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1. Introduction

The concept of generalized order statistics (gos) was first introduced by [8] which envelops variety of models of
ordered random variables that acts as a flexible model in various directions such as order statistics, upper record
values, progressive type II censoring order statistics, sequential order statistics and Pfeiffer’s records.
Let X1, X2, ... be a sequence of independent identically distributed (iid) random variables with distribution function
(df ) F (x) and probability density function (pdf ) f(x). Let k ≥ 1, n ≥ 2, n ∈ N, m̃ = (m1,m2, ...,mn−1) ∈
ℜn−1,Mr =

∑n−1
j=r mj such that γr = k + n− r +Mr > 0 ∀ r ∈ {1, 2, ..., n− 1}. Then X (r, n, m̃, k), r =

1, 2, . . . , n, is called gos based on F (x), if their joint pdf is of the form

k

(
n−1∏
j=1

γj

)(
n−1∏
i=1

[1− F (xi)]
mi f (xi)

)
[1− F (xn)]

k−1
f (xn) , F−1 (0) < x1 ≤ .... ≤ xn < F−1 (1) .

For different values of mi’s, k and γi’s the model of gos reduces to various models e.g., when
(m1 = m2 = ... = mn−1 = 0, k = 1, γi = 1 + n− i), this model reduces to order statistics and for kth upper
record values (m1 = m2 = ... = mn−1 = −1, i.e. γi = k, k ∈ N). Here we take the case mi = mj = m. Then
the density function of rth gos X (r, n,m, k) is given by

fX(r,n,m,k) =
Cr−1

(r − 1)!

[
F̄ (x)

]γr−1
f (x) gr−1

m (F (x)) . (1)
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The joint pdf of X (r, n,m, k) and X (s, n,m, k), 1 ≤ r < s ≤ n is

fX(r,n,m,k)X(s,n,m,k) =
Cs−1

(r − 1)! (s− r − 1)!

[
F̄ (x)

]m
f (x) gr−1

m (F (x)) [hmF (y)− hmF (x)]
s−r−1 (2)

×
[
F̄ (y)

]γs−1
f (y) ,

where

F̄ (x) = 1− F (x) , Cr−1 =

r∏
i=1

γi,

hm (x) =

{
− 1

m+1 (1− x)
m+1

, m ̸= −1

− ln (1− x) , m = −1

and
gm (x) = hm (x)− hm (0) , x ∈ [0, 1) .

A lot of work has been carried out by several researchers in the field of gos. Recurrence relations for moments of
gos for specific as well as for general class of distribution have been well investigated hitherto. [2] and [11] derived
the recurrence relations for single and product moments of gos for some general class of distributions, whereas
explicit expressions for exact moments of gos were probed by [4] and the generalized record values from additive
Weibull distribution derived by [13]. For more details of gos we have [9, 12, 3, 1, 14, 10] and [6].
A random variable X is said to have OGEPD [15] if its df is given by

F (x) = 1− e
−λ

[
( x

a )
θ−1

]
, x > a, θ, λ > 0. (3)

The corresponding pdf is of the form

f (x) =
λθ

aθ
xθ−1e

−λ
[
( x

a )
θ−1

]
, x > a, θ, λ > 0. (4)

The relation between F̄ (x) and f (x) can be easily derived as

F̄ (x) =
aθ

λθ
x1−θf (x) , (5)

where F̄ (x) = 1− F (x).

2. Relation for single moments

2.1. Explicit expressions for single moments

We first derive explicit expression for single moments of rth gos, X (r, n,m, k). The following theorem shows the
explicit expression for E

[
Xj (r, n,m, k)

]
= µ

(j)
r:n.

Theorem 1
For 1 ≤ r ≤ n, k ≥ 1 and j = 0, 1, 2, . . . ,

µ
(j)
r:n,m,k =

Cr−1

(r − 1) !(m+ 1)r−1

aj

λj/θ

r−1∑
u=0

(−1)
u

(
r − 1
u

)
eλγr−u (γr−u)

−j/θ−1
Γ ((j/θ + 1) , λγr−u) , (6)

m ̸= −1

and for m = −1, we have

µ
(j)
r:n,−1,k =

eλkaj

(r − 1) !

r−1∑
u=0

(−1)
r−u−1

(
r − 1
u

)
Γ ((j/θ + u+ 1) , λk)

(λk)
j/θ+u−r+1

. (7)
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Proof
Using (1), we get

µ
(j)
r:n,m,k =

Cr−1

(r − 1)!

∫ ∞

a

xj
[
F̄ (x)

]γr−1
gr−1
m (F (x)) f (x) dx.

On expanding gr−1
m (F (x)) =

[
1

m+1

(
1− (F̄ (x))m+1

)]r−1
binomially in above expression, we get

µ
(j)
r:n,m,k =

Cr−1

(r − 1)!(m+ 1)r−1

r−1∑
u=0

(−1)
u

(
r − 1
u

)∫ ∞

a

xj
[
F̄ (x)

]γr−u−1
f (x) dx. (8)

On using (3) and (4) in (8), we obtain

µ
(j)
r:n,m,k =

λθ

aθ
Cr−1

(r − 1)!(m+ 1)r−1

r−1∑
u=0

(−1)
u

(
r − 1
u

)
eλγr−u

∫ ∞

a

xj+θ−1e−
λ

aθ γr−ux
θ

dx

µ
(j)
r:n,m,k =

Cr−1

(r − 1)!(m+ 1)r−1

λθ

aθ

r−1∑
u=0

(−1)
u

(
r − 1
u

)
eλγr−u

∫ ∞

a

xj+θ−1e−
λ

aθ γr−ux
θ

dx. (9)

From [5] p-346, we have ∫ ∞

u

xme−β xn

dx =
Γ((m+ 1) /n, βun)

nβ(m+1)/n
, β,m, n > 0. (10)

By substituting (10) in (9) and simplifying the resulting expression, we get the required result for m ̸= −1.
When m = −1, we have

µ
(j)
r:n,−1,k =

kr

(r − 1)!

∫ ∞

a

xj
[
− ln F̄ (x)

]r−1 [
F̄ (x)

]k−1
f (x) dx.

From (3) and (4), we have

µ
(j)
r:n,−1,k =

kr

(r − 1)!

λrθ

aθ
eλk
∫ ∞

a

xj+θ−1

((x
a

)θ
− 1

)r−1

e−λk( x
a )

θ

dx

µj
r:n,−1,k =

(λk)
r
eλk

(r − 1)!θ

r−1∑
u=0

(−1)
r−u−1

(
r − 1
u

)
1

aθ(u+1)

×
∫ ∞

a

xj+θ(u+1)−1e−
λk

aθ xθ

dx. (11)

On using (10) in (11), we get the required result for m = −1.

Special Cases

(i) For m = 0, k = 1 in (6), we get the explicit formula for the single moments of ordinary order statistics for the
OGEPD as

µ(j)
r:n = Cr:na

jλ−j/θ
r−1∑
u=0

(−1)
u

(
r − 1
u

)
eλ(n−r+u+1)Γ ((j/θ + 1) , λ (n− r + u+ 1))

× (n− r + u+ 1)−(j/θ+1).

(ii) For k = 1 in (7), we get the explicit expression for the single moments of upper record values for the OGEPD
as

µ
(j)
r:n,−1,1 =

eλaj

(r − 1) !

r−1∑
u=0

(−1)
r−u−1

(
r − 1
u

)
Γ ((j/θ + u+ 1) , λ)

λj/θ+u−r+1
.
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2.2. Recurrence relation for single moments

Theorem 2
If X is a rv with df (3) with 2 ≤ r ≤ n, j ≥ 0 , k ≥ 1 the following recurrence relation

µ
(j)
r:n,m,k = µ

(j)
r−1:n,m,k +

aθj

λθγr
µ
(j−θ)
r:n,m,k, m ̸= −1 (12)

is satisfied.

Proof
To obtain the recurrence relation for single moments of gos, we use the result of [2] for the OGEPD

µ
(j)
r:n,m,k − µ

(j)
r−1:n,m,k =

jCr−1

γr (r − 1) !

∫ ∞

a

xj−1
[
F̄ (x)

]γr
gr−1
m (F (x)) dx. (13)

Using (5) in (13), we get

µ
(j)
r:n,m,k = µ

(j)
r−1:n,m,k +

aθjCr−1

λθγr (r − 1) !

∫ ∞

a

xj−θ
[
F̄ (x)

]γr−1
gr−1
m (F (x)) f (x) dx.

On simplifying the above expression, we get the required result of (12).

Special Cases

(i) For m = 0, k = 1 in (12), we get the recurrence relations for single moments of ordinary order statistics for the
OGEPD as

µ(j)
r:n = µ

(j)
r−1:n +

aθj

λθ (n− r + 1)
µ(j−θ)
r:n .

(i) For m = −1, k = 1 in (12), we get the recurrence relations for single moments of upper record values for the
OGEPD as

µ
(j)
r:n,−1,1 = µ

(j)
r−1:n,−1,1 +

aθj

λθ
µ
(j−θ)
r:n,−1,1.
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Table 1(a): First Four Moments of Order Statistics
a = 0.5, λ = 1, θ = 0.5 a = 0.5, λ = 1.5, θ = 0.5

n r µ(1) µ(2) µ(3) µ(4) µ(1) µ(2) µ(3) µ(4)

1 1 2.50000 16.2500 244.620 6850.11 1.61110 5.21290 35.3780 440.660
2 1 1.25000 2.62500 10.3438 72.7188 0.94444 1.21296 2.39660 7.68527

2 3.75000 29.8750 478.906 13627.4 2.27778 9.21296 68.3596 873.628
3 1 0.94444 1.21296 2.39660 7.68527 0.77161 0.70085 0.81081 1.29473

2 1.86111 5.44907 26.2380 202.786 1.29012 2.23720 5.56819 20.4663
3 4.69444 42.0880 705.240 20339.7 2.77160 12.7008 99.7553 1300.21

4 1 0.81250 0.80467 1.06689 2.05457 0.69444 0.53241 0.47184 0.512817
2 1.34028 2.43778 6.38574 24.5774 1.00309 1.20616 1.82774 3.64048
3 2.38194 8.46036 46.0903 380.994 1.57716 3.26823 9.30864 37.2922
4 5.46528 53.2972 924.957 26992.6 3.16975 15.8451 129.904 1721.18

5 1 0.74000 0.62760 0.65156 0.89225 0.65111 0.45279 0.34574 0.30127
2 1.10250 1.51304 2.72823 6.70384 0.86778 0.85089 0.97621 1.35901
3 1.69694 3.82492 11.872 51.3877 1.20605 1.73906 3.10503 7.0627
4 2.83861 11.5507 68.9026 600.732 1.82457 4.28768 13.4444 57.4452
5 6.12194 63.7338 1138.97 33590.6 3.50605 18.7344 159.019 2137.11

a = 1, λ = 2, θ = 1 a = 1.5, λ = 2, θ = 2

1 1 1.50000 2.50000 4.75000 10.5000 1.81600 3.37500 6.43945 12.6556
2 1 1.25000 1.62500 2.21875 3.21875 1.66975 2.81250 4.78385 8.22656

2 1.75000 3.37500 7.28125 17.7813 1.96230 3.93750 8.09524 17.0859
3 1 1.16667 1.38889 1.69444 2.12963 1.61648 2.62500 4.28427 7.03125

2 1.41667 2.09722 3.26736 5.39699 1.77631 3.18750 5.78303 10.6172
3 1.91667 4.01389 9.28819 23.9734 1.58874 2.53125 4.04525 6.48633

4 1 1.12500 1.28125 1.48047 1.74023 1.69968 2.90625 5.00132 8.66602
2 1.29167 1.71181 2.33637 3.29782 1.69968 2.90625 5.00132 8.66602
3 1.54167 2.48264 4.19835 7.49617 1.85293 3.46875 6.56473 12.5684
4 2.04167 4.52431 10.9848 29.4658 2.12275 4.59375 10.1469 22.9043

5 1 1.10000 1.22000 1.36600 1.54640 1.57171 2.47500 3.90545 6.17625
2 1.22500 1.52625 1.93834 2.51557 1.65690 2.75625 4.60445 7.72664
3 1.39167 1.99014 2.93341 4.47118 1.76385 3.13125 5.59662 10.0751
4 1.64167 2.81097 5.04164 9.51282 1.91232 3.69375 7.21014 14.2305
5 2.14167 4.95264 12.4706 34.4540 2.17536 4.81875 10.8811 25.0727

Table 1(b): First Four Moments of Upper Record Values
a = 1, λ = 1.5, θ = 1.5 a = 1, λ = 1.5, θ = 2

r µ(1) µ(2) µ(3) µ(4) µ(1) µ(2) µ(3) µ(4)

2 2.1815 2.3019 1.7407 0.9008 2.0469 2.3330 2.2169 1.7407
3 5.3586 7.6724 8.4676 7.2166 4.7019 6.6249 8.0576 8.4676
4 6.5712 10.015 11.276 9.1401 5.6509 8.4167 10.622 11.276
5 8.4753 15.086 20.191 20.352 7.0222 11.716 16.667 20.191
6 9.8931 19.427 28.089 29.546 7.9757 14.395 21.931 28.089

a = 1, λ = 0.5, θ = 2.5 a = 1, λ = 0.5, θ = 3

2 1.2316 3.0133 8.7309 31.545 1.0698 2.2041 5.0000 13.055
3 2.2616 5.1485 15.429 59.819 2.0309 3.7902 8.6253 23.565
4 2.5384 6.6505 22.047 93.163 2.2088 4.703 11.746 34.691
5 2.9423 8.2108 29.176 131.96 2.5389 5.6769 15.018 46.973
6 3.2511 9.6893 36.614 175.62 2.7729 6.5583 18.283 60.130
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3. Relations for inverse moments

In this section, we derive recurrence relation for inverse moments of gos. The inverse moments of gos are defined
as

µ
(−j)
r:n,m,k = E

(
X−j

r:n,m,k

)
=

∫ ∞

−∞
x−jfr:n,m,k (x) dx. (14)

Theorem 3
Fix a positive integer k and for df (3) with 2 ≤ r ≤ n, j = 0, 1, 2, ... the following recurrence relation

µ
(−j)
r:n,m,k = µ

(−j)
r−1:n,m,k − jaθ

γrλθ
µ
(−j−θ)
r:n,m,k, m ̸= −1 (15)

is satisfied.

Proof
From (14) and (1), we have

µ
(−j)
r:n,m,k =

Cr−1

(r − 1) !

∫ ∞

a

x−j
[
F̄ (x)

]γr−1
f (x) gr−1

m (F (x)) dx.

Proceeding in similar manner as we have done for Theorem 2, we get

µ
(−j)
r:n,m,k = µ

(−j)
r−1:n,m,k − jCr−1

γr (r − 1) !

∫ ∞

a

x−j−1
[
F̄ (x)

]γr
gr−1
m (F (x)) dx.

By using (5) in above expression, we have

µ
(−j)
r:n,m,k = µ

(−j)
r−1:n,m,k − jCr−1

γr (r − 1) !

aθ

λθ

∫ ∞

a

x−j−θ
[
F̄ (x)

]γr−1
gr−1
m (F (x)) f (x) dx. (16)

On simplifying (16), we get the required result of (15).

Special Cases

(i) For m = 0, k = 1 in (15), we get the recurrence relation for inverse moments of ordinary order statistics for the
OGEPD as

µ(−j)
r:n = µ

(−j)
r−1:n − aθj

λθ (n− r + 1)
µ(−j−θ)
r:n .

(ii) For m = −1, k = 1 in (15), we get the recurrence relation for inverse moments of upper record values for the
OGEPD as

µ
(−j)
r:n,−1,1 = µ

(−j)
r−1:n,−1,1 −

aθj

λθ
µ
(−j−θ)
r:n,−1,1.

4. Relations for product moments

Theorem 4
For the OGEPD given in (3), 1 ≤ r < s ≤ n− 1 , k ≥ 1, j ≥ 0 the following recurrence relation

µ
(i,j)
r,s:n,m,k = µ

(i,j)
r,s−1:n,m,k +

aθj

λθγs
µ
(i,j−θ)
r,s:n,m,k,m ̸= −1 (17)

is satisfied.
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Proof
From (2), we have

µ
(i,j)
r,s:n,m,k =

Cs−1

(r − 1)! (s− r − 1)!

∫ ∞

−∞

∫ ∞

x

xiyj
[
F̄ (x)

]m
f (x) gr−1

m (F (x)) [hmF (y)− hmF (x)]
s−r−1

×
[
F̄ (y)

]γs−1
f (y) dy dx.

By considering the result of [2] for product moments of any distribution, we have

µ
(i,j)
r,s:n,m,k = µ

(i,j)
r,s−1:n,m,k +

Cs−1j

γs (r − 1)! (s− r − 1)!

∫ ∞

−∞

∫ ∞

x

xiyj−1
[
F̄ (x)

]m
f (x) gr−1

m (F (x))

[hmF (y)− hmF (x)]
s−r−1 [

F̄ (y)
]γs

dydx. (18)

Using the relation (5) in (18) for the OGEPD, we have

µ
(i,j)
r,s:n,m,k = µ

(i,j)
r,s−1:n,m,k +

Cs−1j

γs (r − 1)! (s− r − 1)!

aθ

λθ

∫ ∞

a

∫ ∞

x

xiyj−θ
[
F̄ (x)

]m
f (x) gr−1

m (F (x))

[hmF (y)− hmF (x)]
s−r−1

f (y)
[
F̄ (y)

]γs−1
dydx. (19)

On simplifying (19), we get the result of (17).

Special Cases

(i) For m = 0, k = 1 in (17), we get the recurrence relations for product moments of ordinary order statistics for
the OGEPD as

µ(i,j)
r,s:n = µ

(i,j)
r,s−1:n +

aθj

λθ (n− s+ 1)
µ(i,j−θ)
r,s:n .

(ii) For m = −1, k = 1 in (17), we get the recurrence relations for product moments of upper record values for the
OGEPD as

µ
(i,j)
r,s:n,−1,1 = µ

(i,j)
r,s−1:n,−1,1 +

aθj

λθ
µ
(i,j−θ)
r:n,−1,1.

5. Relations for ratio moments

The ratio moments of gos are defined as

µ
(i,−j)
r,s:n,m,k =

∫ ∞

−∞

∫ ∞

x

xi

yj
fr,s:n,m,k (x, y) dy dx =

∫ ∞

−∞

∫ ∞

x

xiy−jfr,s:n,m,k (x, y) dy dx. (20)

Theorem 5
For the OGEPD given in (3), 1 ≤ r < s ≤ n− 1, k ≥ 1 and j ≥ 0 the following recurrence relation for ratio
moments

µ
(i,−j)
r,s:n,m,k = µ

(i,−j)
r,s−1:n,m,k − aθj

λθγs
µ
(i,−j−θ)
r,s:n,m,k, m ̸= −1 (21)

is satisfied.

Proof
We derive the ratio moments for the OGEPD by using (20) and proceeding in similar way as Theorem 4, we have

µ
(i,−j)
r,s:n,m,k = µ

(i,−j)
r,s−1:n,m,k − Cs−1j

γs (r − 1)! (s− r − 1)!

∫ ∞

a

∫ ∞

x

xiy−j−1
[
F̄ (x)

]m
f (x) gr−1

m (F (x))

× [hmF (y)− hmF (x)]
s−r−1 [

F̄ (y)
]γs

dydx.

On using (5), we get the result of (21) .
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Special cases

(i) For m = 0, k = 1 in (21), we get the recurrence relations for ratio moments of ordinary order statistics for the
OGEPD as

µ(i,−j)
r,s:n = µ

(i,−j)
r,s−1:n − aθj

λθ (n− s+ 1)
µ(i,−j−θ)
r,s:n .

(ii) For m = −1, k = 1 in (21), we get the recurrence relations for ratio moments of upper record values for the
OGEPD as

µ
(i,−j)
r,s:n,−1,1 = µ

(i,−j)
r,s−1:n,−1,1 −

aθj

λθ
µ
(i,−j−θ)
r:n,−1,1 .

6. Characterization

6.1. Characterization of OGEPD based on a recurrence relation for single moments

Theorem 6
For the positive integers k and j, a necessary and sufficient condition for a random variable X to be distributed
with cdf given in (3) is that

µ
(j)
r:n,m,k = µ

(j)
r−1:n,m,k +

aθj

λθγr
µ
(j−θ)
r:n,m,k. (22)

Proof
The necessary part follows immediately from (12). On the other hand if the recurrence relation in (22) is satisfied,
then from (1), we have

Cr−1

γr (r − 1) !

∫ ∞

a

xj
[
F̄ (x)

]γr
gr−2
m (F (x)) f (x)

(
γrgm (F (x))

F̄ (x)
− (r − 1)

[
F̄ (x)

]m)
dx =

Cr−1j

(r − 1) !γr

aθ

λθ

×
∫ ∞

a

xj−θ
[
F̄ (x)

]γr−1
gr−1
m (F (x)) f (x) dx. (23)

Consider ξ (x) = −gr−1
m (F (x))

[
F̄ (x)

]γr
.

Differentiating ξ (x) with respect to x, we have

ξ′ (x) = gr−2
m (F (x)) f (x)

[
F̄ (x)

]γr

[
gm (F (x)) γr

F̄ (x)
− (r − 1)

[
F̄ (x)

]m]
.

Thus, we have

Cr−1

(r − 1) !γr

∫ ∞

a

xjξ′ (x) dx = − Cr−1 j

(r − 1) !γr

aθ

λθ

∫ ∞

a

xj−θξ (x)
[
F̄ (x)

]−1
f(x)dx. (24)

Integrating left hand side of (24) and using the expression of ξ (x), we have

Cr−1

(r − 1) !γr

∫ ∞

a

xj−1gr−1
m (F (x))

[
F̄ (x)

]γr

(
1− aθ

λθ
x1−θ f (x)

F̄ (x)

)
= 0.

Using generalization result of Müntz-Szász Theorem of [7], we get F̄ (x)
f(x) = aθ

λθx
1−θ

which proves that,

F̄ (x) =
aθ

λθ
x1−θf (x) , x > a, θ, λ > 0.

By simplifying above expression, we can also get the following result,

f (x) =
λθ

aθ
xθ−1e

−λ
[
( x

a )
θ−1

]
, x > a, θ, λ > 0.
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6.2. Characterization of OGEPD based on conditional moments

Theorem 7
If X is an absolutely continuous positive random variable with df G (x)and g (x) such that E (X) exist, then
E (X|X ≤ x) = h (x)φ (x) where φ (x) = g (x) /G (x), then

h (x) =
aθ+1

λθ
x1−θe

λ
[
( x

a )
θ−1

]
− aθ

λθ
x2−θ +

aθ

λθ
x1−θe

λ
[
( x

a )
θ−1

] ∫ x

a

e
−λ

[
(u

a )
θ−1

]
du (25)

holds if and only if

g (x) =
λθ

aθ
xθ−1e

−λ
[
( x

a )
θ−1

]
, x ≥ a, θ, λ > 0.

Proof
We first prove the necessity part. For this, we consider

g (x) =
λθ

aθ
xθ−1e

−λ
[
( x

a )
θ−1

]
,

then, we take

h (x) =
1

g (x)

∫ x

a

uf (u) du. (26)

On simplifying (26) and using g(x), we get

h (x) =
aθ+1

λθ
x1−θe

λ
[
( x

a )
θ−1

]
− aθ

λθ
x2−θ +

aθ

λθ
x1−θe

λ
[
( x

a )
θ−1

] ∫ x

a

e
−λ

[
(u

a )
θ−1

]
du.

which is (25).
Now for sufficient condition we need to prove (25) which implies (4). We consider (25) as

h (x) =
aθ+1

λθ
x1−θe

λ
[
( x

a )
θ−1

]
− aθ

λθ
x2−θ +

aθ

λθ
x1−θe

λ
[
( x

a )
θ−1

] ∫ x

a

e
−λ

[
(u

a )
θ−1

]
du.

Differentiating above equation with respect to x, we have

h′ (x) =
(

(1−θ)
x + λθ

aθ x
θ−1
)(

aθ+1

λθ x1−θe
λ
[
( x

a )
θ−1

]
+ aθ

λθx
1−θe

λ
[
( x

a )
θ−1

] ∫ x

a
e
−λ

[
(u

a )
θ−1

]
du

)
− (1−θ)

λθ aθx1−θ.

Thus we have,
x− h′ (x)

h (x)
= −

(
(1− θ)

x
+

λθ

aθ
xθ−1

)
.

Hence, using the result of Lemma 6.1 from [16], we have

g′ (x)

g (x)
= −

(
(1− θ)

x
+

λθ

aθ
xθ−1

)
.

On integrating, we get

g (x) = c
e−λ( x

a )
θ

x1−θ
,

where c is determined by using
∫∞
a

g (x) dx = 1, hence, we get

g (x) =
λθ

aθ
xθ−1e

−λ
[
( x

a )
θ−1

]
, x > a, θ, λ > 0,

which implies (4).
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Theorem 8
Suppose that X is an absolutely continuous random variable with cdf G (x) such that G (a) = 0 and G (x) > 0
for all x > a. We assume that the pdf of X and g (x) and g′ (x) exists for all x > 0 and E (X) also exists. Then
E (X|X ≥ x) = h0 (x) ς (x), where ς (x) = g (x) / [1−G (x)] ,

h0 (x) = x1−θe
λ

[
( x

a )
θ
−1

] ∫ ∞

x

uθe
−λ

[
(u

a )
θ−1

]
du,

holds if and only if

g (x) =
λθ

aθ
xθ−1e

−λ
[
( x

a )
θ−1

]
, x ≥ a, θ, λ > 0.

Proof
We have

g (x)h0 (x) =
λθ

aθ

∫ ∞

x

uθe
−λ

[
(u

a )
θ−1

]
du

h0 (x) = x1−θe
λ
[
( x

a )
θ−1

] ∫ ∞

x

uθe
−λ

[
(u

a )
θ−1

]
du.

By differentiating the above expression, we have

h′
0 (x) = x+

(
(1− θ)

x
+

λθ

aθ
xθ−1

)
x1−θe

λ
[
( x

a )
θ−1

] ∫ ∞

x

uθe
−λ

[
(u

a )
θ−1

]
du

h′
0 (x) = x+

(
(1− θ)

x
+

λθ

aθ
xθ−1

)
h0 (x) .

Using result of Lemma 6.2 from [16], we have

−x− h′
0 (x)

h0 (x)
= −

(
(1− θ)

x
+

λθ

aθ
xθ−1

)
g′ (x)

g (x)
= − (1− θ)

x
− λθ

aθ
xθ−1.

Integrating both sides with respect to x, we have

g (x) = cxθ−1e−λ( x
a )

θ

,

where c is a constant determined by using the condition
∫∞
a

g (x) dx = 1, hence, we get

g (x) =
λθ

aθ
xθ−1e

−λ
[
( x

a )
θ−1

]
, x ≥ a, θ, λ > 0,

which implies (4).

7. Conclusion

In this paper, exact form for single moments from OGEPD has been established in conjunction with derivations
for some recurrence relations for single, inverse, product and ratio moments. Further, first four moments of gos
and upper record values from the said distribution have been calculated. A characterization by two methods is also
given.
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