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1. Introduction

In the field of chemistry, graph theory has been applied to a wide range of research areas: synthetic chemistry,
quantum chemistry, thermochemistry etc. Graph theory has provided the chemist with a variety of very useful
tools. Some of the graph theory concepts corresponds to the terms in chemistry e.g. point as an atom, line as a
covalent bond, degree as atom valency and path as chemical substructure etc. Topological representation of an
object tells us about the number of elements composing it and their connectivity (see [3]). Topological indices are
invariant under graph isomorphisms. They have significant role in the quantitative structure-property relationship
(QSPR) and quantitative structure-activity relationship (QSAR) investigations (see [4, 6, 15, 35, 39]).

Let G be a connected graph with vertex set V (G) and edge set E(G) ⊆ V (G)× V (G). Let p = |V (G)|, the
order of G and q = |E(G)|, the size of G. The degree dv of any vertex v is defined as the number of vertices
joining to that vertex v and the degree de of an edge e ∈ E(G) is defined as the number of its adjacent vertices in
V (L(G)), where L(G) is the line graph whose vertices are the edges of G and they are adjacent if and only if they
have a common end point in G. In structural chemistry, line graph of a graph G is very useful. The first topological
index on the basis of line graph was introduced by Bertz in 1981 (see [5]). For more details on line graph see the
articles [12, 14, 16, 17, 18, 21]. The subdivision S(G) of a graph G can be obtained by replacing each edge of G
by a path of length 2, or we can say by inserting an additional vertex between each pair of vertices of G. The line
graph of subdivision is known as para-line graph. For more details on the topological indicies of para-line graphs
we refer to the articles [22],–,[40].

Convex polytopes are fundamental geometric objects. The beauty of their theory is nowadays complemented by
their importance for many other mathematical subjects, ranging from integration theory, algebraic topology, and
algebraic geometry to linear and combinatorial optimization (see [11]). Also people are paying attention in finding
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Figure 1. (a) Convex Polytope D8, (b) Subdivision of D8, (c) Para-line graph of D4.

metric dimension and labeling of convex polytopes (see [1, 2, 19, 20]). From these motivational work, we take a
step in finding the topological indices of para-line graph of some convex polytopes.

Lemma 1
Let G be a graph with u, v ∈ V (G) and e = uv ∈ E(G). Then:

de = du + dv − 2.

Using above lemma, we can find the degree of a vertex of line graph.

Lemma 2
[13] Let G be a graph of order p and size q, then the line graph L(G) of G is a graph of order q and size 1

2M1(G)− q.

1.1. Para-line graphs of convex polytopes Dn, Qn and Rn

In this section we will discuss the combinatorial aspects of subdivision of some convex polytopes and their para-line
graphs.

1.2. Convex polytope Dn

Consider the graph of convex polytope Dn as defined in [1]. The convex polytope Dn for n = 8 is shown in Figure
1-a.

1.2.1. Subdivision of Convex polytope Dn We obtain the graph S(Dn) by replacing each edge of Dn by a path of
length 2. The subdivision of Dn for n = 8 is shown in Figure 1-b. Using Lemma 2, the total number of edges are
12n. Also |V (S(Dn))| = 10n in which 6n vertices have degree 2 and 4n vertices have degree 3.

1.2.2. Para-line graph of Convex polytope Dn The para-line graph L(S(Dn)) of Dn for n = 4 is shown in Figure
1-c. Using Lemma 2, the total number of edges are 18n. Also |V (L(S(Dn)))| = 12n and all vertices are of degree
3.

1.3. Convex polytope Qn

Consider the graph of convex polytope Qn as defined in [2]. The convex polytope Qn for n = 8 is shown in Figure
2-a.

1.3.1. Subdivision of Convex polytope Qn We obtain the graph S(Qn) by replacing each edge of Qn by a path of
length 2. The subdivision of Qn for n = 8 is shown in Figure 2-b. Using Lemma 2, the total number of edges are
14n. Also |V (S(Qn))| = 11n in which 7n vertices have degree 2, 3n vertices have degree 3 and n vertices have
degree 5.
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Figure 2. (a) Convex Polytope Q8, (b) Subdivision of Q8, (c) Convex polytope R4.

Figure 3. (a) Convex polytope R8, (b) Subdivision of R8, (c) Para-line graph of R4.

1.3.2. Para-line graph of Convex polytope Qn The para-line graph L(S(Qn)) of Qn for n = 4 is shown in Figure
2-c. Using Lemma 2, the total number of edges are 26n. Also |V (L(S(Qn)))| = 14n in which 9n vertices have
degree 3 and 5n vertices have degree 5.

1.4. Convex polytope Rn

Consider the graph of convex polytope Rn as defined in [2]. The convex polytope Rn for n = 8 is shown in Figure
3-a.

1.4.1. Subdivision of Convex polytope Rn We obtain the graph S(Rn) by replacing each edge of Rn by a path of
length 2. The subdivision of Rn for n = 8 is shown in Figure 3-b. Using Lemma 2, the total number of edges are
12n. Also |V (S(Rn))| = 9n in which 6n vertices have degree 2, n vertices have degree 3, n vertices have degree 4
and n vertices have degree 5.

1.4.2. Para-line graph of Convex polytope Rn The para-line graph L(S(Rn)) of Rn for n = 4 is shown in Figure
3-c. Using Lemma 2, the total number of edges are 25n. Also |V (L(S(Qn)))| = 12n in which 3n vertices are of
degree 3, 4n vertices are of degree 4 and 5n vertices are of degree 5.

1.5. The edge partitions of para-line graph of convex polytopes w.r.t degree sum

For a vertex u ∈ V (G), let Su=
∑

uv∈E(G) dv is the degree sum of u. For uv ∈ E(G), Su and Sv is the sum of
degrees of all neighbors of vertex u and v in G respectively. We partition E(G) into subsets based on the degree
sum of the end vertices of edges in G. The edge partition of L(S(Dn)), L(S(Qn)) and L(S(Rn)) with respect to
degree sum are shown in Tables 1, 2 and 3 respectively.
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(Su, Sv) Number of edges
(9, 9) 18n

Table 1. The edge partition of para-line graph of Dn w.r.t degree sum

(Su, Sv) Number of edges
(9, 9) 7n
(9, 11) 4n
(11, 11) n
(11, 13) 3n
(23, 23) 11n

Table 2. The edge partition of para-line graph of Qn w.r.t degree sum

(Su, Sv) Number of edges (Su, Sv) Number of edges
(9, 9) 2n (16, 16) 2n
(9, 11) 2n (16, 17) 4n
(11, 23) n (17, 17) n
(23, 25) 2n (17, 24) 2n
(24, 24) n (23, 24) 2n
(25, 25) 2n (24, 25) 4n

Table 3. The edge partition of para-line graph of Rn w.r.t degree sum

2. Topological Indices of para-line graphs of some Convex Polytopes

In this section we will compute Fourth Atom-Bond Connectivity Index and Fifth Geometric-Arithmetic Index of the
para-line graphs of some convex polytopes discussed in the first section.

2.1. Fourth Atom-Bond Connectivity Index

M. Ghorbani et al. in [7, 8, 9] proposed Fourth Atom-Bond connectivity index as:

ABC4(G) =
∑

uv∈E(G)

√
Su + Sv − 2

SuSv
. (1)

where Su is the sum of degrees of all neighbors of vertex u in G. In other words, Su=
∑

uv∈E(G) dv. Similarly for
Sv.

2.2. Fifth Geometric-Arithmetic Index

This index was introduced by Graovac et al. in [10] as:

GA5(G) =
∑

uv∈E(G)

2
√
SuSv

Su + Sv
. (2)

Theorem 1
Let L(S(Dn)), L(S(Qn)) and L(S(Rn)) are the para-line graphs of convex polytopes Dn, Qn and Rn respectively
then:

ABC4(L(S(Dn))) = 8n.

ABC4(L(S(Qn))) = 28
9 n+ 4

11n
√
22 + 2

11n
√
5 + 12

253n
√
506 + 22

23n
√
11.

ABC4(L(S(Rn))) = 8
9n+ 2

11n
√
22 + 4

253n
√
506 + 54

85n
√
2 + 8

25n
√
3 + 1

24n
√
46

+ 1
15n

√
28 + 1

46n
√
690 + 1

34n
√
442 + 1

17n
√
527 + 1

8n
√
30.
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Proof
The Fourth Atom-Bond Connectivity Index can be obtained by using Formula (1) and using edge partitions shown
in Tables 1, 2 and 3.

Theorem 2
Let L(S(Dn)), L(S(Qn)) and L(S(Rn)) are the para-line graphs of convex polytopes Dn, Qn and Rn respectively
then:

GA5(L(S(Dn)) = 18n.

GA5(L(S(Qn)) = 19n+ 6
5n

√
11 + 3

17n
√
253.

GA5(L(S(Rn)) = 8n+ 3
5n

√
11 + 1

17n
√
25 + 5

12n
√
23 + 89

49n
√
6 + 8

47n
√
13 + 8

41n
√
102

+ 32
33n

√
17.

Proof
The Fifth Geometric-Arithmetic Index can be obtained by using Formula (2) and using edge partitions shown in
Tables 1, 2 and 3.

3. Conclusion

In this paper, we continue the study certain degree based topological indices for the line graph of subdivision
graph of 2D-lattice graphs and obtained degree indices “Fourth atom-bond connectivity index ABC4(G) and Fifth
geometric-arithmetic connectivity index GA5(G)” of para-line graph of some convex polytopes.
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