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1. Introduction

Let (T, ρ) be some metric space. Consider a random processX = {X(t), t ∈ T} such that the following inequality
holds

lim sup
ε↓0

sup
0<ρ(t,s)≤ε
t,s∈T

|X(t)−X(s)|

f(ε)
≤ 1

with probability 1. Here the function f must be a modulus of continuity for the process X .
A space of functions with moduli of continuity f(ε) is the Hölder space and the functional

sup
0<ρ(t,s)≤ε
t,s∈T

|X(t)−X(s)|
f(ρ(t, s))

is a semi-norm in the Hölder space. In the following we deal with estimates of distributions of Hölder semi-norms
of sample functions of random processes X = {X(t), t ∈ [0,∞)} belonging to Fψ(Ω) spaces, i.e. probabilities

P

 sup
0<|t−s|≤ε
t,s∈[0,∞)

|X(t)−X(s)|
f(|t− s|)

> x

 .
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Such estimates and assumptions under which semi-norms of sample functions of processes from Fψ(Ω) spaces,
defined on a compact space, satisfy the Hölder conditions were obtained in [11]. Also estimates for distributions of
supremum of the increments of processes belonging to Fψ(Ω) spaces were investigated by Mlavets [14]. Similar
results were provided for Gaussian processes, defined on a compact, by Dudley [3]. Kozachenko [9] generalized
Dudley’s results for random processes belonging to Orlicz spaces (see also [2, 17]). Talagrand [15] found necessary
and sufficient conditions for sample path continuity or boundedness of Gaussian stochastic processes. Lp moduli of
continuity for a wide class of continuous Gaussian processes were obtained by Marcus and Rosen [12]. Kozachenko
et al. [8] studied the Lipschitz continuity of generalized sub-Gaussian processes and provided estimates for
distributions of Lipschitz norms of such processes. But all these problems were not considered yet for processes,
defined on an infinite interval. Only for Lp(Ω) processes, defined on an infinite interval, estimates for distributions
of semi-norms of these processes and assumptions under which semi-norms of sample functions of these processes
satisfy Hölder conditions were obtained by Zatula [16].

The theory of sample path properties of non-stationary Gaussian processes based on concepts of the entropy and
majorizing measures is now well studied. For an accessible introduction to these concepts and to the general theory
of continuity, boundedness and suprema distributions for real-valued Gaussian processes, we refer to Adler [1].

The Hölder continuity of random processes is applicable to problems of approximating random functions and
studying the rate of approximation. In particular, Kamenshchikova and Yanevich [6] investigated an approximation
of stochastic processes belonging to spaces Lp(Ω) by trigonometric sums in the space Lq[0, 2π]. Mathé [13]
provided the rate of convergence of multivariate Bernstein polynomials on the class of Hölder continuous random
functions. Also there is a number of works devoted to the study of the approximation of Hölder continuous
set-valued functions by Bernstein polynomials. Among them, Kels and Dyn [7] obtained estimates of the
approximations of functions whose values are formed by random sets.

2. Preliminary results

Below we provide definitions of random variables and processes, belonging to Fψ(Ω) spaces, and auxiliary results
to be used in subsequent results.

Let ψ(u) > 0, u ≥ 1 be some increasing function such that ψ(u) → ∞ as u→ ∞.

Definition 1 ([10])
A random variable ξ belongs to the space Fψ(Ω) if

sup
u≥1

(E|ξ|u)1/u

ψ(u)
<∞.

It is proved in the paper [4] (see also [10]) that Fψ(Ω) is a Banach space with respect to the norm

∥ξ∥ψ = sup
u≥1

(E|ξ|u)1/u

ψ(u)
.

Here are some examples of random variables belonging to Fψ(Ω) spaces.

Example 1
A random variable ξ such that satisfies |ξ| < C with probability one, where C > 0 is some constant, belongs to any
Fψ(Ω) space and

∥ξ∥ψ = sup
u≥1

(E |ξ|u)1/u

ψ(u)
≤ sup

u≥1

(Cu)
1/u

ψ(u)
= sup

u≥1

C

ψ(u)
=

C

ψ(1)
.

Example 2
A normally distributed random variable ξ ∼ N(0, 1) belongs to the Fψ(Ω) space with the function ψ(u) = u1/2

because 2l

√
E |ξ|2l = 2l

√
(2l)!
2ll!

∼ l1/2 as l ≥ 1.
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Properties of random variables and processes from Fψ(Ω) spaces were considered in detail in [10]. Henceforth
we will consider the spaces Fψ(Ω), which have the following property.

Let ξ1, ..., ξn be random variables belonging to the space Fψ(Ω). Denote ηn = max
1≤k≤n

|ξk|,

an = max
1≤k≤n

∥ξk∥ψ.

Definition 2 ([11])
Fψ(Ω) space has propertyZ if there are monotone non-decreasing function z(x) > 0, monotone increasing function
U(n) and a real number x0 > 0 such that for any sequence of random variables (ξk, k = 1, n) from Fψ(Ω) space,
∀x > x0 and for all n ≥ 2 the following inequality is performed:

P{ηn > x · an · U(n)} ≤ 1

n
exp{−z(x)}.

Below are some examples of the spaces Fψ(Ω) which have property Z.

Theorem 1 ([11])
Let ψ(u) = uα, α > 0. Then the following inequality holds ∀x > x1, x1 = max

{
1

(ln 3)α ,
(

2e ln 3
α(ln 3−1)

)α}
:

P {ηn > x · an · (ln(n+ 2))α} ≤ 1

n
exp

{
−α
e
x1/α

}
,

i.e. z(x) = α
e x

1/α, U(n) = (ln(n+ 2))α.

Theorem 2 ([11])
Let ψ(u) = eαu

β

, α > 0, β > 0. Then the following inequality holds ∀x ≥ x2,

x2 = exp

{(
ln 3

b β√2(ln 3−1)

) 2β
β+1

}
, b = β

α1/β · (β + 1)−
β+1
β :

P
{
ηn > x · an · exp

{
(ln(n+ 2))

2β
β+1

}}
≤ 1

n
exp

{
− β

α1/β

(
2

β + 1

) β+1
β

(lnx)
β+1
2β

}
,

i.e. z(x) = β
α1/β ·

(
2

β+1

) β+1
β

(lnx)
β+1
2β , U(n) = exp

{
(ln(n+ 2))

2β
β+1

}
.

Let (T, ρ) be some metric space.

Definition 3 ([2])
The metric massiveness N(T, ρ)(u) := N(u) is the minimal number of closed balls (defined with respect to the
metric ρ) of radius u that cover T.

Definition 4 ([10])
We say that a random process X = (X(t), t ∈ T) belongs to the space Fψ(Ω) if random variables X(t) belong to
Fψ(Ω) for all t ∈ T.

Definition 5 ([2])
A function q = {q(t), t ∈ R} is called a modulus of continuity if q(t) ≥ 0, q(0) = 0 and q(t+ s) ≤ q(t) + q(s) for
t > 0 and s > 0.

Definition 6 ([5])
A function v(x) satisfies Hölder condition with exponent α ∈ (0, 1] if the following value is finite:

[v]α,T = sup
t,s∈T
t̸=s

|v(t)− v(s)|
|t− s|α

.

This value is an αth-Hölder semi-norm of the function v. The Hölder space C0,α(T) consists of all continuous
functions which satisfy the Hölder condition with exponent α in T.
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Remark 1
The space C0,α(T), where T is a bounded space, is a Banach space with respect to the norm

∥v∥C0,α(T) = sup
T

|v|+ [v]α,T.

In further investigations we will deal with the generalization of the concept of Hölder semi-norm [v]α,T in the
space C0,α(T). Consider a value

[v]q,ρ,T = sup
t,s∈T
t ̸=s

|v(t)− v(s)|
q(ρ(t, s))

,

where ρ is a metric in the space T, and q = {q(t), t ∈ T} is a modulus of continuity such that ∃α ∈ (0, 1]
∀t, s ∈ T, t ̸= s : q(ρ(t, s)) ≤ |t− s|α. If the value [v]q,ρ,T′ is finite for all T′ ⊂ T then v ∈ C0,α(T).

The following result is the theorem on the estimation of distributions of the Hölder semi-norms and the moduli
of the continuity of random processes from Fψ(Ω) spaces of random variables, defined on a compact.

Theorem 3 ([11])
Let (T, ρ) be some compact metric space. Consider a separable random process X = (X(t), t ∈ T) belonging to
the Banach space Fψ(Ω), which has the property Z with functions U(n) and z(x) for x0 > 0.

Assume that there is a monotonically increasing continuous function σ = {σ(h), h ≥ 0} such that σ(0) = 0 and

sup
ρ(t,s)≤h

∥X(t)−X(s)∥ψ ≤ σ(h).

Let N(ε) = Nρ(T, ε) be the metric massiveness of the space (T, ρ), ε0 = σ(−1)

(
sup
t,s∈T

ρ(t, s)

)
, where σ(−1)(h)

is an inverse function to a function σ(h), and let ∀ ε > 0 :

gB(ε) =

σ(ε)∫
0

U(B2N2(σ(−1)(t)))dt <∞.

Then for x > x0, ε ∈ (0, ε0) and B > 1 the following inequality holds true

P

{
sup

0<ρ(t,s)≤ε

|X(t)−X(s)|
(6 + 4

√
2)fB(ρ(t, s)) + (5 + 2

√
6)gB(ρ(t, s))

> x

}
≤ 2B(2B + 1)

(B2 − 1)N(ε)
· exp{−z(x)},

where fB(ε) =
σ(ε)∫
0

U(BN(σ(−1)(t)))dt, ε > 0.

Definition 7 ([11])
Fψ(Ω) space has property Z1 if it has the property Z with functions z(x) and U(n) for x > x0, and if there is such
a constant b0 > 0 that ∀n ≥ 1:

U(n2) ≤ b0 U(n).

3. Estimates for distributions of Hölder semi-norms of random processes from Fψ(Ω) spaces, defined on
the interval [0,∞)

Now we formulate and prove the main result, which is based on Theorem 3.

Theorem 4
Consider a separable random process X = {X(t), t ∈ [0,∞)} belonging to the Banach space Fψ(Ω), which
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has the property Z with functions U(n) and z(x) for x0 > 0. Let [0,∞) =
∞∪
i=0

Ai, where Ai = [ai, ai+1],

{ai, i = 0, 1, ...,∞} is some increasing sequence, a0 = 0. Denote αi = ai+1 − ai, Di = [ai, ai+1 + θ],

θ ∈
(
0,min

i≥0
αi

)
.

Assume that there are monotonically increasing continuous functions σi = {σi(h), h ≥ 0} such that
σi(0) = 0, i = 0, 1, ... and ∀i = 0, 1, ... :

sup
ρ(t,s)≤h
t,s∈Di

∥X(t)−X(s)∥ψ ≤ σi(h), 0 < h < αi + θ. (1)

Let Ni(ε) be metric massivenesses of intervals Di, i = 0, 1, ... with respect to the metric ρ(t, s) = |t− s|,
t, s ∈ [0,∞). Also let

ε0 = min
i≥0

{
σ
(−1)
i

(
sup
t,s∈Di

ρ(t, s)

)}
= min

i≥0

{
σ
(−1)
i (αi + θ)

}
,

where σ(−1)
i (h) is an inverse function to a function σi(h), i = 0, 1, ..., and ∀i = 0, 1, ..., ∀ ε > 0 :

gB,i(ε) =

σi(ε)∫
0

U(B2N2
i (σ

(−1)
i (t)))dt <∞; fB,i(ε) =

σi(ε)∫
0

U(BNi(σ
(−1)
i (t)))dt.

Denote
wB,i(t, s) = (6 + 4

√
2)fB,i(|t− s|) + (5 + 2

√
6)gB,i(|t− s|), t, s ∈ Di,

and wB(t, s) is such a function that

wB(t, s) = {wB,i(t, s) | t, s ∈ Ai or min{t, s} ∈ Ai, max{t, s} ∈ Ai+1}.

Then for all x > x0, θ ∈
(
0,min

i≥0
αi

)
and ε ∈ (0,min{ε0, θ}) under the condition that

∞∑
i=0

1
αi
<∞ the following

inequality holds true:

P

 sup
0<|t−s|≤ε
t,s∈[0,∞)

|X(t)−X(s)|
wB(t, s)

> x

 ≤M(B, ε) · exp{−z(x)} ·
∞∑
i=0

1

αi + ε
,

where M(B, ε) = 4εB(2B+1)
B2−1 .

PROOF. According to Theorem 3, for x > x0, ε ∈
(
0, σ

(−1)
i (αi + θ)

)
and ∀i = 0, 1, ... the following inequality

holds

P

 sup
0<|t−s|≤ε
t,s∈Di

|X(t)−X(s)|
wB,i(t, s)

> x

 ≤ 2B(2B + 1)

(B2 − 1)Ni(ε)
· exp{−z(x)}, (2)

where

wB,i(t, s) = (6 + 4
√
2)

σi(|t−s|)∫
0

U(BNi(σ
(−1)
i (t)))dt+ (5 + 2

√
6)

σi(|t−s|)∫
0

U(B2N2
i (σ

(−1)
i (t)))dt.
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Since ∀i = 0, 1, ... :
αi + θ

2ε
≤ Ni(ε) ≤

αi + θ

2ε
+ 1,

then ∀i = 0, 1, ... :
1

Ni(ε)
≤ 2ε

αi + θ
. (3)

Inequalities (2) and (3) imply that for θ ∈
(
0,min

i≥0
αi

)
, ε ∈ (0,min{ε0, θ}) and x > x0 under the condition

∞∑
i=0

1
αi
<∞ the following inequality holds:

P

 sup
0<|t−s|≤ε
t,s∈[0,∞)

|X(t)−X(s)|
wB(t, s)

> x

 = P

 sup
0<|t−s|≤ε
t,s∈

∪
i≥0

Di

|X(t)−X(s)|
wB(t, s)

> x

 ≤

≤
∞∑
i=0

P

 sup
0<|t−s|≤ε
t,s∈Di

|X(t)−X(s)|
wB,i(t, s)

> x

 ≤
∞∑
i=0

2B(2B + 1)

(B2 − 1)Ni(ε)
· exp{−z(x)} ≤

=
4εB(2B + 1)

B2 − 1
· exp{−z(x)} ·

∞∑
i=0

1

αi + θ
.

Since θ > ε, then, substituting ε instead of θ in the last inequality, we obtain the statement of the theorem.

Remark 2
Let all the assumptions of Theorem 4 be fulfilled. Also let ∀i = 0, 1, ...: σi(h) = σ(h), i.e. the condition (1) takes
on the following form:

sup
|t−s|≤h
t,s∈Di

∥X(t)−X(s)∥ψ ≤ σ(h), 0 < h < αi + θ, i = 0, 1, ...

Then gB,i(ε) =
σ(ε)∫
0

U(B2N2
i (σ

(−1)(t)))dt, fB,i(ε) =
σ(ε)∫
0

U(BNi(σ
(−1)(t)))dt, ε > 0, and

ε0 = min
i≥0

{
σ(−1)(αi + θ)

}
= σ(−1)

(
min
i≥0

αi + θ

)
,

because σ(−1)(h) is a non-decreasing function.

Corollary 1
Let all the assumptions of Theorem 4 be fulfilled and the space Fψ(Ω) has the property Z1. In this case

wB,i(t, s) = (6 + 4
√
2)fB,i(|t− s|) + (5 + 2

√
6)gB,i(|t− s|) ≤

≤ (6 + 4
√
2 + b0(5 + 2

√
6))fB,i(|t− s|) := vB,i(t, s), t, s ∈ Di,

and
wB(t, s) ≤ vB(t, s) = {vB,i(t, s) | t, s ∈ Ai or min{t, s} ∈ Ai, max{t, s} ∈ Ai+1}.

Therefore for x > x0, ε ∈
(
0,min

{
σ(−1)

(
min
i≥0

αi + θ

)
, θ

})
and under the condition that

∞∑
i=0

1
αi
<∞ the

following inequality holds
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P

 sup
0<|t−s|≤ε
t,s∈[0,∞)

|X(t)−X(s)|
vB(t, s)

> x

 ≤M(B, ε) · exp{−z(x)} ·
∞∑
i=0

1

αi + ε
.

Theorem 5
Let all the assumptions of Corollary 1 be fulfilled. If the function ψ(u) = uα, α > 0 and for all i = 0, 1, ... functions

σi(h) = dhκ , h,κ, d > 0 then for x > x1, B > 1, µ < κ
α , ε ∈

(
0,min

{
1
κ√
d

κ
√

min
i≥0

αi + θ, θ

})
and under the

condition that
∞∑
i=0

1
αi
<∞ the following inequality holds true

P

 sup
0<|t−s|≤ε
t,s∈[0,∞)

|X(t)−X(s)|
vB(t, s)

> x

 ≤M(B, ε) · exp
{
−α
e
x1/α

}
·

∞∑
i=0

1

αi + ε
,

where vB(t, s) = {vB,i(t, s) | t, s ∈ Ai or min{t, s} ∈ Ai, max{t, s} ∈ Ai+1},

vB,i(t, s) = C1 ·

(
B(αi+θ)

2 + (B + 1) · |t− s|
)αµ

µα
· κd
κ − αµ

· |t− s|κ−αµ,

C1 =
(
6 + 4

√
2 + (5 + 2

√
6) · 2α

)
.

PROOF. The inverse function to the function σ(h) is σ(−1)(h) = κ
√

h
d . According to Theorem 1, the space Fψ(Ω)

has the property Z with functions U(n) = (ln(n+ 2))α and z(x) = α
e x

1/α for x > x1. Therefore, functions fB,i(ε)
and gB,i(ε) take the following form:

fB,i(ε) =

dεκ∫
0

U

(
BNi

(
κ

√
t

d

))
dt =

dεκ∫
0

(
ln

(
BNi

(
κ

√
t

d

)
+ 2

))α
dt;

gB,i(ε) =

dεκ∫
0

U

(
B2N2

i

(
κ

√
t

d

))
dt =

dεκ∫
0

(
ln

(
B2N2

i

(
κ

√
t

d

)
+ 2

))α
dt,

and gB,i(ε) ≤ 2αfB,i(ε).
In this case, the space Fψ(Ω) has the property Z1 with b0 = 2α. According to Corollary 1 and Remark 2, for

ε ∈ (0,min{ε0, θ}),

ε0 = σ(−1)

(
min
i≥0

αi + θ

)
=

1
κ
√
d

κ
√

min
i≥0

αi + θ,

B > 1, x > x1 and under the condition that
∞∑
i=0

1
αi
<∞ the following inequality holds

P

 sup
0<|t−s|≤ε
t,s∈[0,∞)

|X(t)−X(s)|
vB(t, s)

> x

 ≤M(B, ε) · exp
{
−α
e
x1/α

}
·

∞∑
i=0

1

αi + ε
,

where vB(t, s) = {C1 · fB,i(|t− s|) | t, s ∈ Ai or min{t, s} ∈ Ai, max{t, s} ∈ Ai+1}.
Using the inequality for the metric massiveness

Ni

(
κ

√
p

d

)
≤ αi + θ

2
κ

√
d

p
+ 1,
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we can limit the function fB,i(ε) above:

fB,i(ε) ≤
dεκ∫
0

(
ln

(
B ·
(
αi + θ

2
κ

√
d

p
+ 1

)
+ 2

))α
dp.

The last integral can be estimated and calculated. Therefore under the condition µ < κ
α we have

dεκ∫
0

(
ln

(
B ·
(
αi + θ

2
κ

√
d

p
+ 1

)
+ 2

))α
dp ≤

(
B(αi+θ)

2 + ε(B + 1)
)αµ

µα
· κd
κ − αµ

· εκ−αµ.

Finally, in accordance with Corollary 1 and Remark 2, we get the statement of the theorem.

Example 3
Consider a stationary process X = {X(t), t ∈ [0,∞)} that belongs to the space Fψ(Ω), ψ(u) = uα, α > 0, with
EX(t) = 0, DX(t) = 1 and a covariance function of the following form

R(t, s) =

∞∫
0

cos((t− s)p)f(p)dp,

where f(p), p ∈ [0,∞) is some function. Let’s find a restriction on this function such that the conditions of
Theorem 5 are satisfied for the process X .

Using known inequality | sinx| ≤ |x|κ , 0 < κ ≤ 1, for any t, s ∈ [0,∞) the following inequality holds

E(X(t)−X(s))2 = 2

∞∫
0

(1− cos((t− s)p)) f(p)dp ≤ 4 · 22κ(t− s)2κ
∞∫
0

p2κf(p)dp.

Therefore
∥X(t)−X(s)∥ψ ≤ D(κ) · (t− s)κ ,

where D(κ) = 2κ+1

√
∞∫
0

p2κf(p)dp. Thus, for any function f and a constant κ ∈ (0, 1] such that

∞∫
0

p2κf(p)dp <∞ the condition (1) of Theorem 4 is satisfied with the functions σi(h) = σ(h) = D(κ) · hκ ,

h > 0, i = 0, 1, ...

Now let {ai, i = 0, 1, ...,∞} is some increasing sequence such that
∞∑
i=0

1
ai+1−ai <∞ and a0 = 0, and

θ ∈
(
0,min

i≥0
αi

)
. Consider a process Y (t) = X(t)

c(t) , where c(t), t ∈ [0,∞) is some monotonically increasing

function such that
c(ai) ≥ (αi + θ)αµ, i = 0, 1, ... (4)

and ∀ t, s ∈ [0,∞) there are such b > 0 and γ ∈ (0,κ + αµ) that the following inequality holds

|c(t)− c(s)| ≤ b|t− s|γ . (5)

Since ∀ t, s ∈ [0,∞):

∥Y (t)− Y (s)∥ψ =

∥∥∥∥X(t)

c(t)
− X(s)

c(t)
+
X(s)

c(t)
− X(s)

c(s)

∥∥∥∥
ψ

≤

≤ 1

|c(t)|
· ∥X(t)−X(s)∥ψ + ∥X(s)∥ψ ·

∣∣∣∣ 1

c(t)
− 1

c(s)

∣∣∣∣ ≤
≤ D(κ)|t− s|κ

|c(t)|
+

∣∣∣∣c(t)− c(s)

c(t)c(s)

∣∣∣∣ ,
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then implying inequality (5) we have that ∀ t, s ∈ [0,∞):

∥Y (t)− Y (s)∥ψ ≤ D(κ)|t− s|κ

|c(t)|
+
b|t− s|γ

|c(t)c(s)|
= |t− s|κ · 1

|c(t)|

(
D(κ) + b|t− s|γ−κ

|c(s)|

)
.

Thus, implying inequality (4), ∀i = 0, 1, ... and h ∈ (0, αi + θ):

sup
|t−s|≤h
t,s∈Di

∥Y (t)− Y (s)∥ψ ≤ hκ · 1

c(ai)

(
D(κ) + b(αi + θ)γ−κ

c(ai)

)
≤

≤ hκ · 1

c(ai)

(
D(κ) + b(αi + θ)γ−κ

(αi + θ)αµ

)
≤ D(κ) + b

c(ai)
· hκ .

According to Theorem 5, the modulus of continuity vB(t, s) of the process X takes the following form:

vB(t, s) = {vB,i(t, s) | t, s ∈ Ai or min{t, s} ∈ Ai, max{t, s} ∈ Ai+1},

vB,i(t, s) = C1 ·

(
B(αi+θ)

2 + (B + 1) · |t− s|
)αµ

µα
· κD(κ)
κ − αµ

· |t− s|κ−αµ.

A similar form has a modulus of continuity of the process Y with a difference in constants. Implying inequality
(4), we have that for the functions vB,i, i = 0, 1, ... of a modulus of continuity of the process Y the following holds

C1 ·

(
B(αi+θ)

2 + (B + 1) · |t− s|
)αµ

µα
· κ
κ − αµ

· D(κ) + b

c(ai)
· |t− s|κ−αµ ≤

≤ C1 ·

(
B(αi+θ)

2 + (B + 1) · |t− s|
µ1/µ(αi + θ)

)αµ
· κ(D(κ) + b)

κ − αµ
· |t− s|κ−αµ ≤

≤ C1 ·

 B

2µ1/µ
+

(B + 1) · |t− s|

µ1/µ

(
min
i≥0

αi + θ

)

αµ

· κ(D(κ) + b)

κ − αµ
· |t− s|κ−αµ.

Thus, according to Theorem 5, for ε ∈

(
0,min

{
1

κ
√
D(κ)+b

(
min
i≥0

αi + θ

)αµ+1
κ

, θ

})
, x > x1, B > 1, µ < κ

α

and under the condition
∞∑
i=0

1
αi
<∞ the following inequality holds

P

 sup
0<|t−s|≤ε
t,s∈[0,∞)

|Y (t)− Y (s)|
vB(t, s)

> x

 ≤M(B, ε) · exp
{
−α
e
x1/α

}
·

∞∑
i=0

1

αi + ε
,

where

vB(t, s) = C1 ·
(

B

2µ1/µ
+

(B + 1) · |t− s|
µ1/µ (mini≥0 αi + θ)

)αµ
· κ(D(κ) + b)

κ − αµ
· |t− s|κ−αµ.

Theorem 6
Let all the assumptions of Theorem 4 be fulfilled. If the function ψ(u) = eαu

β

, α > 0, β > 0 and for all i = 0, 1, ...

functions σi(h) = σ(h) = dhκ , h,κ, d > 0 then for ε ∈
(
0,min

{
1
κ√
d

κ
√

min
i≥0

αi + θ, θ

})
, B > 1, β ∈ (0, 1),

x ≥ x2 and under the condition
∞∑
i=0

1
αi
<∞ the following inequality holds true
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P

 sup
0<|t−s|≤ε
t,s∈[0,∞)

|X(t)−X(s)|
vB(t, s)

> x

 ≤M(B, ε) · exp

{
− β

α1/β

(
2

β + 1

) β+1
β

(lnx)
β+1
2β

}
·

∞∑
i=0

1

αi + ε
,

where vB(t, s) = {vB,i(t, s) | t, s ∈ Ai or min{t, s} ∈ Ai, max{t, s} ∈ Ai+1},

vB,i(t, s) = mB,i

(
min

{
1

κ
√
d

κ
√

min
i≥0

αi + θ, θ

})
· |t− s|κ ,

mB,i(ε) = d

(
(6 + 4

√
2) · exp

{(
ln

(
κ√
d

(
B(αi + θ)

2
+ ε(B + 2)

))) 2β
β+1

}
+

+ (5 + 2
√
6) · exp


(
ln

(
B2 κ√

d(αi + θ)

( κ
√
d(αi + θ)

4
+ 1

)
+max{1, ε κ√

d} · (B2 + 2)

)) 2β
β+1


 .

PROOF. The inverse function to the function σ(h) is σ(−1)(h) = κ
√

h
d . According to Theorem 2, the space

Fψ(Ω) has the property Z with functions z(x) = β
α1/β

(
2

β+1

) β+1
β

(lnx)
β+1
2β and U(n) = exp

{
(ln(n+ 2))

2β
β+1

}
for x > x2. Therefore, functions fB,i(ε) and gB,i(ε) take the following form:

fB,i(ε) =

dεκ∫
0

U

(
BNi

(
κ

√
t

d

))
dt =

dεκ∫
0

exp


(
ln

(
BNi

(
κ

√
t

d

)
+ 2

)) 2β
β+1

 dt;

gB,i(ε) =

dεκ∫
0

U

(
B2N2

i

(
κ

√
t

d

))
dt =

dεκ∫
0

exp


(
ln

(
B2N2

i

(
κ

√
t

d

)
+ 2

)) 2β
β+1

 dt.

According to Theorem 4 and Remark 2, for x ≥ x2, ε ∈ (0,min{ε0, θ}), ε0 = 1
κ√
d

κ
√

min
i≥0

αi + θ, B > 1 and

under the condition that
∞∑
i=0

1
αi
<∞ the following inequality holds

P

 sup
0<|t−s|≤ε
t,s∈[0,∞)

|X(t)−X(s)|
vB(t, s)

> x

 ≤M(B, ε) · exp

{
− β

α1/β

(
2

β + 1

) β+1
β

(lnx)
β+1
2β

}
·

∞∑
i=0

1

αi + ε
,

where vB(t, s) = {vB,i(t, s) | t, s ∈ Ai or min{t, s} ∈ Ai, max{t, s} ∈ Ai+1},

vB,i(t, s) = (6 + 4
√
2)fB,i(|t− s|) + (5 + 2

√
6)gB,i(|t− s|).

Using the inequality for the metric massiveness

Ni

(
κ

√
u

d

)
≤ αi + θ

2
κ

√
d

u
+ 1,

we can limit functions fB,i(ε) and gB,i(ε) above:

fB,i(ε) ≤
dεκ∫
0

exp


(
ln

(
B ·

(
αi + θ

2
κ

√
d

t
+ 1

)
+ 2

)) 2β
β+1

 dt =: I1,B,i;
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gB,i(ε) ≤
dεκ∫
0

exp


ln

B2 ·

(
αi + θ

2
κ

√
d

t
+ 1

)2

+ 2


2β

β+1

 dt =: I2,B,i.

Integrals I1,B,i and I2,B,i can be estimated and calculated. Therefore for β ∈ (0, 1) we have

I1,B,i ≤ dεκ · exp

{(
ln

(
κ√
d

(
B(αi + θ)

2
+ ε(B + 2)

))) 2β
β+1

}
;

I2,B,i ≤ exp


(
ln

(
B2 κ√

d(αi + θ)

( κ
√
d(αi + θ)

4
+ 1

)
+B2 + 2

)) 2β
β+1

 +

+ (dεκ − 1) · exp


(
ln

(
B2 κ√

d(αi + θ)

( κ
√
d(αi + θ)

4
+ 1

)
+ ε

κ√
d(B2 + 2)

)) 2β
β+1

 ≤

≤ dεκ · exp


(
ln

(
B2 κ√

d(αi + θ)

( κ
√
d(αi + θ)

4
+ 1

)
+max{1, ε κ√

d} · (B2 + 2)

)) 2β
β+1

 .

Using the notation mB,i(ε) from the statement of the theorem, the following inequality holds true for

ε ∈
(
0,min

{
1
κ√
d

κ
√

min
i≥0

αi + θ, θ

})
:

mB,i(ε) ≤ mB,i

(
min

{
1

κ
√
d

κ
√

min
i≥0

αi + θ, θ

})
.

Finally, in accordance with Theorem 4 and Remark 2, we get the statement of the theorem.
Consider an example to this theorem.

Example 4
Let X = {X(t), t ∈ [0,∞)} be some non-stationary process that belongs to Fψ(Ω) space with the function
ψ(u) = eαu

β

, α > 0, β > 0, and a covariance function of which has the form

R(t, s) =

∞∫
0

f(t, p)f(s, p)dp,

where ∃ ∂f(t,p)
∂t , t ∈ [0,∞), and

∣∣∣∂f(t,p)∂t

∣∣∣ < |ci(p)|
αi+θ

, t ∈ Di, p ∈ [0,∞).
For any t, s ∈ Di, κ ∈ (0, 1] and µ ∈ (min{t, s},max{t, s}) the following inequality holds

E(X(t)−X(s))u =

∞∫
0

|f(t, p)− f(s, p)|udp =

=

∞∫
0

|f(t, p)− f(s, p)|uκ |f(t, p)− f(s, p)|u(1−κ)dp ≤

≤ |t− s|uκ
∞∫
0

|f ′(µ, p)|uκ · (f(t, p)− f(s, p))u(1−κ)dp ≤

≤ |t− s|uκ
∞∫
0

|ci(p)|uκ

(αi + θ)uκ
· (f(t, p)− f(s, p))u(1−κ)dp.
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We use the following inequality. For any a > 0 and b > 0 the following is true:

(a+ b)r ≤ cr(a
r + br),

where

cr =

{
2r−1 for r ≥ 1;

1 for r ∈ [0, 1).

Then we get for t, s ∈ Di:

E(X(t)−X(s))u ≤ cr|t− s|uκ

(αi + θ)uκ

∞∫
0

|ci(p)|uκ ·
(
|f(t, p)|u(1−κ) + |f(s, p)|u(1−κ)

)
dp ≤

≤ 2cr|t− s|uκ

(αi + θ)uκ

∞∫
0

|ci(p)|uκ · sup
t∈Di

|f(t, p)|u(1−κ)dp.

Since in this case r = u(1− κ) ∈ [0, u), then cr ∈ [1, 2u−1), from where

E(X(t)−X(s))u ≤ 2u|t− s|uκ

(αi + θ)uκ

∞∫
0

|ci(p)|uκ · sup
t∈Di

|f(t, p)|u(1−κ)dp.

Therefore

∥X(t)−X(s)∥ψ = sup
u≥1

(E(X(t)−X(s))u)
1/u

ψ(u)
≤

≤ 2|t− s|κ

(αi + θ)κ
· sup
u≥1

(∞∫
0

|ci(p)|uκ · sup
t∈Di

|f(t, p)|u(1−κ)dp

)1/u

ψ(u)
.

Denote

C0 = 2 · sup
u≥1

(∞∫
0

|ci(p)|uκ · sup
t∈Di

|f(t, p)|u(1−κ)dp

)1/u

eαuβ .

Thus, according to Theorem 6, for x ≥ x2, ε ∈

(
0,min

{
1

κ√C0

(
min
i≥0

αi + θ

)1+ 1
κ

, θ

})
, β ∈ (0, 1), B > 1

and under the condition that
∞∑
i=0

1
αi
<∞ the following inequality holds

P

 sup
0<|t−s|≤ε
t,s∈[0,∞)

|X(t)−X(s)|
vB(t, s)

> x

 ≤M(B, ε) · exp

{
− β

α1/β

(
2

β + 1

) β+1
β

(lnx)
β+1
2β

}
·

∞∑
i=0

1

αi + ε
,

where

vB(t, s) =
C0(

min
i≥0

αi + θ

)κ ·mB

(
min

{
1

κ
√
C0

(
min
i≥0

αi + θ

)1+ 1
κ

, θ

})
· |t− s|κ ,
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mB(ε) = (6 + 4
√
2) · exp


ln

 κ
√
C0

B

2
+

ε(B + 2)

min
i≥0

αi + θ


2β

β+1

+

+ (5 + 2
√
6) · exp


ln

B2 κ
√
C0

(
κ
√
C0

4
+ 1

)
+max

1,
ε κ
√
C0

min
i≥0

αi + θ

 · (B2 + 2)


2β

β+1

 .

4. Conclusion

In this article we analyse estimations of distributions of random processes from Fψ(Ω) spaces. Definitions and
some properties of random variables and processes from Fψ(Ω) spaces are given. Estimates for distributions of
Hölder semi-norms of processes from Fψ(Ω) spaces, defined on an infinite interval, are obtained.
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