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1. Introduction

In reliability and survival analysis and other life sciences, it is of interest to compare between lifetime distributions.
This comparison is usually done based on partial orderings between their corresponding reliability measures and
ageing functions. The relative ageing is another comparison method between lifetime distributions which has been
studied in the literature. For example, Kalashnikov and Rachev [9] have studied the comparison of life distributions
through a partial ordering which is equivalent to a monotone hazard ratio. Wei [21] has introduced the relative mean
residual life (RMRL) function and investigated its relationship with other orderings. Sengupta and Deshpande
[18] have considered two other models of relative ageing which include an increasing cumulative hazard ratio.
Finkelstein [6] has studied the relative characteristics of the mean residual life functions. Hazra and Nanda [8] have
introduced some new generalized stochastic orderings in the spirit of relative ageing. Li and Li [12] have studied
the relative ageing order on series and parallel systems with mutually statistically independent and heterogeneous
component lifetimes. Misra et al. [13] have introduced a new notion of relative aging based on the ratio of the mean
inactivity time functions.

Let X be a non-negative random variable with distribution function F , survival function F̄ = 1− F and
cumulative hazard functions Λ = − log F̄ . The uncertainty contained in random variable X , since its first
mathematical formulation by Shannon in 1948, has been defined in several formula. Recently, Rao et al. [16]
defined a new uncertainty measure, the cumulative residual entropy (CRE), through

E(X) = −
∫ ∞

0

F̄ (x) log F̄ (x)dx =

∫ ∞

0

F̄ (x)Λ(x)dx. (1)
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Properties of the CRE can be found in [15], [5], and [14]. Asadi and Zohrevand [1] have considered the
corresponding dynamic measure, the CRE corresponding to the residual lifetime variable:

E(X; t) = −
∫ ∞

t

F̄ (x)

F̄ (t)
log

F̄ (x)

F̄ (t)
dx (2)

= − 1

F̄ (t)

∫ ∞

t

F̄ (x) log F̄ (x)dx−m(t)Λ(t),

where, m(t) = 1
F̄ (t)

∫∞
t

F̄ (x)dx is the mean residual life (MRL) function. They have also obtained results about
comparing between lifetime variables based on E(X; t). In this paper, we introduce a definition of dynamic relative
cumulative residual entropy (RCRE) using E(X; t).

Wei [21] has defined the relative mean residual of F1 with respect to F2 through

m1.2(t) =
1

F̄2(t)

∫ ∞

t

F̄2(x)dΛ1(x), (3)

provided that F̄2(t) > 0. Motivated by this, we define the dynamic relative cumulative residual entropy of F1 with
respect to F2 by

E1.2(t) = −
∫ ∞

t

F̄2(x)

F̄2(t)
log

F̄2(x)

F̄2(t)
dΛ1(x), (4)

provided that F̄2(t) > 0. For F̄2(t) = 0, we set E1.2(t) = 0. Note that if F1 is an exponential distribution with
parameter 1, then E1.2(t) is reduced to E(X2; t). That is, E1.2(t) measures the dynamic entropy of F2 with respect
to a general distribution F1.

The aim of this paper is twofold. In the first part, we give some new results on RMRL function and related
orders. In the Second part, we study properties of E1.2(t) along with introducing and investigating properties of
another dynamic RCRE function. The rest of the paper is organized as follows. In Section 2, we provide various
standard definitions and notations that are used later in the paper. In Section 3 we obtain some new results about the
RMRL function. In Section 4 we investigate properties of the dynamic RCRE. Section 5 is devoted to the definition
and properties of the other dynamic relative cumulative residual entropy and finally, some concluding remarks are
given in section 6.

2. Some Preliminaries

Before proceeding to give the main results of the paper, we overview some preliminary concepts of ageing and
standard partial orderings describing relative ageing. (For more details of these concepts see, for example, [18],
[6], [19], [10], [13]).

Let X1(X2) be a non-negative random variable with distribution function F1(F2), survival function F̄1(F̄2) =
1− F1(F2), hazard function λ1(λ2), cumulative hazard functions Λ1(Λ2) and mean residual life functions m1(m2),
respectively. Throughout this paper we assume that these functions all exist and increasing (decreasing) means non-
decreasing (non-increasing).

The following definitions pertaining to ageing classes and stochastic orders have been taken from [19].

Definition 1(i) The random variable X is said to have increasing (decreasing) failure rate, IFR (DFR), if Xt =
X − t | X > t is stochastically decreasing (increasing) in t ≥ 0. If X has a density f this is equivalent to say
that the failure rate λ(t) = f(t)

F̄ (t)
is increasing (decreasing) in t.

(ii) The random variable X is said to be new better (worse) than used, NBU(NWU), if F̄ (t+ x) ≤ (≥)F̄ (t)F̄ (x)
for all x, t ≥ 0.

(iii) The random variable X is said to be new better (worse) than used (of second order), NBU(2)[NWU(2)], if∫ x

0
F (y)dy ≤ (≥) 1

F̄ (t)

∫ x

0
[F (y + t)− F (t)]dy, for all x, t > 0.
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(iv) The random variable X is said to be new better (worse) than used in expectation, NBUE(NWUE), if
m(t) ≤ (≥)m(0), for all t > 0.

(v) X is said to be a new better (worse) than used in failure rate, NBUFR (NWUFR), if λ(0) ≤ (≥)λ(t) for all
t > 0 ( [4] ).

(vi) The random variable X is said to be increasing (decreasing) mean residual life (IMRL(DMRL)) if m(t) is
increasing (decreasing) in t.

(vii) The random variable X1 is said to be smaller than X2 in the usual stochastic order (denoted by X1 ≤st X2)
if F̄1(x) ≤ F̄2(x) for all x.

(viii) The random variable X1 is said to be smaller than X2 in the hazard rate ordering (denoted by X1 ≤hr X2) if
λ1(t) ≥ λ2(t) for all t.

(ix) The random variable X1 is said to be smaller than X2 in the mean residual life ordering (denoted by
X1 ≤mrl X2) if m1(t) ≤ m2(t), for all t > 0.

(x) The random variable X1 is said to be smaller than X2 in the convex order (denoted by X1 ≤cx X2) if
E[ϕ(X1)] ≤ E[ϕ(X2)], for all convex functions ϕ.

(xi) The random variable X1 is said to be smaller than X2 in the dilation order (denoted by X1 ≤dil X2) if
[X1 − E(X1)] ≤cx [X2 − E(X2)].

Definition 2
The random variable X1 is said to be aging faster than X2 in the

(i) Failure rate (written as X1 ≺c X2) if Λ1(X2) has a decreasing failure rate (DFR) distribution (equivalently,
λ1(t)/λ2(t) is increasing in t, [18]),

(ii) Failure rate average (written as X1 ≺∗ X2) if Λ1(X2) has a decreasing failure rate average (DFRA) distribution
([18]),

(iii) quantile (written as X1 ≺su X2) if Λ1(X2) has a new better than used (NBU) distribution ([18]),

(iv) the mean residual life (written as X1 ≺a X2) if m∗
1.2(t) = m1(t)/m2(t) is a decreasing function of t ∈ (0,∞)

([10]).

In contrast to Definition 2 (iv), Finkelstein [6] defined the random variable X1 to be aging faster than X2 in
mean residual life (X1 ≺a X2) if m1(t)/m2(t) is increasing on [0,∞). As Misra et al. [13] have mentioned, since
increasing mean residual life describes negative aging, we believe that the correct way of defining relative aging in
terms of mean residual function is as given in Definition 2 (iv).

Remark 1
As a special case of Proposition 2.1 (iii) in [8] (for s = 1), one can see easily that X1 ≺a X2 if and only
if Xe

1 ≺c X
e
2 , where Xe is the equilibrium random variable (see, for example, [7], and references therein)

corresponding to X with survival function

F̄e(t) =
1

µ

∫ ∞

t

F̄ (x)dx, t ≥ 0.
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3. Results on the RMRL and relative orders

Sengupta and Deshpande [18] have generalized the ≺c ordering to the ≺∗ and ≺su orderings. Hazra and Nanda
[8] have generalized these relative orderings to s-IFR(R), s-IFRA(R), s-NBU(R), s-NBUFR(R) and s-NBAFR(R)
orderings.

As it is clear from the complete chain of implications among the positive ageing criteria in [4], one can see that
the NBU class has two sperate ways of generalization. The one is toward the classes NBUFR and NBUFRA and
the other one is toward the classes NBU(2) and NBUE. Here, we follow [8] and define two generalized relative
ordering classes. Let X1s and X2s be random variables as defined in [8].

Definition 3
For any positive integer s, X1 is said to be more

(i) s-NBU(2)(R) than X2 (written as X1 ≤s−NBU(2)(R) X2) if the random variable ΛX2s(X1s) has an NBU(2)
distribution,

(ii) s-NBUE(R) than X2 (written as X1 ≤s−NBUE(R) X2) if the random variable ΛX2s(X1s) has an NBUE
distribution.

The properties of these classes can be obtained in similar way as those of the other classes in [8]. For s = 1,
we denote the s-NBUE(R) ordering between the random variables X1 and X2 by X1 ≺rm X2 which is equivalent
to that Z = Λ1(X2) has a NWUE distribution. It follows from Proposition 6.3 in [4] that Z is NWUE if and only
if Ze is NWUFR, where Ze is the equilibrium random variable corresponding to Z. The following theorem gives
another characterization of this ordering based on the RMRL function.

Theorem 1
Suppose that F1 is continuous and strictly increasing. Then X1 ≺rm X2 if and only if m1.2(t) ≥ E[Λ1(X2)] for all
t > 0.

Proof: Using the integration by part, it follows from the equation (3) that

m1.2(t) = E[Λ1(X2)|X2 > t]− Λ1(t) = mZ(Λ1(t)).

The result now is clear.

Remark 2
It follows form the proof of the above theorem that m1.2(t) is an increasing function if and only if Z = Λ1(X2) has
an IMRL distribution.

The following theorem gives a bound for m1.2(t) and shows that the behavior of m1.2(t) is related to the behavior
of the hazard rate function of X2.

Theorem 2(a) For all t > 0, m1.2(t) ≤ Λ1(t).

(b) If X2 is IFR(DFR), then m1.2(t) is increasing (decreasing) in t.

Proof: (a) is clear form equation (3). To prove (b), first note that if X2 is IFR(DFR), then so is Z = Λ1(X2).
Now the assertion follows on m1.2(t) = mZ(Λ1(t)), Remark 2 and the fact that IFR(DFR) implies DMRL(IMRL).

It is worth to mention that if X1 is distributed as exponential with E(X1) = E(X2), then m1.2(t) =
1

E(X2)
mX2(t). Hence, m1.2(t) ≥ 1 implies that X2 is NWUE. The next result gives a bound for m1.2(t), in terms of

the survival functions, when X1 and X2 are stochastically ordered and gives conditions under which m1.2(t) ≥ 1
and X1 ≤mrl X2 follow each other.

Theorem 3(a) If X1 ≤st X2, then m1.2(t) ≥ F̄1(t)/F̄2(t).

(b) If X1 is IFR and X1 ≤mrl X2, then m1.2(t) ≥ 1.

(c) If X1 is DFR and m1.2(t) ≥ 1, then X1 ≤mrl X2.

Stat., Optim. Inf. Comput. Vol. 7, March 2019



154 RESULTS ON RELATIVE MEAN RESIDUAL LIFE AND RELATIVE CUMULATIVE RESIDUAL ENTROPY

Proof: (a) If X1 ≤st X2, then F̄1(t) ≤ F̄2(t). Now, the result follows from the fact that

m1.2(t) = E[
F̄1(t)F̄2(X1)

F̄2(t)F̄1(X1)
|X1 > t].

To prove part (b), first note that the assumption that X1 is IFR implies that Λ1(t) is a convex function. On the
other hand, it is easy to see that the random variable U = Λ1(X1) is distributed according as standard exponential
distribution. It follows now from the proof of Theorem 1 and the Theorem 2.A.19 in [19], p. 92 that

m1.2(t) = mZ(Λ1(t)) ≥ mU (Λ1(t)) = 1.

This completes the proof of (b). The proof of part (c) is similar.

Remark 3
Let X1, X2 and X be three independent random variables. Assume that X1 and X are IFR and that X1 ≤mrl X2.
Lemma 2.A.8. in [19], p. 86, follows that X1 +X ≤mrl X2 +X . The assumption also implies that X1 +X is IFR
(cf. [2], p. 100). Then, it follows from part (b) of Theorem 3 that mX

1.2(t) ≥ 1, where mX
1.2(t) represents the RMRL

of X1 +X with respect to X2 +X .

Let Xk:n be the kth smallest order statistic of random variables X1, . . . , Xn, k = 1, . . . , n. In reliability theory,
Xk:n indicates the lifetime of a n− k + 1-out-of-n system, which works if at least n− k + 1 of the n components
function normally. In particular, X1:n and Xn:n represent lifetimes of the series and parallel systems, respectively.
Let also X11, . . . , X1n be i.i.d. random lifetimes of type X1 and X21, . . . , X2n be i.i.d. ones of type X2 with X1

k:n

and X2
k:n as their corresponding kth smallest order statistics. The following examples give some applications of

the above theorem.

Example 1
Let X1 and X2 have Pareto distributions with survival functions

F̄1(t) = (
a

a+ t
)β , t > 0, a, β > 0,

and
F̄2(t) = (

b

b+ t
)β , t > 0, b, β > 0.

For a < b, we have F̄1(t) ≤ F̄2(t), i.e. X1 ≤st X2. Thus from part (a) of Theorem 3 it follows that

m1.2(t) ≥ (
at+ ab

bt+ ab
)β .

On the other hand, it follows form Theorem 1.A.23. (a) in [19], p. 13 that X1
k:n ≤st X

2
k:n for k = 1, . . . , n. Then,

using again the part (a) of Theorem 3 we get that

mk
1.2(t) ≥

1− IF1(t)(k, n− k + 1)

1− IF2(t)(k, n− k + 1)
,

where mk
1.2(t) stands for the RMRL of X1

k:n with respect to X2
k:n, and Ip(a, b) =

∫ p

0
ta−1(1− t)b−1dt/B(a, b) is

the incomplete beta function.

Example 2
Unloaded redundancy. Consider the unloaded redundancy when one of the identical components starts operating
and the other n− 1 are in stand by. As the operating one fails, it is immediately replaced by the stand by one
etc. The system fails when the last component fails. We compare the RMRL for two objects with exponentially
distributed components lifetimes and different levels of redundancy: m < n. For a component with exponential
distribution, F̄ (t) = e−λt, the lifetime distribution of the object having n components is the Gamma (or the
Erlangian) distribution with parameters n and λ. Let X1, X2 be the lifetimes of the objects with m and n
components, respectively. For 1 < m < n, X1 is IFR and X1 ≤mrl X2. Then, if m1.2(t) is the RMRL of X1 with
respect to X2, it follows from part (b) of Theorem 3 that m1.2(t) ≥ 1.
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4. Properties of E1.2(t)

In this section we investigate some properties of the dynamic RCRE. First, note that E1.2(t) can also be given by

E1.2(t) =
1

F̄2(t)

∫ ∞

t

F̄2(x)Λ2(x)dΛ1(x)− Λ2(t)m1.2(t).

Asadi and Zohrevand [1] have shown that

E(X) = E[m(X)], E(X; t) = E[m(X)|X > t],

where m(t) is the MRL function. The following theorem gives the direct relation between the RMRL and dynamic
RCRE functions.

Theorem 4
Let X1 and X2 be two non-negative random variables with distribution functions F1 and F2, respectively, and finite
dynamic RCRE function E1.2(t). Then,

E1.2(t) = E[m1.2(X2)|X2 > t].

Proof: From (3) we have

E[m1.2(X2)|X2 > t] =
1

F̄2(t)

∫ ∞

t

∫ ∞

y

F̄2(x)

F̄2(y)
dΛ1(x)dF2(y)

=
1

F̄2(t)

∫ ∞

t

∫ ∞

y

F̄2(x)dΛ1(x)dΛ2(y)

=
1

F̄2(t)

∫ ∞

t

∫ x

t

dΛ2(y)F̄2(x)dΛ1(x)

=
1

F̄2(t)

∫ ∞

t

Λ2(x)F̄2(x)dΛ1(x)− Λ2(t)m1.2(t)

= E1.2(t).

This completes the proof.
The following theorem shows that the behavior of E1.2(t) is closely related to the behavior of m1.2(t) and

the ratio of the hazard rates of X1 and X2. In particular, the theorem proves that the constancy of E1.2(t) gives
a characterization of proportional hazards model. Proportional hazards model, introduced by Cox [3], plays an
important role in reliability and survival analysis. Two random variables X1 and X2 with survival functions F̄1 and
F̄2 are said to have proportional hazards if there exists θ > 0 such that F̄1(t) = F̄ θ

2 (t) for all t ≥ 0. If the hazard
rates of X1 and X2 exist, i.e. the survival functions are absolutely continuous, this is equivalent to say that for all
t > 0, λ1(t) = θλ2(t).

Theorem 5
Let λ1.2(t) = λ1(t)/λ2(t), (for all t for which the ratio is well defined) and SE = {t : F̄1(t) > 0, F̄2(t) > 0}. Then

(a) E1.2(t) is constant iff λ1.2(t) is constant ∀t ∈ SE ,

(b) E1.2(t) is increasing (decreasing) iff m1.2(t) is increasing (decreasing) ∀t ∈ SE .

Proof: Proposition 2.1 in [21] gives that if λ1.2(t) = θ, then m1.2(t) = θ. This along with Theorem 4 imply that
E1.2(t) = θ. Inversely, if E1.2(t) = θ, then using Theorem 4 again follows that

θF̄2(t) =

∫ ∞

t

m1.2(y)dF2(y).
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Derivation from both side of the above equation with respect to t implies that m1.2(t) = θ. On the other hand
m1.2(t) can also be written as

m1.2(t) =
1

F̄2(t)

∫ ∞

t

λ1.2(y)dF2(y).

Derivation again follows that λ1.2(t) = θ. This proves part (a) of the theorem. To prove part (b), it is easy to see
that the derivative of E1.2(t) is equal to

E ′
1.2(t) = λ2(t)[E1.2(t)−m1.2(t)].

The if part now follows from the definition of E1.2(t). For the only if part, note that if E1.2(t) is increasing
(decreasing) then E1.2(t) ≥ (≤)m1.2(t) which is equivalent to that∫ ∞

t

m1.2(x)dF2(x) ≥ (≤)

∫ ∞

t

λ1.2(x)dF2(x).

The result now follows from the integral comparison lemma (cf. [17], p. 336) and the fact that m′
1.2(t) =

λ2(t)[m1.2(t)− λ1.2(t)].
Proposition 2.2 in [21] gives that if λ1.2(t) is increasing (decreasing) function then m1.2(t) is also increasing

(decreasing) function. However, the reverse is not true. For a counterexample, let F1 be the standard exponential
distribution and F2 the distribution given in Example 4.9 in [11], p. 114.

Wei [21] has defined another relative mean residual life of F1 with respect to F2 as m∗
1.2(t) = m1(t)/m2(t). It is

well-known that if λ1.2(t) ≥ 1, then m∗
1.2(t) ≤ 1. The reverse is not necessarily true(cf. [19], p. 83). The following

example shows that the same is true for the relation between λ1.2(t), m1.2(t) and E1.2(t). That is, E1.2(t) ≥ (≤)1,
for all t, does not necessarily imply that m1.2(t) ≥ (≤)1 or λ1.2(t) ≥ (≤)1. Though, it follows from Theorem 3(b)
that if X1 is IFR and X1 ≤mrl (≥mrl)X2, then m1.2(t) ≥ (≤)1 and hence, E1.2(t) ≥ (≤)1.

Example 3
Let X1 and X2 be distributed as Weibull with survival functions

F̄1(t) = e−(t/β1)
α1
, t > 0, α1 > 0, β1 > 0,

F̄2(t) = e−(t/β2)
α2
, t > 0, α2 > 0, β2 > 0,

respectively. Then

λ1.2(t) =
α1β

α2
2

α2β
α1
1

tα1−α2 ,

m1.2(t) =
α1β

α1
2 e(t/β2)

α2

α2β
α1
1

Γ((t/β2)
α2 ,

α1

α2
),

E1.2(t) =
α1β

α1
α2

−α2+1

2 e(t/β2)
α2

α2β
α1
1

Γ((t/β2)
α2 ,

α1

α2
+ 1)− (t/β2)

α2m1.2(t),

where Γ(t, a) =
∫∞
t

xa−1e−xdx is the incomplete gamma function. Figure 1 depicts the graphs of λ1.2(t), m1.2(t)
and E1.2(t) for different values of (α1, β1) and (α2, β2).

Example 4
Let X be a continuous non-negative random variable with survival function F̄ and a finite mean µ. It can be easily
seen that the RMRL and RCRE of F with respect to Fe are given as follows

m1.2(t) =
E(X; t)

m(t)
, E1.2(t) =

1

m(t)F̄ (t)

∫ ∞

t

E(X;x)

m(x)
F̄ (x)dx,

respectively, which are both less (greater) than one if X is DMRL (IMRL).
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Figure 1. Graph of λ1.2(t)(solid line), m1.2(t)(dotted line), and E1.2(t)(dashed line)

5. Another relative dynamic cumulative residual entropy

It is easy to show that the cumulative residual entropy (1) and the dynamic cumulative residual entropy (2) can also
be given by

E(X) = Cov(X,Λ(X)), E(X; t) = Cov(Xt,Λ(Xt)). (5)

Motivated by this, we define the relative cumulative residual entropy of F1 with respect to F2 by

E∗(X1, X2) = Cov(X1, F
−1
2 (F1(X1))) =

∫ 1

0

F−1
1 (u)F−1

2 (u)du− E(X1)E(X2), (6)

where F−1
i (u) = inf{x : Fi(x) ≥ u}, 0 ≤ u ≤ 1, is the quantile function associated with Fi, i = 1, 2. Equivalently,

we define the another dynamic relative cumulative residual entropy of F1 with respect to F2 by

E∗
1.2(t) = Cov(X1t, F

−1
2 (F1t(X1t))) (7)

=

∫ 1

0

F−1
1 (uF̄1(t) + F1(t))F

−1
2 (u)du− (t+mX1(t))E(X2)

=
1

F̄1(t)

∫ ∞

t

xF−1
2

(
1− F̄1(x)

F̄1(t)

)
dF1(x)− (t+mX1(t))E(X2)

= E[X1{F−1
2

(
1− F̄1(X1)

F̄1(t)

)
− E(X2)}|X1 > t],
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where Fit(x) =
Fi(x+t)−Fi(t)

F̄i(t)
and F−1

it are the distribution and quantile functions corresponding to residual lifetime
variable Xit = Xi − t|Xi > t, i = 1, 2, respectively. Note that if F2 is an exponential distribution with parameter
1, then

F−1
2 (F1(X1)) = − ln(1− F1(X1)) = Λ1(X1),

F−1
2 (F1t(X1t)) = − ln(1− F1t(X1t)) = Λ1(X1t),

and E∗(X1, X2) and E∗
1.2(t) are reduced to E(X1) and E(X1; t), respectively.

Example 5
Let X1 and X2 be uniformly distributed on intervals (0, b1) and (0, b2), respectively. Then

E∗
1.2(t) =

b2(b1 − t)

12
.

The following theorem gives the relation between the dilation order and the above RCRE.

Theorem 6
If X1 ≤dil X2, then σ1 ≤ E∗(X1, X2) ≤ σ2, where σi is the standard deviation of Xi, i = 1, 2.

Proof: First note that X1 ≤dil X2 is equivalent to (see equation 3.A.37 in [19], p. 118)

ν1(F
−1
1 (p)) ≤ ν2(F

−1
2 (p)) + E(X1)− E(X2), p ∈ [0, 1),

where νi(t) = mi(t) + t = E(Xi|Xi > t), i = 1, 2. On the other hand

E∗(X1, X2) =

∫ ∞

0

xF−1
2 (F1(x))dF (x)− E(X1)E(X2)

=

∫ ∞

0

∫ x

0

F−1
2 (F1(x))dtdF (x)− E(X1)E(X2)

=

∫ ∞

0

F̄1(t)ν2(F
−1
2 (F1(t)))dt− E(X1)E(X2).

Thus,

E∗(X1, X2) ≥
∫ ∞

0

F̄1(t)ν2(t)dt− E2(X1)

=

∫ ∞

0

∫ ∞

t

F̄1(y)dydt+
1

2
E(X2

1 )− E2(X1)

= V ar(X1).

The result now follows from the Cauchy-Schwarz inequality which implies that E∗(X1, X2) ≤ σ1σ2.
The above proof implies that (7) can also given by

E∗
1.2(t) =

1

F̄1(t)

∫ ∞

t

ν2(F
−1
2

(
1− F̄1(x)

F̄1(t)

)
)F̄1(x)dx−mX1(t)E(X2). (8)

6. Conclusion

Models of relative aging are tools for comparing two lifetime distributions. In this paper, we obtained some new
properties of the relative mean residual life (RMRL) and obtained a characterization result for a special case of
s-NBUE(R) ordering based on the RMRL. We also introduced two definitions of the dynamic relative cumulative
residual entropy (RCRE) for comparing the uncertainty within two lifetime random variables. It was shown that
the behavior of the dynamic RCRE has close relation with the behavior of the RMRL and the ratio of the hazard
functions. Some results obtained to explore the relation between these new notions and some well-known stochastic
orderings such as dilation order.
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