+2(µm+2t, A(t), ω1t, ω2t, z)ν̃2(dt, dz),

where f̃i(µit, A(t), ω1t, ω2t), i = 0,m are obtained from fi(µit,y(t)), i = 0,m and f̃i(µit, A(t), ω1t, ω2t, z), i =
m+ 1,m+ 2 are obtained from fi(µit,y(t), z), i = m+ 1,m+ 2 using (21).

Theorem 4
Let Πi(R) <∞, i = 1, 2, t ∈ [0, t0], k = min(k0, 2k1, . . . , 2km+1, km+2). Let us suppose, that functions fj , j =
0,m+ 2 bounded and satisfy Lipschitz condition on yi, i = 1, 4. If given below matrix σ̄2(A1, A2) is non-negative
definite, then:

1. Let µj =
p
(1)
j

q
(1)
j

ω1 =
p
(2)
j

q
(2)
j

ω2 for all j = 0,m+ 2, where p(i)j and q(i)j are some relatively prime integers, i = 1, 2,

j = 0,m+ 2. If k0 = 2ki = km+2, i = 1,m+ 1, then the stochastic process Aε(t) = A(t/εk) weakly converges,
as ε→ 0, to the stochastic process Ā(t) = (Ā11(t), Ā12(t), Ā21(t), Ā22(t)) which is the solution to the system of
stochastic differential equations

dĀ(t) = ᾱ(Ā(t))dt+ σ̄(Ā(t))dw̄(t), Ā(0) = (A11(0), A12(0), A21(0), A22(0)), (23)

where

ᾱ(A) =
1

8π3

∑
σ0

2π∫
0

2π∫
0

2π∫
0

f̂0(ψ,A, ϕ1, ϕ2)Θ(ϕ1, ϕ2)e
−i(n1ϕ1+n2ϕ2+n3ψ) dϕ1 dϕ2 dψ

+
∑
σm+2

2π∫
0

2π∫
0

2π∫
0

∫
R

f̂m+2(ψ,A, ϕ1, ϕ2, z)Θ(ϕ1, ϕ2)e
−i(n1ϕ1+n2ϕ2+n3ψ)) Π2(dz) dϕ1 dϕ2 dψ

 ,
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σ̄2(A) = B̄(A) =
1

8π3

 m∑
j=1

∑
σj

2π∫
0

2π∫
0

2π∫
0

f̂2j (ψ,A, ϕ1, ϕ2)Θ
T (ϕ1, ϕ2)Θ(ϕ1, ϕ2)e

−i(n1ϕ1+n2ϕ2+n3ψ) dϕ1 dϕ2 dψ

+
∑
σm+1

2π∫
0

2π∫
0

2π∫
0

∫
R

f̂2m+1(ψ,A, ϕ1, ϕ2, z)Θ
T (ϕ1, ϕ2)Θ(ϕ1, ϕ2)e

−i(n1ϕ1+n2ϕ2+n3ψ) Π1(dz) dϕ1 dϕ1 dψ

 ,
where

∑
σj

means summation over all negative, positive and equal zero integers n1, n2, n3 such,

that n1p
(2)
j q

(1)
j + n2p

(1)
j q

(2)
j + n3p

(1)
j p

(2)
j = 0, j = 0,m+ 2; A = (A11, A12, A21, A22); f̂j(ψ,A, ϕ1, ϕ2) =

f̃j(ψ, 0, 0, A, ϕ1, ϕ2), j = 0,m, f̂i(ψ,A, ϕ1, ϕ2, z) = f̃i(ψ, 0, 0, A, ϕ1, ϕ2, z), i = m+ 1,m+ 2; ΘT (ϕ1, ϕ2) is the
vector transpose to the vector Θ(ϕ1, ϕ2); w̄(t) = (w̄i(t), i = 1, 4), w̄i(t), i = 1, 4 are independent one-dimensional
Wiener processes.

2. Let k0 = 2ki = km+2, i = 1,m+ 1. If µj =
p
(1)
j

q
(1)
j

ω1 for some j = 0,m+ 2, where p(1)j , q
(1)
j are some relatively

prime integers, and µj ̸=
p
(2)
j

q
(2)
j

ω2 for any relatively prime integers p(2)j and q(2)j , then for such j we must put n2 = 0

in sum
∑

σj
and take summation over all n1 and n3 such, that n1q

(1)
j + n3p

(1)
j = 0. If µj =

p
(2)
j

q
(2)
j

ω2 for some

j = 0,m+ 2, where p(2)j , q
(2)
j are some relatively prime integers, and µj ̸=

p
(1)
j

q
(1)
j

ω1 for any relatively prime integers

p
(1)
j and q(1)j , then for such j we must put n1 = 0 in sum

∑
σj

and take summation over all n2 and n3 such, that

n2q
(2)
j + n3p

(2)
j = 0.

3. Let k0 = 2ki = km+2, i = 1,m+ 1. If µj ̸=
p
(i)
j

q
(i)
j

ωi, i = 1, 2 for some j = 0,m+ 2, where p(i)j , q
(i)
j , i = 1, 2 are

any relatively prime integers, and ω1 = p
q ω2 for some relatively prime integers p and q, then for such j we must

put n3 = 0 in sum
∑

σj
and take summation over all n1 and n2 such, that n1q + n2p = 0.

4. Let k0 = 2ki = km+2, i = 1,m+ 1. If µj ̸=
p
(i)
j

q
(i)
j

ωi, i = 1, 2 for some j = 0,m+ 2, where p(i)j , q
(i)
j , i = 1, 2 are

any relatively prime integers, and ω1 ̸= p
q ω2 for any relatively prime integers p and q, then for such j we must put

n1 = n2 = n3 = 0 in sum
∑

σj
.

5. If k < k0 then in the averaging equation (23) we must put f̃0 ≡ 0; if k < 2ki for some i = 1,m, then in the
averaging equation (23) we must put f̃i ≡ 0 for such i; if k < 2km+1 then in the averaging equation (23) we must
put f̃m+1 ≡ 0; if k < km+2 then in the averaging equation (23) we must put f̃m+2 ≡ 0.

Proof. Let us make a change of variable t→ t/εk at the system (22) and obtain for the process Aε(t) =
(A11(t/ε

k), A12(t/ε
k), A21(t/ε

k), A22(t/ε
k)) the system of stochastic differential equations

dAε(t) = Θ(ω1t/ε
k, ω2t/ε

k) dHε(t), (24)

where

dHε(t) =

εk0−kf̃0(µ0t

εk
, Aε(t),

ω1t

εk
,
ω2t

εk

)
+ εkm+2−k

∫
R

f̃m+2

(
µm+2t

εk
, Aε(t),

ω1t

εk
,
ω2t

εk
, z

)
Π2(dz)

 dt
+

m∑
i=1

εki−k/2f̃i

(
µit

εk
, Aε(t),

ω1t

εk
,
ω2t

εk

)
dwεi (t) + εkm+1

∫
R
f̃m+1

(
µm+1t

εk
, Aε(t),

ω1t

εk
,
ω2t

εk
, z

)
ν̃ε1(dt, dz)

+ εkm+2

∫
R
f̃m+2

(
µm+2t

εk
, Aε(t),

ω1t

εk
,
ω2t

εk
, z

)
ν̃ε2(dt, dz),

where wεi (t) = εk/2wi(t/ε
k), i = 1,m, ν̃εi (t, A) = νi(t/ε

k, A)−Πi(A)t/ε
k, i = 1, 2, here A is a Borel set in R.

For each ε > 0 the processes wεi (t), i = 1,m are independent one-dimensional Wiener processes, and ν̃εi (t, A), i =
1, 2 are independent centered Poisson measures, which are independent on wεi (t), i = 1,m.
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We can apply the same arguments as in a proof of Theorem 3 to the processes Aε(t) and ζε(t) = (ζ
(i)
ε (t),

i = 1, 4), where

ζ(i)ε (t) =

t∫
0

Θi

(ω1s

εk
,
ω2s

εk

)
dMε(s), i = 1, 4,

dMε(t) =

m∑
i=1

εki−k/2f̂i

(
µit

εk
, Aε(t),

ω1t

εk
,
ω2t

εk

)
dwεi (t) +

∫
R

f̂m+1

(
µm+1t

εk
, Aε(t),

ω1t

εk
,
ω2t

εk
, z

)
ν̃ε1(dt, dz)

+εkm+2

∫
R

f̂m+2

(
µm+2t

εk
, Aε(t),

ω1t

εk
,
ω2t

εk
, z

)
ν̃ε2(dt, dz),

and derive, that for stochastic processes Aε(t), ζε(t) conditions of weak compactness [20] holds true. So for
any sequence εn → 0, n = 1, 2, . . . there exists a subsequence εm = εn(m) → 0,m = 1, 2, . . ., probability space,
stochastic processes Āεm(t) = (Āεm11 (t), Ā

εm
12 (t), Ā

εm
21 (t), Ā

εm
22 (t)), ζ̄εm(t), Ā(t) = (Ā11(t), Ā12(t), Ā21(t), Ā22(t)),

ζ̄(t) defined on this space, such that Āεm(t) → Ā(t), ζ̄εm(t) → ζ̄(t) in probability, as εm → 0, and finite-
dimensional distributions of Āεm(t), ζ̄εm(t) are coincide with finite-dimensional distributions of Aεm(t), ζεm(t).
Since we are interested in limit behaviour of distributions, we can consider processes Aεm(t) and ζεm(t) instead of
Āεm(t), ζ̄εm(t). From (24) we obtain equation

Aεm(t) = A(0) +

t∫
0

αεm(s,Aεm(s)) ds+ ζεm(t), A(0) = (Ai(0), i = 1, 4), (25)

where αε(t, A) = (α
(i)
ε (t, A), i = 1, 4),

α
(i)
ε (t, A) =

= Θi

(
ω1t

εk
,
ω2t

εk

)εk0−kf̂0(µ0t

εk
, A,

ω1t

εk
,
ω2t

εk

)
+ εkm+2−k

∫
R

f̂m+2

(
µm+2t

εk
, A,

ω1t

εk
,
ω2t

εk
, z

)
Π2(dz)

 ,
i = 1, 4.

Also the process ζε(t) is the vector-valued square integrable martingale with matrix characteristic

⟨
ζ(l)ε , ζ(n)ε

⟩
(t) =

m∑
j=1

t∫
0

σ(l,j)
ε (s,Aε(s))σ

(n,j)
ε (s,Aε(s)) ds

+
1

εk

t∫
0

∫
R

γ(l)ε (s,Aε(s), z) γ
(n)
ε (s,Aε(s), z) Π1(dz)ds

+
1

εk

t∫
0

∫
R

δ(l)ε (s,Aε(s), z) δ
(n)
ε (s,Aε(s), z) Π2(dz)ds, l, n = 1, 4,

where
σ(l,j)
ε (s,A) = εkj−k/2Θl

(ω1s

εk
,
ω2s

εk

)
f̂j

(µjs
εk

, A,
ω1s

εk
,
ω2s

εk

)
,

γ(l)ε (s,A, z) = εkm+1Θl

(ω1s

εk
,
ω2s

εk

)
f̂m+1

(µm+1s

εk
, A,

ω1s

εk
,
ω2s

εk
, z
)
,

δ(l)ε (s,A, z) = εkm+2Θl

(ω1s

εk
,
ω2s

εk

)
f̂m+2

(µm+2s

εk
, A,

ω1s

εk
,
ω2s

εk
, z
)
, l = 1, 4.
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For the processes Aεm(t) and ζεm(t) the estimates (15)− (17) hold true, so processes Ā(t) and ζ̄(t) satisfy the
Kolmogorov’s continuity condition [21].

Let us consider the case k0 = 2ki = km+2, i = 1,m+ 1 and µj =
p
(1)
j

q
(1)
j

ω1 =
p
(2)
j

q
(2)
j

ω2 for all j = 0,m+ 2, where

p
(i)
j and q(i)j are some relatively prime integers, i = 1, 2, j = 0,m+ 2. Under these conditions from Fourier series

expansion of integrand functions on variables µjt/εk, j = 0,m+ 2, ω1t/ε
k and ω2t/ε

k in corresponding terms,
we obtain for l, n = 1, 4

lim
ε→0

1

t

t∫
0

α(l)
ε (s,A)ds = ᾱl(A),

lim
ε→0

1

t

t∫
0

 m∑
j=1

σ(l,j)
ε (s,A)σ(n,j)

ε (s,A) +
1

εk

∫
R

γ(l)ε (s,A, z)γ(n)ε (s,A, z)Π1(dz)

+
1

εk

∫
R

δ(l)ε (s,A, z)δ(n)ε (s,A, z)Π2(dz)

 ds = B̄ln(A),

(26)

where functions ᾱl(A), l = 1, 4 and B̄(A) = {B̄ln(A), l, n = 1, 4} are defined in the conditions of theorem.
Since Aεm(t) → Ā(t), ζεm(t) → ζ̄(t) in probability, as εm → 0, processes Ā(t), ζ̄(t) are continuous, functions

fj , j = 0,m+ 2 bounded and satisfy Lipschitz condition on yi, i = 1, 4, function Θ(ϕ1, ϕ2) is bounded, then from
Lemma 1, Remark 1 and relationships (25), (26) it follows

Ā(t) = A(0) +

t∫
0

ᾱ(Ā(s))ds+ ζ̄(t), (27)

almost surely, where ζ̄(t) = (ζ̄(i)(t), i = 1, 4) is continuous vector-valued martingale with matrix characteristic

⟨ζ̄(i), ζ̄(j)⟩(t) =
t∫

0

B̄ij(Ā(s))ds, i, j = 1, 4.

Hence [22] there exists Wiener process w̄(t) = (w̄i(t), i = 1, 4), such that

ζ̄(t) =

t∫
0

σ̄(Ā(s)) dw̄(s), σ̄(A) =
{
B̄(A)

}1/2
. (28)

Relationships (27), (28) mean that process Ā(t) satisfies equation (23). Under conditions of theorem the equation
(23) has unique solution. Therefore process Ā(t) does not depend on choosing of sub-sequence εm → 0, and
finite-dimensional distributions of process Aεm(t) converge to finite-dimensional distributions of process Ā(t).
Since processes Aεm(t) and Ā(t) are Markov processes then using the conditions for weak convergence of Markov
processes [21] we finish the proof of statement 1) of the theorem.

Statements 2)− 4) of the theorem follow from (26) by simple analysis. Statement 5) of the theorem is proved
by the same argument as in the proof of statement 2) of the Theorem 3. 2
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