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Abstract For some practical problems, the exact computation of the function and (sub)gradient values may be difficult. In
this paper, a proximal-projection bundle method for minimizing convex nonsmooth optimization problems with on-demand
accuracy oracles is proposed. Our method essentially generalizes the work of Kiwiel (SIAM J Optim, 17: 1015-1034,
2006) from exact and inexact oracles to various oracles, including exact, inexact, partially inexact, asymptotically exact
and partially asymptotically exact oracles. At each iteration, a proximal subproblem is solved to generate a linear model of
the objective function, and then a projection subproblem is solved to obtain a trial point. Finally, global convergence of the
algorithm is established under different types of inexactness.
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1. Introduction

In this paper, we focus on solving problems of the form

f∗ := min
u∈C

f(u), (1.1)

where C ⊆ Rn is a nonempty closed convex set, and f : Rn → R is a convex function but not necessarily
differentiable.

It is well known that bundle methods are among the most efficient methods for solving nonsmooth optimization
problems. For the case where an exact oracle is available, i.e., there is a subroutine that can exactly (in theory)
evaluate the function value f(u) and one arbitrary subgradient g(u) ∈ ∂f(u) at any point u, bundle methods are
well studied [1, 2]. However, for some practical problems, such as minimax problems, generalized assignment
problems and two-stage stochastic programming problems, etc. (see, e.g. [3, 4]), the exact computation of the
function values and subgradients is difficult. In order to solve such kind of problems, a class of bundle methods
based on inexact oracle information is proposed [4–14]. In particular, Kiwiel [4] proposed a bundle method with
a partially inexact oracle which becomes exact when an objective target level for a descent step is reached, and
applied it to solve generalized assignment problems. Oliveira et al. [5] proposed inexact bundle methods for solving
two-stage stochastic programming. Fábián [6] presented an asymptotically exact level bundle method that extends
the exact version in [15]. Kiwiel [7] proposed a proximal-projection bundle method for constrained problem (1.1),
in which a fixed error tolerance of inexactness is used. At each iteration of the algorithm in [7], two subproblems are
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solved: a proximal subproblem which is used to generate a linear model of the objective function, and a projection
subproblem which is to obtain a trial point.

Recently, a class of so-called bundle methods for oracles with on-demand accuracy has been proposed [3, 8, 16].
Particularly, Oliveira and Sagastizábal [3] developed level bundle methods for oracles with on-demand accuracy
for solving problems of the form (1.1). The accuracy of the oracles is regulated by two parameters: a descent target
and an error bound. If the function estimation reaches the descent target, then the corresponding error is bounded
by the second parameter. The most interesting feature of oracles with on-demand accuracy is that it covers various
of oracles discussed before. Ackooij and Oliveira [8] generalized the on-demand accuracy approach to handle
inequality constrained optimization problems. Wolf et al. [16] presented a computational study for oracles of on-
demand accuracy in solving two-stage stochastic linear programming problems.

In this paper, by combining the on-demand accuracy approach of [3] with the proximal-projection bundle method
of [7], we proposed a proximal-projection bundle method with on-demand accuracy oracles for solving problem
(1.1). Our method essentially generalizes the work of Kiwiel [7] from exact and inexact oracles to various oracles,
including exact, inexact, partially inexact, asymptotically exact and partially asymptotically exact oracles. At each
iteration, a proximal subproblem is solved to generate a linear model of the objective function, and then a projection
subproblem is solved to obtain a trial point. Finally, global convergence of the algorithm is established under
different types of inexactness.

This paper is organized as follows. In section 2, we recall the condition of oracles with on-demand accuracy and
present an example of two-stage stochastic linear programs which satisfies the oracles. In section 3, we present
our proximal-projection bundle method for oracles with on-demand accuracy and show some properties of the
algorithm. In section 4, we establish global convergence of the algorithm under different types of inexactness. The
notations are standard. The Euclidean inner product in Rn is denoted by ⟨x, y⟩ := xT y, and the associated norm
by ∥ · ∥. The subdifferential of f at u ∈ Rn is denoted by ∂f(u) := {g : f(y) ≥ f(u) + ⟨g, y − u⟩, ∀y ∈ Rn}, and
each element g ∈ ∂f(u) is called a subgradient.

2. Preliminaries

The oracle with on-demand accuracy proposed by Oliveira and Sagastizábal [3] is described as follows. For
given u ∈ C, a descent target γu and an error bound εu ≥ 0, the approximate function value fu(≈ f(u)) and the
approximate subgradient gu(≈ g(u)) satisfy the following condition:

fu = f(u)− η(γu) with unknown η(γu) ≥ 0,

gu ∈ ∂η(γu)f(u), and
whenever fu ≤ γu (descent target reached), the relation η(γu) ≤ εu holds.

(2.1)

From the above relations, when the descent target is reached, the exact function value satisfies the following
relation:

f(u) ∈ [fu, fu + εu], whenever fu ≤ γu.

By suitably choosing the parameters γu and εu, the oracle (2.1) covers various oracles:

• Exact Oracle: Set γu = +∞ and εu = 0.
• Partially Inexact Oracle [4]: Set γu < +∞ and εu = 0.
• Inexact Oracle [5, 7, 10–12]: Set γu = +∞ and εu ≡ ε > 0 (possibly unknown).
• Asymptotically Exact Oracle [7, 13, 14]: Set γu = +∞ and εu → 0 along the iterative process.
• Partially Asymptotically Exact Oracle [3]: Set γu < +∞ and εu → 0.

As in [3], an additional assumption is needed: there exists a positive constant η̄ such that η(γu) ≤ η̄, ∀ u ∈ C.
We now provide one example coming from stochastic optimization that is suitable to apply the oracle (2.1).
Example 1 (On-demand accuracy oracles for stochastic programming [3]) Consider two-stage stochastic linear

programming problems [5, 17] with fixed recourse. By discretizing the uncertainty into N scenarios, we obtain the
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form of problem (1.1)
min f(u) = ⟨c, u⟩+

∑N
i=1 piVi(u)

s.t. u ∈ C = {u ∈ Rn
+ : Au = b},

where u is the first-stage decision variable, c ∈ Rn, A ∈ Rm1×n, and b ∈ Rm1 . In addition, the recourse function is

Vi(u) = min
π∈R

n2
+

{⟨q, π⟩ : Wπ = hi − Tiu},

corresponding to the ith scenario (hi, Ti), with probability pi > 0 for hi ∈ Rm2 and Ti ∈ Rm2×n. Here π is the
second-stage decision variable.

The above recourse function can be written as its dual form:

Vi(u) = max
y∈Rm2

⟨hi − Tiu, y⟩ s.t. WT y ≤ q,

where q ∈ Rn2 and W ∈ Rm2×n2 . By solving this linear programming to return a solution with precision up to a
given tolerance, one can establish an inexact oracle in the form (2.1), see [3] for more detailed description.

3. The proximal-projection bundle method for oracles with on-demand accurary

In this section, we present our proximal-projection bundle method for oracles with on-demand accurary to solve
problem (1.1). Firstly, we know that problem (1.1) is equivalent to the unconstrained problem

min fC(u) := f(u) + iC(u), (3.1)

where iC is the indicator function of C, i.e., iC(u) = 0 if u ∈ C; ∞ otherwise. Let k be the current iteration
index, {uj}kj=1 ⊂ C be a sequence of trial points, and the corresponding approximate values fuj/guj be produced
by the oracle (2.1). For simplicity, denote f j

u := fuj , gju := guj , εju := εuj and γj
u := γuj , then the approximate

linearizations of f at uj are given by
fj(·) = f j

u + ⟨gju, · − uj⟩.

In addition, from (2.1) we conclude that

f(·) ≥ f(uj) + ⟨gju, · − uj⟩ − η(γj
u) = f j

u + ⟨gju, · − uj⟩,

f(uj) ∈ [f j
u, f

j
u + εju], whenever f j

u ≤ γj
u. (3.2)

Thus, a simple form of the approximate cutting-planes model of f at the kth iteration can be defined by

f̌k(·) := max
j∈Jk

{f j
u + ⟨gju, · − uj⟩} ≤ f(·), (3.3)

where Jk ⊆ {1, ..., k} is some index set. Note that, in what follows, the choice of the model function f̌k may be
different from the form of (3.3), since a subgradient aggregation strategy is adopted.

Based on the idea of proximal bundle methods (see, e.g. [1]) for solving problem (3.1), one may solve the
following subproblem to obtain a new trial uk+1:

min f̌k(·) + iC(·) +
1

2tk
∥ · −ûk∥2, (3.4)

where tk > 0 is a stepsize that controls the size of ∥uk+1 − ûk∥, and ûk (called stability center) is the “best” point
obtained so far. Usually, ûk = uk(l) for some k(l) ≤ k satisfying f

k(l)
u = min

j=1,··· ,k
f j
u, so from the oracle (2.1) it

naturally follows
f(ûk) ∈ [fk

û , f
k
û + εk(l)u ], whenever fk

û ≤ γk
û. (3.5)
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However, the subproblem (3.4) is usually not easy to solve, so by making use the proximal-projection idea of
Kiwiel [7], we solve two easier subproblems instead. One is an unconstrained proximal subproblem which is used
to generate an aggregate linearization of f̌ , and the other subproblem based on this linearization is solved to produce
a new trial point. The second subproblem is equivalent to projecting a certain point onto the feasible set C, which
can have a closed-form solution if C has some special structure.

Now, we present the details of our algorithm, which is a generalized version of that in [7]. The main difference
lies in Step 6 which incorporates the strategy of the on-demand accuracy oracle (2.1).

Algorithm 3.1

Step 0 (Initialization). Select u1 ∈ C, κ ∈ (0, 1), tmin > 0, a stepsize t1 ≥ tmin. Call the oracle (2.1) at u1 to
compute the corresponding f1

u/g
1
u information. Choose an error bound ε1u ≥ 0 and a descent target γ1

u = +∞.
Set û1 := u1, f1

û := f1
u , f̄0 := f1 = f1

u + ⟨g1u, · − u1⟩, ı̄0C := ⟨p0C , · − u1⟩ with p0C = 0, i1t := 0, l = 1, k(l) = 1 and
k := 1.

Step 1 (Model function). Choose f̌k : Rn → R closed convex and such that

max{f̄k−1, fk} ≤ f̌k ≤ f.

Step 2 (Proximal subproblem). Set

ǔk+1 := argmin

{
ϕk
f (·) := f̌k(·) + ı̄k−1

C (·) + 1

2tk
∥ · −ûk∥2

}
, (3.6)

f̄k(·) := f̌k(ǔ
k+1) + ⟨pkf , · − ǔk+1⟩ with pkf :=

1

tk
(ûk − ǔk+1)− pk−1

C . (3.7)

Step 3 (Projection subproblem). Set

uk+1 := argmin

{
ϕk
C(·) := f̄k(·) + iC(·) +

1

2tk
∥ · −ûk∥2

}
, (3.8)

ı̄kC(·) := ⟨pkC , · − uk+1⟩ with pkC :=
1

tk
(ûk − uk+1)− pkf , (3.9)

vk := fk
û − f̄k(u

k+1), pk :=
1

tk
(ûk − uk+1), and ϵk := vk − tk∥pk∥2. (3.10)

Step 4 (Stopping rule). If max{∥pk∥, ϵk} = 0, stop.
Step 5 (Noise attenuation). If vk < −ϵk, set tk := 10tk, ikt := k, and go back to Step 2.
Step 6 (Calling oracle). Select a new error bound εk+1

u ≥ 0 and a new descent target γk+1
u ∈ R ∪ {+∞}. Call

the oracle (2.1) to obtain fk+1
u and gk+1

u .
Step 7 (Descent test). If

fk+1
u ≤ fk

û − κvk, (3.11)

set ûk+1 := uk+1, fk+1
û := fk+1

u , ik+1
t := 0, k(l + 1) := k + 1, and increase l by 1 (descent step); otherwise, set

ûk+1 := ûk, fk+1
û := fk

û , and ik+1
t := ikt (null step).

Step 8 (Stepsize updating). If k(l + 1) = k + 1, select tk+1 ≥ tk. Otherwise, either set tk+1 := tk or select
tk+1 ∈ [tmin, tk] if ik+1

t = 0.
Step 9 (Loop). Set k := k + 1, and go to Step 1.

Some comments about the algorithm are given below.

Remark 1
(i) The choice of the model function f̌k is very flexible. The simplest choice f̌k = max{f̄k−1, fk} only contains

two linear functions, but for numerical stability, some other linearizations should be included.
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(ii) Solving two subproblems at Steps 2 and 3 can be viewed as the alternating linearization method (e.g. [18])
being applied to problem (3.4).

(iii) Solving subproblem (3.8) is equivalent to projecting the point ûk − tkp
k
f onto the feasible set C.

(iv) Inexactness is discovered via vk < −ϵk at Step 5, and the stepsize tk is increased until vk ≥ −ϵk is generated.
(v) The descent target and the error bound are updated at Step 6, and the detailed rules to ensure convergence of

the algorithm are given in the next section.

Denote the optimality measure
Vk := max{∥pk∥, ϵk + ⟨pk, ûk⟩}. (3.12)

When {ûk} is bounded and ε
k(l)
u is not updated in (3.22) increasing tk drives Vk to 0, one can obtain f(ûk) ≤

f∗ + ε
k(l)
u asymptotically.

The following lemma states some important properties of Algorithm 3.1, in which most of the results are
borrowed from [7], but for completeness, we present the whole proof.

Lemma 3.2
(i) The vectors pkf and pkC defined in (3.7) and (3.9) satisfy

pkf ∈ ∂f̌k(ǔ
k+1) and pkC ∈ ∂iC(u

k+1). (3.13)

The linearizations f̄k, ı̄kC and f̄k
C satisfy the following inequalities

f̄k ≤ f̌k, ı̄kC ≤ iC and f̄k
C := f̄k + ı̄kC ≤ fC . (3.14)

(ii) The aggregate subgradient pk of (3.10) and the above linearization f̄k
C can be expressed as follows

pk = pkf + pkC =
1

tk
(ûk − uk+1),

f̄k
C(·) = f̄k(u

k+1) + ⟨pk, · − uk+1⟩.
(iii) The predicted descent vk and the aggregate linearization error ϵk of (3.10) satisfy

vk = tk∥pk∥2 + ϵk and ϵk = fk
û − f̄k

C(û
k). (3.15)

(iv) The aggregate linearization f̄k
C satisfies

fk
û − ϵk + ⟨pk, · − ûk⟩ = f̄k

C(·) ≤ fC(·). (3.16)

(v) The optimality measure Vk of (3.12) satisfies

Vk ≤ max{∥pk∥, ϵk}(1 + ∥ûk∥) (3.17)

and
fk
û ≤ fC(u) + Vk(1 + ∥u∥), ∀ u. (3.18)

(vi) The following relations hold:

vk ≥ −ϵk ⇔ tk∥pk∥2/2 ≥ −ϵk ⇔ vk ≥ tk∥pk∥2/2, vk ≥ ϵk. (3.19)

Moreover, if fk
û ≤ γk

û, we have −ϵk ≤ ε
k(l)
u and

vk ≥ max

{
tk∥pk∥2

2
, |ϵk|

}
if vk ≥ −ϵk, (3.20)

Vk ≤ max

{(
2vk
tk

)1/2

, vk

}
(1 + ∥ûk∥) if vk ≥ −ϵk, (3.21)

Vk <

(
2ε

k(l)
u

tk

)1/2

(1 + ∥ûk∥) if vk < −ϵk. (3.22)
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Proof
(i) From the optimality condition of (3.6) and the fact that ∇ı̄k−1

C = pk−1
C , we have

0 ∈ ∂ϕk
f (ǔ

k+1) = ∂f̌k(ǔ
k+1) + pk−1

C +
1

tk
(ǔk+1 − ûk) = ∂f̌k(ǔ

k+1)− pkf ,

which implies pkf ∈ ∂f̌k(ǔ
k+1). Furthermore, the relation f̄k 6 f̌k follows from f̄k(ǔ

k+1) = f̌k(ǔ
k+1). Similarly,

from the optimality condition of (3.8), we have pkC ∈ ∂iC(u
k+1) and ı̄kC ≤ iC . Hence, (3.14) holds.

(ii) By (3.9), we obtain

pkf + pkC = pkf +
1

tk
(ûk − uk+1)− pkf =

1

tk
(ûk − uk+1) = pk.

Using the linearity of f̄k
C(·) and (3.7), we derive

f̄k
C(·) = f̄k(·) + ı̄kC(·)

= f̌k(ǔ
k+1) + ⟨pkf , · − ǔk+1⟩+ ⟨pkC , · − uk+1⟩

= f̄k(u
k+1)− ⟨pkf , uk+1 − ǔk+1⟩+ ⟨pkf , · − ǔk+1⟩+ ⟨pkC , · − uk+1⟩

= f̄k(u
k+1) + ⟨pkf , · − uk+1⟩+ ⟨pkC , · − uk+1⟩

= f̄k(u
k+1) + ⟨pk, · − uk+1⟩.

(iii) Combining (3.10) and (ii), we have

ϵk = vk − tk∥pk∥2 = fk
û − f̄k(u

k+1)− tk∥pk∥2

= fk
û − f̄k

C(û
k) + ⟨pk, ûk − uk+1⟩ − tk∥pk∥2

= fk
û − f̄k

C(û
k).

(iv) Since ϵk = υk − tk∥pk∥2 = fk
û − f̄k(u

k+1)− tk∥pk∥2, the aggregate lineaization satisfies

fk
û − ϵk + ⟨pk, · − ûk⟩ = f̄k(u

k+1) + ⟨pk, · − uk+1⟩ = f̄k
C(·) ≤ fC(·).

(v) By the Cauchy-Schwarz inequality and (3.12), we obtain

Vk = max{∥pk∥, ϵk + ⟨pk, ûk⟩} ≤ max{∥pk∥, ϵk + ∥pk∥∥ûk∥}
≤ max{∥pk∥, ϵk}+ ∥pk∥∥ûk∥
≤ max{∥pk∥, ϵk}(1 + ∥ûk∥).

From (3.16), we have fk
û ≤ fC(u) + ϵk − ⟨pk, u− ûk⟩ = fC(u) + ϵk − ⟨pk, u⟩+ ⟨pk, ûk⟩ for all u, and

ϵk − ⟨pk, u⟩+ ⟨pk, ûk⟩ ≤ ∥pk∥∥u∥+ ϵk + ⟨pk, ûk⟩
≤ max{pk, ϵk + ⟨pk, ûk⟩}(1 + ∥u∥)
= Vk(1 + ∥u∥).

Thus fk
û ≤ fC(u) + Vk(1 + ∥u∥) for all u holds.

(vi) From part (iii) above, (3.19) holds immediately. Furthermore, by (3.15), (3.14) and (3.5) with fC(û
k) =

f(ûk) (ûk ∈ C), we conclude that

−ϵk = f̄k
C(û

k)− fk
û ≤ fC(û

k)− fk
û = f(ûk)− fk

û ≤ εk(l)u .

Combining vk ≥ −ϵk, vk ≥ ϵk and vk ≥ tk∥pk∥2/2, we have (3.20). By (3.17), ∥pk∥ ≤ ( 2vk

tk
)
1/2

, and ϵk ≤ vk, we

obtain (3.21). Finally, from the relations ∥pk∥2 < −2ϵk
tk

, and −ϵk ≤ ε
k(l)
u , we obtain (3.22).
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4. Global convergence

In this section, we establish the global convergence of Algorithm 3.1 under different types of oracles. The
oracles depend on two parameters: the error bound εu and the descent target γu. Table 1 provides the choice
of the parameters for various instances described in Section 2, including Exact (Ex), Partially Inexact (PI),
Inexact(IE),Asymptotically Exact (AE) and Partially Asymptotically Exact (PAE) oracles. The constants are
selected as θ, κ ∈ (0, 1), and κϵ ∈ (0, κ).

Table 1. The choices for the error bound and the descent target

Instances εk+1
u γk+1

u

Ex 0 +∞
PI 0 fk

û − θκvk
IE ε > 0 +∞
AE κϵv

k +∞
PAE κϵv

k fk
û − θκvk

Lemma 4.1
The descent target is always reached at the stability centers, i.e., fk

û ≤ γk
û for all k ≥ 1.

Proof
The claim holds obviously for instances Ex, IE and AE, since γk

u = +∞.
Next we analyze instances PI and PAE.
For k = 1, from Step 0 we know that û1 := u1, f1

û := f1
u , and γ1

û := γ1
u = +∞, thus f1

û ≤ γ1
û holds.

For k > 1, since θ ∈ (0, 1), once the descent test (3.11) is satisfied at iteration k − 1, we have

fk
û ≤ fk−1

û − κvk−1 ≤ fk−1
û − θκvk−1 = γk

u = γk
û.

Lemma 4.2
If either Algorithm 3.1 terminates at Step 4 with iteration k, or the number of loops between Steps 2 and 5 is
infinite, then

(i) ûk is an optimal solution to problem (1.1) for instances Ex and PI.
(ii) ûk is ε-optimal, i.e., f(ûk) ≤ f∗ + ε, for instance IE.
(iii) ûk is εk(l)u -optimal, i.e., f(ûk) ≤ f∗ + ε

k(l)
u , for instances AE and PAE.

Proof
For the case where Algorithm 3.1 terminates at Step 4. From (3.17), it follows that Vk = 0. Thus, we have
fk
û ≤ inf fC = f∗ by (3.18). From (3.2), we have (i) f(ûk) = fk

û ≤ f∗ for instances Ex and PI; (ii) f(ûk) ≤ f∗ + ε

for instance IE; (iii) f(ûk) ≤ f∗ + ε
k(l)
u for instances AE and PAE.

For the case where the loop between Steps 2 and 5 is infinite. From Lemma 4.1 and the condition at Step
5, we obtain (3.22), which in turn implies Vk → 0 since tk ↑ ∞. Thus, fk

û ≤ fC(u), ∀u by (3.18), and then
fk
û ≤ infu∈Rn fC(u) = f∗. So from (3.2) again, we can obtain the claims by repeating the lines in first case.

From Lemma 4.2 above, we now assume that Algrorithm 3.1 neither terminates nor loops infinitely between
Steps 2 and 5. As in [7], it is assumed that the model subgradients pkf ∈ ∂f̌k(ǔ

k+1) in (3.13) satisfy that {pkf} is
bounded if {ǔk} is bounded.

The following analysis is divided into two cases: finitely many descent steps and infinitely many descent steps.
We consider the first case, which involves two subcases: t∞ := limk tk = ∞ and t∞ < ∞. We first analyze the
case of t∞ = ∞.
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Lemma 4.3
Suppose that there exists a last descent index k̄ such that only null steps occur for all k ≥ k̄, and t∞ = ∞. Let
K := {k ≥ k̄ : tk+1 > tk}, then Vk

K→ 0 at Step 5.

Proof

For the last time tk increases before Step 5 for k ∈ K, we have Vk < (
2εk̄u
tk

)1/2(1 + ∥ûk̄∥), thus tk → ∞ gives

Vk
K→ 0.

Next, we consider the case where t∞ < ∞.

Lemma 4.4
Suppose that there exists k̄ such that ûk = ûk̄ and tmin ≤ tk+1 ≤ tk for all k ≥ k̄. If the descent criterion (3.11)
fails for all k ≥ k̄, then Vk → 0.

Proof
For k ≥ k̄, combining tk ≥ tmin, ûk = ûk̄ and the proof of [7, Lemma 3.2], we have Vk → 0.

We finish the case of finitely many descent steps. The following lemma comes from [7, Lemma 3.3].

Lemma 4.5
Suppose that there exists k̄ such that only null steps occur for all k ≥ k̄. Let K := {k ≥ k̄ : tk+1 > tk} if tk → ∞;
K := {k : k ≥ k̄} otherwise. Then Vk

K→ 0.

Theorem 4.6
Suppose that finitely many descent steps occur and let ûk̄ be the last stability center. Then ûk̄ is an εk̄u-optimal
solution to problem (1.1).

Proof
We have ûk = ûk̄, fk

û = f k̄
û for all k ≥ k̄. By (3.18) and lemma 4.5, we obtain f(ûk̄) ≤ f∗ + εk̄u. Thus, ûk̄ is an

εk̄u-optimal solution to problem (1.1).

Remark 2
From Table 1, Theorem 4.6 shows that ûk̄ is an optimal solution for instances Ex and PI; an ε-optimal solution for
IE; and an εk̄u-optimal solution for AE and PAE.

We now analyze the case of infinitely many descent steps. The following lemma is borrowed from [7, Lemma
3.4].

Lemma 4.7
Suppose that infinitely many descent steps occur and f∞

û := lim
k

fk
û > −∞. Let K := {k : fk+1

û < fk
û}. Then

vk
K→ 0 and limk∈KVk = 0. Moreover, if {ûk} is bounded, then Vk

K→ 0.

Theorem 4.8
(i) f∗ ≤ limk∈Kf(ûk+1) ≤ limk∈Kf(ûk+1) ≤ f∞

û + ε for instance IE in Table 1.
(ii) f∗ ≤ limk∈Kf(ûk+1) ≤ limk∈Kf(ûk+1) ≤ f∞

û for the remaining instances in Table 1.
(iii) If f∗ > −∞, then limk∈KVk = 0 and fk

û ↓ f∞
û ≤ f∗.

Proof
Since {ûk+1} ⊂ C, we have f∗ := infC f ≤ f(ûk+1), thus

f∗ ≤ lim
k∈K

f(ûk+1) ≤ lim
k∈K

f(ûk+1). (4.1)

(i) For instance IE, we have εk+1
û = ε and fk+1

û ≤ γk+1
û = ∞ for all k ∈ K, thus f(ûk+1) ≤ fk+1

û + ε, ∀k ∈ K
and therefore

lim
k∈K

f(ûk+1) ≤ lim
k∈K

fk+1
û + ε = f∞

û + ε.
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This together with (4.1) shows claim (i).
(ii) We split our analysis for other instances in Table 1:
• Instance Ex has εk+1

û = 0 and fk+1
û ≤ γk+1

û = ∞, then f(ûk+1) = fk+1
û by (3.2). Hence, it follows

lim
k∈K

f(ûk+1) = lim
k∈K

fk+1
û = f∞

û .

• Instance PI has εk+1
û = 0 and γk+1

û = fk
û − θκvk for k ∈ K, then fk+1

û ≤ fk
û − κvk ≤ fk

û − θκvk = γk+1
û , and

f(ûk+1) = fk+1
û by (3.2). Hence

lim
k∈K

f(ûk+1) = lim
k∈K

fk+1
û = f∞

û .

• Instance AE has εk+1
û = κϵvk and fk+1

û ≤ γk+1
û = ∞ for k ∈ K, then

f(ûk+1) ≤ fk+1
û + εk+1

û ≤ fk+1
û + κϵvk,

which together with vk
K→ 0 (Lemma 4.7) gives

lim
k∈K

f(ûk+1) ≤ lim
k∈K

fk+1
û = f∞

û .

• Instance PAE has εk+1
û = κϵvk and γk+1

û = fk
û − θκvk for k ∈ K, then

fk+1
û ≤ fk

û − κvk ≤ fk
û − θκvk = γk+1

û ,

so f(ûk+1) ≤ fk+1
û + κϵvk by (3.2). Similarly, we have vk

K→ 0 by Lemma 4.7, therefore

lim
k∈K

f(ûk+1) ≤ lim
k∈K

fk+1
û = f∞

û .

(iii) If f∗ > −∞, then f∞
û > −∞ by (i) and (ii) above. So by Lemma 4.7, we have limk∈KVk = 0. Passing to

the limit in (3.18), we obtain f∞
û ≤ inf fC = f∗.

5. Conclusions

In this paper, we have presented a proximal-projection bundle method for oracles with on-demand accuracy for
minimizing a convex function over a closed convex set. Our method extends the inexact oracle of [7] to oracles
with on-demand accuracy. By suitably choosing the parameters of the oracle, the descent target is always reached
at the stability centers, which is the key to establish global convergence of the algorithm under different types of
inexactness.
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