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Abstract This paper focuses on the problem of the mean square optimal estimation of linear functionals which depend
on the unknown values of a multidimensional stationary stochastic sequence. Estimates are based on observations of the
sequence with an additive stationary noise sequence. The aim of the paper is to develop methods of finding the optimal
estimates of the functionals in the case of missing observations. The problem is investigated in the case of spectral certainty
where the spectral densities of the sequences are exactly known. Formulas for calculating the mean-square errors and the
spectral characteristics of the optimal linear estimates of functionals are derived under the condition of spectral certainty.
The minimax (robust) method of estimation is applied in the case of spectral uncertainty, where spectral densities of the
sequences are not known exactly while sets of admissible spectral densities are given. Formulas that determine the least
favorable spectral densities and the minimax spectral characteristics of the optimal estimates of functionals are proposed for
some special sets of admissible densities.
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1. Introduction

The problem of estimation of the unknown values of stochastic processes is of constant interest in the theory and
applications of stochastic processes. The formulation of the estimation problems (interpolation, extrapolation and
filtering) for stationary stochastic sequences with known spectral densities and reducing these problems to the
corresponding problems of the theory of functions belongs to Kolmogorov [17]. Effective methods of solution
of the estimation problems for stationary stochastic sequences and processes were developed by Wiener [39] and
Yaglom [40, 41]. Further results are described in the books by Rozanov [36], Hannan [12], Box et. al [3], Brockwell
and Davis [4]. The crucial assumption of most of the methods developed for estimating of the unobserved values
of stochastic processes is that the spectral densities of the involved stochastic processes are exactly known. In
practice, however, complete information on the spectral densities is impossible in most cases. In this situation
one finds parametric or nonparametric estimates of the unknown spectral densities and then apply one of the
traditional estimation methods provided that the selected spectral densities are true. This procedure can result in
significant increasing of the value of the error of estimate as Vastola and Poor [38] have demonstrated with the
help of some examples. To avoid this effect one can search estimates which are optimal for all densities from a
certain given class of admissible spectral densities. These estimates are called minimax since they minimize the
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maximum value of the error of estimates. The paper by Grenander [11] was the first one where this approach to
extrapolation problem for stationary processes was proposed. Several models of spectral uncertainty and minimax-
robust methods of data processing can be found in the survey paper by Kassam and Poor [16]. Franke [7, 8],
Franke and Poor [9] investigated the minimax extrapolation and filtering problems for stationary sequences with
the help of convex optimization methods. This approach makes it possible to find equations that determine the
least favorable spectral densities for some classes of admissible densities. In the papers by Moklyachuk [22, 23]
results of investigation of the extrapolation, interpolation and filtering problems for functionals which depend on
the unknown values of stationary processes and sequences are described. The problem of estimation of functionals
which depend on the unknown values of multivariate stationary stochastic processes is the aim of the papers by
Moklyachuk and Masyutka [25] - [27]. In the book by Moklyachuk and Golichenko [24] results of investigation of
the interpolation, extrapolation and filtering problems for periodically correlated stochastic sequences are proposed.
In their papers Luz and Moklyachuk [18] - [20] deal with the problems of estimation of functionals which depend
on the unknown values of stochastic sequences with stationary increments. Prediction problem for stationary
sequences with missing observations is investigated in papers by Bondon [1, 2], Cheng, Miamee and Pourahmadi
[5], Cheng and Pourahmadi [6], Kasahara, Pourahmadi and Inoue [15], Pourahmadi, Inoue and Kasahara [33],
Pelagatti [32]. In papers by Moklyachuk and Sidei [28] - [31] an approach is developed to investigation of the
interpolation, extrapolation and filtering problems for stationary stochastic sequences with missing observations.

In this paper we present results of investigation of the problem of the mean-square optimal estimation of the
linear functional

Aξ⃗ =

∞∑
j=0

a⃗(j)⊤ξ⃗(j)

which depends on the unknown values of a multivariate stationary stochastic sequence {ξ⃗(j), j ∈ Z}. Estimates are
based on observations of the sequence with an additive stationary stochastic noise sequence {ξ⃗(j) + η⃗(j)} at points

j ∈ Z−\S = {. . . ,−2,−1}\S, where S =
s∪

l=1

{−Ml −Nl,−Ml −Nl + 1, . . . ,−Ml}. The problem is investigated

in the case of spectral certainty, where the spectral densities of the signal and the noise sequences {ξ⃗(j), j ∈ Z}
and {η⃗(j), j ∈ Z} are exactly known, and in the case of spectral uncertainty, where the spectral densities of the
sequences are not exactly known while a set of admissible spectral densities is given. We first propose results of
investigation of the mean-square optimal linear estimate of the linear functional in the case of spectral certainty.
To find the optimal solution of the estimation problem in this case we apply an approach based on the Hilbert
space projection method proposed by Kolmogorov [17] and developed in the papers by Moklyachuk [22, 23],
and Moklyachuk and Masytka [25] - [27]. We derive formulas for calculation the spectral characteristic and the
mean-square error of the optimal estimate of the functional. Next, in the case of spectral uncertainty, where the full
information on spectral densities is impossible, while it is known that spectral densities of the sequences belong to
some specified classes of admissible densities, the minimax-robust method of estimation is applied. This method
gives us a procedure of finding estimates which minimize the maximum values of the mean-square errors of the
estimates for all spectral densities from a given class of admissible spectral densities. Formulas that determine the
least favorable spectral densities and the minimax-robust spectral characteristics of the optimal estimates of the
functional are proposed for some specific classes of admissible spectral densities.

2. Hilbert space projection method of extrapolation of stationary sequences with missing observations

Let ξ⃗(j) = {ξk(j)}Tk=1 , j ∈ Z and η⃗(j) = {ηk(j)}Tk=1 , j ∈ Z, be multidimensional stationary stochastic
sequences with zero mean values: Eξ⃗(j) = 0⃗, Eη⃗(j) = 0⃗ and correlation functions which admit the spectral
decomposition (see Gikhman and Skorokhod [10])

Rξ(n) = Eξ⃗(j + n)(ξ⃗(j))∗ =
1

2π

π∫
−π

einλF (λ)dλ, Rξη(n) = Eξ⃗(j + n)(η⃗(j))∗ =
1

2π

π∫
−π

einλFξη(λ)dλ,
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Rηξ(n) = Eη⃗(j + n)(ξ⃗(j))∗ =
1

2π

π∫
−π

einλFηξ(λ)dλ, Rη(n) = Eη⃗(j + n)(η⃗(j))∗ =
1

2π

π∫
−π

einλG(λ)dλ,

where F (λ) = {fkl(λ)}Tk,l=1, Fξη(λ) =
{
fξηkl (λ)

}T

k,l=1
, Fηξ(λ) =

{
fηξkl (λ)

}T

k,l=1
, G(λ) = {gkl(λ)}Tk,l=1 are

spectral densities of the stationary sequences such that the minimality condition holds true

π∫
−π

Tr (F (λ) + Fξη(λ) + Fηξ(λ) +G(λ))
−1
dλ <∞. (1)

Under this condition the mean-square error of the optimal estimate of the functional is nonzero (see Rozanov [36]).
The stationary sequences ξ⃗(j) and η⃗(j) admit the spectral decompositions (see Gikhman and Skorokhod [10],

Karhunen [14])

ξ⃗(j) =

π∫
−π

eijλZξ(dλ), η⃗(j) =

π∫
−π

eijλZη(dλ), (2)

where Zξ(dλ) and Zη(dλ) are orthogonal stochastic measures such that the following relations hold true

EZξ(∆1)(Zξ(∆2))
∗ =

1

2π

∫
∆1∩∆2

F (λ)dλ, EZξ(∆1)(Zη(∆2))
∗ =

1

2π

∫
∆1∩∆2

Fξη(λ)dλ,

EZη(∆1)(Zξ(∆2))
∗ =

1

2π

∫
∆1∩∆2

Fηξ(λ)dλ, EZη(∆1)(Zη(∆2))
∗ =

1

2π

∫
∆1∩∆2

G(λ)dλ.

Consider the problem of the mean-square optimal linear estimation of the functional

Aξ⃗ =

∞∑
j=0

a⃗(j)⊤ξ⃗(j)

which depends on the unknown values of the sequence {ξ⃗(j), j ∈ Z} from observations of the sequence ξ⃗(j) + η⃗(j)

at points j ∈ Z−\S, where S =
s∪

l=1

{−Ml −Nl, . . . ,−Ml}.

Making use of the spectral decomposition (2) of the sequence ξ⃗(j) we can represent the functional Aξ⃗ in the
form

Aξ⃗ =

π∫
−π

(A(eiλ))⊤Zξ(dλ), A(eiλ) =

∞∑
j=0

a⃗(j)eijλ.

We will suppose that the coefficients {a⃗(j), j = 0, 1, . . .} which determine the functional Aξ⃗ are such that the
following condition

∞∑
j=0

T∑
k=1

|ak(j)| <∞ (3)

is satisfied. This condition ensures that the functional Aξ⃗ has a finite second moment.
Denote by Âξ⃗ the optimal linear estimate of the functional Aξ⃗ from the known observations of the sequence

ξ⃗(j) + η⃗(j) at points j ∈ Z−\S. Since the spectral densities of the stationary sequences ξ⃗(j) and η⃗(j) are suppose
to be known, we can use the Hilbert space projection method proposed by Kolmogorov (see selected works of
Kolmogorov [17]) to find the estimate Âξ⃗.

Consider values ξk(j), k = 1, . . . , T , j ∈ Z, and ηk(j), k = 1, . . . , T , j ∈ Z, of the sequences as elements of the
Hilbert space H = L2(Ω,F , P ) generated by random variables ξ with zero mathematical expectations, Eξ = 0,
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finite variations,E|ξ|2 <∞, and the inner product (ξ, η) = E(ξη). Denote byHs(ξ + η) the closed linear subspace
generated by elements {ξk(j) + ηk(j) : j ∈ Z−\S, k = 1, T} in the Hilbert space H = L2(Ω,F , P ). Denote by
L2(F +G) the Hilbert space of vector-valued functions a⃗(λ) = {ak(λ)}Tk=1 such that∫ π

−π

a⃗(λ)⊤ (F (λ) + Fξη(λ) + Fηξ(λ) +G(λ)) a⃗(λ)dλ <∞.

Denote by Ls
2(F +G) the subspace of L2(F +G) generated by functions of the form

einλδk, δk = {δkl}Tl=1 , k = 1, . . . , T , n ∈ Z−\S.

The mean-square optimal linear estimate Âξ⃗ of the functional Aξ⃗ from observations of the sequence ξ⃗(j) + η⃗(j)
is of the form

Âξ⃗ =

π∫
−π

(h(eiλ))⊤(Zξ(dλ) + Zη(dλ)), (4)

where h(eiλ) =
{
hk(e

iλ)
}T
k=1

∈ Ls
2(F +G) is the spectral characteristic of the estimate.

The mean-square error of the estimate Âξ⃗ is given by the formula

∆(h;F,G) = E
∣∣∣Aξ⃗ − Âξ⃗

∣∣∣2 =

=
1

2π

π∫
−π

(
A(eiλ)− h(eiλ)

)⊤
F (λ)(A(eiλ)− h(eiλ))dλ+

1

2π

π∫
−π

(
h(eiλ)

)⊤
G(λ)(h(eiλ))dλ−

− 1

2π

π∫
−π

(
A(eiλ)− h(eiλ)

)⊤
Fξη(λ)h(eiλ)dλ− 1

2π

π∫
−π

(
h(eiλ)

)⊤
Fηξ(λ)(A(eiλ)− h(eiλ))dλ (5)

According to the Hilbert space orthogonal projection method the optimal linear estimate of the functional Aξ⃗
is a projection of the element Aξ⃗ of the space H on the subspace Hs(ξ + η). The projection is determined by the
following conditions:

1) Âξ⃗ ∈ Hs(ξ + η),

2) Aξ⃗ − Âξ⃗⊥Hs(ξ + η).

It follows from the second condition that the spectral characteristic h(eiλ) =
{
hk(e

iλ)
}T
k=1

of the optimal linear
estimate Âξ⃗ for any j ∈ Z−\S satisfies equations

1

2π

π∫
−π

(
A(eiλ)− h(eiλ)

)⊤
F (λ)e−ijλdλ− 1

2π

π∫
−π

(h(eiλ))⊤Fηξ(λ)e
−ijλdλ+

+
1

2π

π∫
−π

(
A(eiλ)− h(eiλ)

)⊤
Fξη(λ)e

−ijλdλ− 1

2π

π∫
−π

(h(eiλ))⊤G(λ)e−ijλdλ = 0⃗.

The last relation can be written in the form

1

2π

π∫
−π

[
(A(eiλ))⊤(F (λ) + Fξη(λ))− (h(eiλ))⊤(F (λ) + Fξη(λ) + Fηξ(λ) +G(λ))

]
e−ijλdλ = 0⃗, j ∈ Z−\S.
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Hence the function
[
(A(eiλ))⊤(F (λ) + Fξη(λ))− (h(eiλ))⊤(F (λ) + Fξη(λ) + Fηξ(λ) +G(λ))

]
is of the form

(A(eiλ))⊤(F (λ) + Fξη(λ))− (h(eiλ))⊤(F (λ) + Fξη(λ) + Fηξ(λ) +G(λ)) = (C(eiλ))⊤,

C(eiλ) =
∑
j∈U

c⃗(j)eijλ,

where U = S ∪ {0, 1, . . .}, and c⃗(j), j ∈ U are the unknown coefficients to be determined.
From the last relation we deduce that the spectral characteristic of the optimal linear estimate Âξ⃗ is of the form

(h(eiλ))⊤ = (A(eiλ))⊤(F (λ) + Fξη(λ))(Fζ(λ))
−1 − (C(eiλ))⊤(Fζ(λ))

−1, (6)

where Fζ(λ) = F (λ) + Fξη(λ) + Fηξ(λ) +G(λ).

From the first condition, Âξ⃗ ∈ Hs(ξ + η), which determines the optimal estimate of the functionalAξ⃗, it follows
that

1

2π

π∫
−π

h(eiλ)e−ijλdλ = 0⃗, j ∈ U,

namely

1

2π

π∫
−π

(
(A(eiλ))⊤(F (λ) + Fξη(λ))(Fζ(λ))

−1 − (C(eiλ))⊤(Fζ(λ))
−1
)
e−ijλdλ = 0⃗, j ∈ U.

Disclose brackets and write the last equation in the form

∞∑
k=0

(⃗a(k))⊤
1

2π

π∫
−π

(F (λ) + Fξη(λ))(Fζ(λ))
−1ei(k−j)λdλ−

∑
l∈U

(c⃗(l))⊤
1

2π

π∫
−π

(Fζ(λ))
−1ei(l−j)λdλ = 0⃗. (7)

Let us introduce the Fourier coefficients of the functions

B(k − j) =
1

2π

π∫
−π

(Fζ(λ))
−1e−i(k−j)λdλ;

R(k − j) =
1

2π

π∫
−π

(F (λ) + Fξη(λ))(Fζ(λ))
−1e−i(k−j)λdλ;

Q(k − j) =
1

2π

π∫
−π

F (λ)(Fζ(λ))
−1G(λ)− Fξη(λ)(Fζ(λ))

−1Fηξ(λ)e
−i(k−j)λdλ.

(8)

Denote by a⃗⊤ = (0, 0, . . . , 0, a⃗⊤) a vector that has first T · |S| = T ·
s∑

k=1

(Nk + 1) zero components, and the last

component a⃗⊤ = (⃗a(0)⊤, a⃗(1)⊤ . . .) is constructed of coefficients which define the functional Aξ⃗.
Now we can represent relation (7) in the form

Ra⃗ = Bc⃗, (9)
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where c⃗ is the vector constructed of the unknown coefficients c⃗(k), k ∈ U . The linear operator B in the space ℓ2 is
defined by the matrix

B =


Bs,s Bs,s−1 . . . Bs,1 Bs,n

Bs−1,s Bs−1,s−1 . . . Bs−1,1 Bs−1,n

...
...

. . .
...

...
B1,s B1,s−1 . . . B1,1 B1,n

Bn,s Bn,s−1 . . . Bn,1 Bn,n

 ,

where elements in the last column and the last row are compound matrices constructed with the help of the block-
matrices

Bl,n(k, j) = B(k − j), l = 1, 2, . . . , s; k = −Ml −Nl, . . . ,−Ml; j = 0, 1, 2, . . . ,

Bn,m(k, j) = B(k − j), m = 1, 2, . . . , s; k = 0, 1, 2, . . . ; j = −Mm −Nm, . . . ,−Mm,

Bn,n(k, j) = B(k − j), k, j = 0, 1, 2, . . . ,

and other elements of matrix B are compound matrices constructed with the help of the block-matrices

Bl,m(j, k) = B(k − j), l,m = 1, 2, . . . , s; k = −Ml −Nl, . . . ,−Ml; j = −Mm −Nm, . . . ,−Mm.

The linear operator R in the space ℓ2 is defined by the corresponding matrix in the same manner.
The unknown coefficients c⃗(k), k ∈ U , which are determined by equation (9) can be calculated by the formula

c⃗(k) = (B−1Ra⃗)(k),

where (B−1Ra⃗)(k) is the k-th component of the vector B−1Ra⃗. We will suppose that the operator B is invertible
(see paper by Salehi [37] for more details).

Hence the spectral characteristic h(eiλ) of the estimate Âξ⃗ can be calculated by the formula

(h(eiλ))⊤ = (A(eiλ))⊤(F (λ) + Fξη(λ))(Fζ(λ))
−1 −

(∑
k∈T

(B−1Ra⃗)(k)eikλ

)⊤

(Fζ(λ))
−1. (10)

The mean-square error of the estimate Âξ can be calculated by the formula (5) which can be represented in the
form

∆(h;F,G, Fξη, Fηξ) = E
∣∣∣Aξ⃗ − Âξ⃗

∣∣∣2 =

=
1

2π

π∫
−π

(a(λ))⊤F (λ)a(λ)dλ+
1

2π

π∫
−π

(b(λ))⊤G(λ)b(λdλ−

− 1

2π

π∫
−π

(a(λ))⊤Fξη(λ)b(λdλ− 1

2π

π∫
−π

(b(λ))⊤Fηξ(λ)a(λ)dλ =

=
1

2π

π∫
−π

(A(eiλ))⊤(F (λ)G(λ)− Fξη(λ)Fηξ(λ))(Fζ(λ))
−1A(eiλ)dλ+

1

2π

π∫
−π

(C(eiλ))⊤(Fζ(λ))
−1C(eiλ)dλ =

= ⟨Ra⃗,B−1Ra⃗⟩+ ⟨Qa⃗, a⃗⟩, (11)

where
(a(λ))⊤ = (A(eiλ))⊤(Fηξ(λ) +G(λ))(Fζ(λ))

−1 + (C(eiλ))⊤(Fζ(λ))
−1,

(b(λ))⊤ = (A(eiλ))⊤(F (λ) + Fξη(λ))(Fζ(λ))
−1 − (C(eiλ))⊤(Fζ(λ))

−1,
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and ⟨a, c⟩ =
∑
k

akck is the inner product in the space ℓ2.

The linear operator Q in the space ℓ2 is defined by the corresponding matrix in the same manner as operator B
is defined.

Thus we obtain the following theorem.

Theorem 2.1
Let {ξ⃗(j), j ∈ Z} and {η⃗(j), j ∈ Z} be multidimensional stationary stochastic sequences with the spectral density
matrices F (λ), Fξη(λ), Fηξ(λ), G(λ) and let the minimality condition (1) be satisfied. Suppose that condition
(3) is satisfied and the operator B is invertible. The spectral characteristic h(eiλ) and the mean-square error
∆(h;F,G, Fξη, Fηξ) of the optimal linear estimate of the functional Aξ⃗ which depends on the unknown values
of the sequence ξ⃗(j) based on observations of the sequence ξ⃗(j) + η⃗(j) at points j ∈ Z−\S can be calculated by
formulas (10), (11).

The corresponding results can be obtained for the uncorrelated sequences {ξ⃗(j), j ∈ Z} and {η⃗(j), j ∈ Z}. In
this case the spectral densities Fξη(λ) = 0, Fηξ(λ) = 0 and we get the following corollary.

Corollary 2.1
Let {ξ⃗(j), j ∈ Z} and {η⃗(j), j ∈ Z} be uncorrelated multidimensional stationary stochastic sequences with spectral
densities F (λ) and G(λ) which satisfy the minimality condition

π∫
−π

Tr (F (λ) +G(λ))−1dλ <∞. (12)

Suppose that condition (3) is satisfied and the operator B is invertible. The spectral characteristic h(eiλ) and
the mean-square error ∆(F,G) of the optimal linear estimate of the functional Aξ⃗ which depends on the unknown
values of the sequence ξ⃗(j) based on observations of the sequence ξ⃗(j) + η⃗(j) at points j ∈ Z−\S can be calculated
by the formulas

(h(eiλ))⊤ = (A(eiλ))⊤F (λ)(F (λ) +G(λ))−1 −

(∑
k∈U

(B−1Ra⃗)(k)eikλ

)⊤

(F (λ) +G(λ))−1, (13)

∆(h;F,G) = E
∣∣∣Aξ⃗ − Âξ⃗

∣∣∣2 =
1

2π

π∫
−π

(rG(λ))
⊤F (λ)rG(λ)dλ+

1

2π

π∫
−π

(rF (λ))
⊤G(λ)rF (λ)dλ =

= ⟨Ra⃗,B−1Ra⃗⟩+ ⟨Qa⃗, a⃗⟩, (14)

where

(rF (λ))
⊤ =

(A(eiλ))⊤F (λ)−

(∑
k∈U

(B−1Ra⃗)(k)eikλ

)⊤
 (F (λ) +G(λ))−1,

(rG(λ))
⊤ =

(A(eiλ))⊤G(λ) +

(∑
k∈U

(B−1Ra⃗)(k)eikλ

)⊤
 (F (λ) +G(λ))−1,

and B,R,Q are linear operators in the space ℓ2 that are determined by compound matrices constructed of the block-
matrices B(k − j), R(k − j), Q(k − j) respectively which are defined by the Fourier coefficients of the functions
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B(k − j) =
1

2π

π∫
−π

(F (λ) +G(λ))−1e−i(k−j)λdλ;

R(k − j) =
1

2π

π∫
−π

F (λ)(F (λ) +G(λ))−1e−i(k−j)λdλ;

Q(k − j) =
1

2π

π∫
−π

F (λ)(F (λ) +G(λ))−1G(λ)e−i(k−j)λdλ.

(15)

Consider the estimation problem in the case where the stationary sequence {ξ⃗(j), j ∈ Z} is observed without
noise. Since in this case G(λ) = 0, the spectral characteristic of the estimate Âξ⃗ is of the form

(h(eiλ))⊤ = (A(eiλ))⊤ − (C(eiλ))⊤(F (λ))−1, C(eiλ) =
∑
j∈U

c⃗(j)eijλ, (16)

and the system of equations (9) can be represented in the form

a⃗ = Bc⃗, (17)

where B is the linear operator in the space ℓ2 which is constructed with the help of the Fourier coefficients of the
function (F (λ))−1 and is of the similar form as operators defined before.

Hence, the unknown coefficients c⃗(j), j ∈ U, can be calculated by the formula

c⃗(j) =
(
B−1a⃗

)
(j),

where
(
B−1a⃗

)
(j) is the j-th component of the vector B−1a⃗, and the spectral characteristic of the estimate Âξ⃗ is

determined by the formula

(h(eiλ)⊤ =

( ∞∑
j=0

a⃗(j)eijλ

)⊤

−

(∑
j∈U

(
B−1a⃗

)
(j)eijλ

)⊤

(F (λ))−1. (18)

The mean-square error of the estimate Âξ⃗ is determined by the formula

∆(h;F ) = ⟨B−1a⃗, a⃗⟩. (19)

Let us summarize the obtained result in the form of a corollary.

Corollary 2.2
Let {ξ⃗(j), j ∈ Z} be a multidimensional stationary stochastic sequence with the spectral density F (λ) which satisfy
the minimality condition

π∫
−π

Tr (F (λ))−1dλ <∞. (20)

Suppose that condition (3) is satisfied and the operator B is invertible. The spectral characteristic h(eiλ) and the
mean-square error ∆(h, F ) of the optimal linear estimate Âξ⃗ of the functionalAξ⃗ from observations of the sequence

ξ⃗(j) at points j ∈ Z−\S, where S =
s∪

l=1

{−Ml −Nl, . . . ,−Ml}, can be calculated by formulas (18), (19).
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Let ξ⃗(j) and η⃗(j) be uncorrelated stationary sequences. Consider the problem of the mean-square optimal linear
extrapolation of the functional

AN ξ⃗ =

N∑
j=0

a⃗(j)⊤ξ⃗(j)

which depends on unknown values of the sequence ξ⃗(j) from observations of the sequence ξ⃗(j) + η⃗(j) at points

j ∈ Z−\S, where S =
s∪

l=1

{−Ml −Nl,−Ml −Nl + 1, . . . , −Ml}. In order to find the spectral characteristic

hN (eiλ) of the estimate

ÂN ξ⃗ =

π∫
−π

(hN (eiλ))⊤(Zξ(dλ) + Zη(dλ))

and the mean-square error ∆(hN ;F,G) of the estimate of the functional AN ξ⃗, we define the vector a⃗⊤N =

(0, 0, . . . , 0, a⃗⊤N ) which has first T · |S| = T ·
s∑

k=1

(Nk + 1) zero components and the last component is a⃗⊤N =

(⃗a(0)⊤, a⃗(1)⊤, . . . , a⃗(N)⊤, 0, 0, . . .).
Consider the linear operator RN in the space ℓ2 which is defined as follows: RN (k, j) = R(k, j), j ≤ N ,

RN (k, j) = 0, j > N .
Thus the spectral characteristic of the optimal estimation ÂNξ can be calculated by the formula

(hN (eiλ))⊤ = (AN (eiλ))⊤F (λ)(F (λ) +G(λ))−1 −

(∑
k∈U

(B−1RN a⃗N )(k)eikλ

)⊤

(F (λ) +G(λ))−1. (21)

The mean-square error of the estimate ÂN ξ⃗ is defined by the formula

∆(hN ;F,G) = E
∣∣∣AN ξ⃗ − ÂN ξ⃗

∣∣∣2 =
1

2π

π∫
−π

(rNG (λ))⊤F (λ)rNG (λ)dλ+
1

2π

π∫
−π

(rNF (λ))⊤G(λ)rNF (λ)dλ =

= ⟨RN a⃗NB−1RN a⃗N ⟩+ ⟨QN a⃗N , a⃗N ⟩, (22)

where

(rNF (λ))⊤ =

(AN (eiλ))⊤F (λ)−

(∑
k∈U

(B−1RN a⃗N )(k)eikλ

)⊤
 (F (λ) +G(λ))−1,

(rNG (λ))⊤ =

(AN (eiλ))⊤G(λ) +

(∑
k∈U

(B−1RN a⃗N )(k)eikλ

)⊤
 (F (λ) +G(λ))−1,

and QN is the linear operator in the space ℓ2, QN (k, j) = Q(k, j), k, j ≤ N , QN (k, j) = 0 if k > N or j > N .
Note, that linear operators B, R, Q are defined in Corollary 2.1.

Corollary 2.3
Let {ξ⃗(j), j ∈ Z} and {η⃗(j), j ∈ Z} be uncorrelated multidimensional stationary stochastic sequences with spectral
densities F (λ) and G(λ) which satisfy the minimality condition (1). Suppose that the operator B is invertible.
The spectral characteristic hN (eiλ) and the mean-square error ∆(hN ;F,G) of the optimal linear estimate of the
functional AN ξ⃗ which depends on unknown values of the sequence ξ⃗(j) based on observations of the sequence
ξ⃗(j) + η⃗(j), j ∈ Z−\S can be calculated by formulas (21), (22).

In the case where the sequence {ξ⃗(j), j ∈ Z} is observed without noise we have the following corollary.
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Corollary 2.4
Let {ξ⃗(j), j ∈ Z} be a multidimensional stationary stochastic sequence with the spectral density F (λ) which satisfy
the minimality condition (20). Suppose that the operator B is invertible. The spectral characteristic hN (eiλ) and
the mean-square error ∆(hN , F ) of the optimal linear estimate ÂN ξ⃗ of the functional AN ξ⃗ can be calculated by
the formulas (23), (24)

(hN (eiλ))⊤ =

(
N∑
j=0

a⃗(j)eijλ

)⊤

−

(∑
j∈U

(
B−1a⃗N

)
(j)eijλ

)⊤

(F (λ))−1, (23)

∆(hN ;F ) = ⟨B−1a⃗N , a⃗N ⟩. (24)

The linear operator B is defined in Corollary 2.1.

In order to demonstrate the developed techniques we propose the following example.

Example 2.1
Consider the problem of the optimal linear estimation of the functional

A1ξ⃗ = a⃗(0)⊤ξ⃗(0) + a⃗(1)⊤ξ⃗(1)

which depends on the unknown values of a stationary sequence ξ⃗(j) = {ξk(j)}2k=1 from observations of the
sequence ξ⃗(j) at points j ∈ Z−\S, where S = {−3,−2}, a⃗(0) = (1, 1)⊤, a⃗(1) = (1, 1)⊤. Let ξ1(n) = ξ(n) be
a stationary stochastic sequence with the spectral density f(λ), and let ξ2(n) = ξ(n) + η(n), where η(n) is an
uncorrelated with ξ(n) stationary stochastic sequence with the spectral density g(λ). In this case the matrix of
spectral densities is of the form

F (λ) =

(
f(λ) f(λ)
f(λ) f(λ) + g(λ)

)
,

and the inverse matrix is as follows

(F (λ))−1 =

( 1
f(λ) +

1
g(λ)

−1
g(λ)

−1
g(λ)

1
g(λ)

)
.

Let
f(λ) =

1

|1− b1eiλ|2
, g(λ) =

1

|1− b2eiλ|2
, b1, b2 ∈ R.

In this case the inverse matrix is of the form

(F (λ))−1 =

( ∣∣1− b1e
iλ
∣∣2 + ∣∣1− b2e

iλ
∣∣2 −

∣∣1− b2e
iλ
∣∣2

−
∣∣1− b2e

iλ
∣∣2 ∣∣1− b2e

iλ
∣∣2

)
= B(−1)e−iλ +B(0) +B(1)eiλ,

where

B(0) =

(
2 + b21 + b22 −1− b22
−1− b22 1 + b22

)
, B(1) = B(−1) =

(
−b1 − b2 b2

b2 −b2

)
,

are the Fourier coefficients of the function (F (λ))−1.
According to the Corollary 2.4 the spectral characteristic of the optimal estimate Â1ξ⃗ of the functional A1ξ⃗ is

calculated by the formula

(h1(e
iλ))⊤ =

(
a⃗(0) + a⃗(1)eiλ

)⊤ −

(∑
j∈U

(
B−1a⃗1

)
(j)eijλ

)⊤ (
B(−1)e−iλ +B(0) +B(1)eiλ

)
,

where vector a⃗⊤1 = (0, 0, 0, 0, a⃗(0)⊤, a⃗(1)⊤, 0, 0, . . .).
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To find the unknown coefficients c⃗(j) =
(
B−1a⃗1

)
(j), j ∈ U = S ∪ {0, 1, 2, . . .}, we use equation (17), where

c⃗⊤ = (c⃗(−3)⊤, c⃗(−2)⊤, c⃗(0)⊤, c⃗(1)⊤, c⃗(2)⊤, c⃗(3)⊤, . . .). The operator B is defined by the matrix

B =



B(0) B(−1) 0 0 0 0 0 . . .
B(1) B(0) 0 0 0 0 0 . . .
0 0 B(0) B(−1) 0 0 0 . . .
0 0 B(1) B(0) B(−1) 0 0 . . .
0 0 0 B(1) B(0) B(−1) 0 . . .
0 0 0 0 B(1) B(0) B(−1) . . .
0 0 0 0 0 B(1) B(0) . . .
. . .


.

We have to find the inverse matrix B−1 which defines the inverse operator B−1. We first represent the matrix B
in the form

B =

(
B00 0
0 B11

)
,

where

B00 =

(
B(0) B(−1)
B(1) B(0)

)
,

B11 =


B(0) B(−1) 0 0 0 . . .
B(1) B(0) B(−1) 0 0 . . .
0 B(1) B(0) B(−1) 0 . . .
0 0 B(1) B(0) B(−1) . . .
0 0 0 B(1) B(0) . . .
. . .

 .

Making use of the indicated representation we may conclude that the matrix B−1 can be represented in the form

B−1 =

(
B−1

00 0
0 B−1

11

)
,

where B−1
00 , B−1

11 are inverse matrices to the matrices B00, B11 respectively. The matrix B−1
00 can be found in the

form

B−1
00 =


1+b21
A

1+b21
A

b1
A

b1
A

1+b21
A

1+b21
A +

1+b22
B

b1
A

b1
A + b2

B
b1
A

b1
A

1+b21
A

1+b21
A

b1
A

b1
A + b2

B
1+b21
A

1+b21
A +

1+b22
B

 ,

where A = 1 + b21 + b41, B = 1 + b22 + b42. In order to find the matrix (B11)
−1 we use the following method. The

matrix B11 is constructed with the help of the Fourier coefficients of the function (F (λ))−1

B11(k, j) = B(k − j), k, j = 0, 1, 2, . . . .

The density (F (λ))−1 admits the factorization

(F (λ))−1 =

∞∑
p=−∞

B(p)eipλ =

( ∞∑
j=0

ψ(j)e−ijλ

)
·

( ∞∑
j=0

ψ(j)e−ijλ

)∗

=

=

( ∞∑
j=0

θ(j)e−ijλ

)∗

·

( ∞∑
j=0

θ(j)e−ijλ

)
,
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where

ψ(0) =

(
1 1
0 −1

)
, ψ(1) =

(
−b1 −b2
0 b2

)
, ψ(j) = 0, j > 1, θ(j) =

(
bj1 bj1
0 −bj2

)
, j ≥ 0.

Hence B(p) =
∞∑
k=0

ψ(k)(ψ(k + p))∗, p ≥ 0, and B(−p) = (B(p))∗, p ≥ 0. Then

B(i− j) =

∞∑
l=max(i,j)

ψ(l − i)(ψ(l − j))∗.

Denote by Ψ and Θ linear operators in the space ℓ2 determined by matrices with elements Ψ(i, j) = ψ(j − i),
Θ(i, j) = θ(j − i), for 0 ≤ i ≤ j, Ψ(i, j) = 0, Θ(i, j) = 0, for 0 ≤ j < i. Then elements of the matrix B11 can
be represented in the form B11(i, j) = (ΨΨ∗)(i, j). Since ΨΘ = ΘΨ = I , elements of the matrix B−1

11 can be

calculated by the formula B−1
11 (i, j) = (Θ∗Θ)(i, j) =

min(i,j)∑
l=0

(θ(i− l))∗θ(j − l).

From equation (17) we can find the unknown coefficients c(j), j ∈ U ,

c⃗(−3) = 0⃗,

c⃗(−2) = 0⃗,

c⃗(0) = B−1
11 (0, 0)⃗a(0) +B−1

11 (0, 1)⃗a(1),

c⃗(1) = B−1
11 (1, 0)⃗a(0) +B−1

11 (1, 1)⃗a(1),

c⃗(2) = B−1
11 (2, 0)⃗a(0) +B−1

11 (2, 1)⃗a(1),

. . .

c⃗(i) = B−1
11 (i, 0)⃗a(0) +B−1

11 (i, 1)⃗a(1), i > 2.

Hence the spectral characteristic of the optimal estimate is calculated by the formula

(h1(e
iλ))⊤ =

(
a⃗(0) + a⃗(1)eiλ

)⊤ − (c⃗(−3)e−i3λ + c⃗(−2)e−i2λ + c⃗(0) + c⃗(1)eiλ + c⃗(2)ei2λ+

+
∑
j>2

c⃗(j)eijλ)
(
B(−1)e−iλ +B(0) +B(1)eiλ

)
= −c⃗(0)⊤B(−1)e−iλ − c⃗(1)⊤B(1)ei2λ−

−c⃗(2)⊤B(0)ei2λ − c⃗(2)⊤B(1)ei3λ −
∑
j>2

c⃗(j)⊤eijλ
(
B(−1)e−iλ +B(0) +B(1)eiλ

)
.

Since coefficients c⃗(j − 1)⊤B(1) + c⃗(j)⊤B(0) + c⃗(j + 1)⊤B(−1) for j ≥ 2 are zero, the spectral characteristic of
the estimate Â1ξ⃗ is of the form

(h1(e
iλ)⊤ = −c⃗(0)⊤B(−1)e−iλ =

(
b2 + b22 − 2(b1 + b21), −b2 − b22

)
e−iλ.

The mean-square error of the estimate of the functional A1ξ⃗ is calculated by the formula

∆(h1;F ) = ⟨B−1a⃗1, a⃗1⟩ = 10 + 8b1 + 4b21 + 2b2 + b22.

3. Minimax approach to extrapolation problem for stationary sequences with missing observations

Theorem 2.1 and its Corollaries 2.1 – 2.4 can be applied for finding solutions of the extrapolation problem for
multidimensional stationary sequences with missing observations only in the case of spectral certainty, where

Stat., Optim. Inf. Comput. Vol. 7, March 2019



O. MASYUTKA, M. MOKLYACHUK AND M. SIDEI 109

spectral densities F (λ), Fξη(λ), Fηξ(λ), G(λ) are exactly known. If the complete information about spectral
densities is impossible while a class of admissible spectral density matricesD is given, the minimax(robust) method
of extrapolation is reasonable. It consists in finding an estimate which minimizes the value of the mean-square
error for all spectral density matrices from the given class of densities. For description of the minimax method we
introduce the following definitions (see Moklyachuk [22, 23], and Moklyachuk and Masytka [25] - [27]).

Definition 3.1
For a given class of spectral density matrices D the spectral densities (F 0(λ), F 0

ξη(λ), F
0
ηξ(λ), G

0(λ)) ∈ D are
called the least favorable in the class D for the optimal linear extrapolation of the functional Aξ⃗ if the following
relation holds true

∆
(
h
(
F 0, F 0

ξη, F
0
ηξ, G

0
)
;F 0, F 0

ξη, F
0
ηξ, G

0
)
= max

(F,Fξη,Fηξ,G)∈D
∆(h (F, Fξη, Fηξ, G) ;F, Fξη, Fηξ, G) .

Definition 3.2
For a given class of spectral density matrices D the spectral characteristic h0(eiλ) of the optimal linear estimate of
the functional Aξ⃗ is called minimax-robust if there are satisfied conditions

h0(eiλ) ∈ HD =
∩

(F,Fξη,Fηξ,G)∈D

Ls
2(F +G),

min
h∈HD

max
(F,Fξη,Fηξ,G)∈D

∆(h;F, Fξη, Fηξ, G) = max
(F,Fξη,Fηξ,G)∈D

∆
(
h0;F, Fξη, Fηξ, G

)
.

From the introduced definitions and formulas derived above we can obtain the following statement.

Lemma 3.1
Spectral densities (F 0(λ), F 0

ξη(λ), F
0
ηξ(λ), G

0(λ)) ∈ D, satisfying the minimality condition (1), are the least
favorable in the class D for the optimal linear extrapolation of the functional Aξ⃗ if the Fourier coefficients (8)
of the functions

(F 0
ζ (λ))

−1, (F 0(λ) + F 0
ξη(λ))(F

0
ζ (λ))

−1, F 0(λ)(F 0
ζ (λ))

−1G0(λ)− F 0
ξη(λ)(F

0
ζ (λ))

−1F 0
ηξ(λ)

define operators B0,R0,Q0 which determine a solution of the constrained optimization problem

max
(F,Fξη,Fηξ,G)∈D

(⟨Ra⃗,B−1Ra⃗⟩+ ⟨Qa⃗, a⃗⟩) = ⟨R0a⃗, (B0)−1R0a⃗⟩+ ⟨Q0a⃗, a⃗⟩. (25)

The minimax spectral characteristic h0(eiλ) = h(F 0, F 0
ξη, F

0
ηξ, G

0) is calculated by the formula (10) if
h(F 0, F 0

ξη, F
0
ηξ, G

0) ∈ HD.

In the case of uncorrelated stationary sequences the corresponding definitions and lemmas are as follows.

Definition 3.3
For a given class of spectral densities D = DF ×DG the spectral densities F 0(λ) ∈ DF , G0(λ) ∈ DG are called
the least favorable in the class D for the optimal linear extrapolation of the functional Aξ⃗ based on observations of
the uncorrelated sequences if the following relation holds true

∆
(
F 0, G0

)
= ∆

(
h
(
F 0, G0

)
;F 0, G0

)
= max

(F,G)∈DF×DG

∆(h (F,G) ;F,G) .

Definition 3.4
For a given class of spectral densities D = DF ×DG the spectral characteristic h0(eiλ) of the optimal linear
estimate of the functional Aξ⃗ based on observations of the uncorrelated sequences is called minimax-robust if there
are satisfied conditions

h0(eiλ) ∈ HD =
∩

(F,G)∈DF×DG

Ls
2(F +G),

min
h∈HD

max
(F,G)∈D

∆(h;F,G) = max
(F,G)∈D

∆
(
h0;F,G

)
.
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Lemma 3.2
Spectral densities F 0(λ) ∈ DF , G

0(λ) ∈ DG satisfying the minimality condition (12) are the least favorable in
the class D = DF ×DG for the optimal linear extrapolation of the functional Aξ⃗ based on observations of the
uncorrelated sequences if the Fourier coefficients (15) of functions

(F 0(λ) +G0(λ))−1, F 0(λ)(F 0(λ) +G0(λ))−1, F 0(λ)(F 0(λ) +G0(λ))−1G0(λ)

define operators B0,R0,Q0 which determine a solution of the constrained optimization problem

max
(F,G)∈DF×DG

(⟨Ra⃗,B−1Ra⃗⟩+ ⟨Qa⃗, a⃗⟩) = ⟨R0a⃗, (B0)−1R0a⃗⟩+ ⟨Q0a⃗, a⃗⟩. (26)

The minimax spectral characteristic h0 = h(F 0, G0) is calculated by the formula (13) if h(F 0, G0) ∈ HD.

In the case of observations of the sequence without noise we obtain the following corollary.

Corollary 3.1
Let the spectral density F 0(λ) ∈ DF be such that the function (F 0(λ))−1 satisfies the minimality condition. The
spectal density F 0(λ) ∈ DF is the least favorable in the class DF for the optimal linear extrapolation of the
functional Aξ⃗ if the Fourier coefficients of the function (F 0(λ))−1 define the operator B0 which determines a
solution of the optimization problem

max
F∈DF

⟨B−1a⃗, a⃗⟩ = ⟨(B0)−1a⃗, a⃗⟩. (27)

The minimax spectral characteristic h0 = h(F 0) is calculated by the formula (18) if h(F 0) ∈ HDF
.

The least favorable spectral densities F 0(λ),G0(λ) and the minimax spectral characteristic h0 = h(F 0, G0) form
a saddle point of the function ∆(h;F,G) on the set HD ×D. The saddle point inequalities

∆
(
h;F 0, G0

)
≥ ∆

(
h0;F 0, G0

)
≥ ∆

(
h0;F,G

)
∀h ∈ HD,∀F ∈ DF ,∀G ∈ DG

hold true if h0 = h(F 0, G0) and h(F 0, G0) ∈ HD, where (F 0, G0) is a solution of the constrained optimization
problem

sup
(F,G)∈DF×DG

∆
(
h(F 0, G0);F,G

)
= ∆

(
h(F 0, G0);F 0, G0

)
, (28)

∆
(
h(F 0, G0);F,G

)
=

1

2π

π∫
−π

(r0G(λ))
⊤F (λ)r0G(λ)dλ+

1

2π

π∫
−π

(r0F (λ))
⊤G(λ)r0F (λ)dλ,

(r0F (λ))
⊤ =

(A(eiλ))⊤F 0(λ)−

(∑
k∈U

((B0)−1R0a⃗)(k)eikλ

)⊤
 (F 0(λ) +G0(λ))−1,

(r0G(λ))
⊤ =

(A(eiλ))⊤G0(λ) +

(∑
k∈U

((B0)−1R0a⃗)(k)eikλ

)⊤
 (F 0(λ) +G0(λ))−1.

The constrained optimization problem (28) is equivalent to the unconstrained optimization problem (see
Pshenichnyj [34]):

∆D(F,G) = −∆(h(F 0, G0);F,G) + δ((F,G) |DF ×DG ) → inf, (29)

where δ((F,G) |DF ×DG ) is the indicator function of the set D = DF ×DG.
A solution of the problem (29) is determined by the condition 0 ∈ ∂∆D(F 0, G0), where ∂∆D(F 0, G0) is

the subdifferential of the convex functional ∆D(F,G) at point (F 0, G0). This condition is the necessary and
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sufficient condition under which the pair (F 0, G0) belongs to the set of minimums of the convex functional
∆(h(F 0, G0);F,G). This condition makes it possible to find the least favourable spectral densities in some special
classes of spectral densities D (see books by Ioffe and Tihomirov [13], Pshenichnyj [34], Rockafellar [35]).

Note, that the form of the functional ∆
(
h0;F,G

)
is convenient for application the Lagrange method of indefinite

multipliers for finding solution to the problem (29). Making use the method of Lagrange multipliers and the form of
subdifferentials of the indicator functions we describe relations that determine the least favourable spectral densities
in some special classes of spectral densities (see books by Moklyachuk [21, 22], Moklyachuk and Masyutka [27]
for additional details).

4. Least favorable spectral densities in the class D = D0 × DU
V

Consider the problem of minimax extrapolation of the functional Aξ⃗ based on observations of the uncorrelated
sequences in the case where the spectral density matrices of the observed sequences are not exactly known while
the admissible spectral density matrices are from the class D = D0 ×DU

V , where

D1
0 =

{
F (λ)

∣∣∣∣ 12π
∫ π

−π

TrF (λ)dλ = p

}
,

DU
V

1
=

{
G(λ)

∣∣∣∣TrV (λ) ≤ TrG(λ) ≤ TrU(λ),
1

2π

∫ π

−π

TrG(λ)dλ = q

}
,

D2
0 =

{
F (λ)

∣∣∣∣ 12π
∫ π

−π

fkk(λ)dλ = pk, k = 1, T

}
,

DU
V

2
=

{
G(λ)

∣∣∣∣vkk(λ) ≤ gkk(λ) ≤ ukk(λ),
1

2π

∫ π

−π

gkk(λ)dλ = qk, k = 1, T

}
,

D3
0 =

{
F (λ)

∣∣∣∣ 12π
∫ π

−π

⟨B1, F (λ)⟩ dλ = p

}
,

DU
V

3
=

{
G(λ)

∣∣∣∣ ⟨B2, V (λ)⟩ ≤ ⟨B2, G(λ)⟩ ≤ ⟨B2, U(λ)⟩ , 1

2π

∫ π

−π

⟨B2, G(λ)⟩ dλ = q

}
,

D4
0 =

{
F (λ)

∣∣∣∣ 12π
∫ π

−π

F (λ)dλ = P

}
,

DU
V

4
=

{
G(λ)

∣∣∣∣V (λ) ≤ G(λ) ≤ U(λ),
1

2π

∫ π

−π

G(λ)dλ = Q

}
.

Here spectral densities V (λ), U(λ) are known and fixed, p, q, pk, qk, k = 1, T are fixed numbers, P,Q,B1, B2 are
fixed positive definite Hermitian matrices.

From the condition 0 ∈ ∂∆D(F 0, G0) we find the following equations which determine the least favourable
spectral densities for these sets of admissible spectral densities.

For the first pair D1
0 ×DU

V
1 we have equations

(r0G(λ))
∗(r0G(λ))

⊤ = α2(F 0(λ) +G0(λ))2, (30)

(r0F (λ))
∗(r0F (λ))

⊤ = (β2 + γ1(λ) + γ2(λ))(F
0(λ) +G0(λ))2, (31)

where α2, β2 are Lagrange multipliers, γ1(λ) ≤ 0 and γ1(λ) = 0 if TrG0(λ) > TrV (λ), γ2(λ) ≥ 0 and γ2(λ) = 0
if TrG0(λ) < TrU(λ).

For the second pair D2
0 ×DU

V
2 we have equations

(r0G(λ))
∗(r0G(λ))

⊤ = (F 0(λ) +G0(λ))
{
α2
kδkl

}T
k,l=1

(F 0(λ) +G0(λ)), (32)
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(r0F (λ))
∗(r0F (λ))

⊤ = (F 0(λ) +G0(λ))
{
(β2

k + γ1k(λ) + γ2k(λ))δkl
}T
k,l=1

(F 0(λ) +G0(λ)), (33)

where α2
k, β

2
k are Lagrange multipliers, δkl are Kronecker symbols, γ1k(λ) ≤ 0 and γ1k(λ) = 0 if g0kk(λ) > vkk(λ),

γ2k(λ) ≥ 0 and γ2k(λ) = 0 if g0kk(λ) < ukk(λ).

For the third pair D3
0 ×DU

V
3 we have equations

(r0G(λ))
∗(r0G(λ))

⊤ = α2(F 0(λ) +G0(λ))B⊤
1 (F 0(λ) +G0(λ)), (34)

(r0F (λ))
∗(r0F (λ))

⊤ = (β2 + γ′1(λ) + γ′2(λ))(F
0(λ) +G0(λ))B⊤

2 (F 0(λ) +G0(λ)), (35)

where α2, β2 are Lagrange multipliers, γ′1(λ) ≤ 0 and γ′1(λ) = 0 if ⟨B2, G
0(λ⟩ > ⟨B2, V (λ)⟩, γ′2(λ) ≥ 0 and

γ′2(λ) = 0 if ⟨B2, G
0(λ⟩ < ⟨B2, U(λ)⟩.

For the fourth pair D4
0 ×DU

V
4 we have equations

(r0G(λ))
∗(r0G(λ))

⊤ = (F 0(λ) +G0(λ))α⃗ · α⃗∗(F 0(λ) +G0(λ)), (36)

(r0F (λ))
∗(r0F (λ))

⊤ = (F 0(λ) +G0(λ))(β⃗ · β⃗∗ + Γ1(λ) + Γ2(λ))(F
0(λ) +G0(λ)) (37)

where α⃗, β⃗ are Lagrange multipliers, Γ1(λ) ≤ 0 and Γ1(λ) = 0 if G0(λ) > V (λ), Γ2(λ) ≥ 0 and Γ2(λ) = 0 if
G0(λ) < U(λ).

The following theorem and corollaries hold true.

Theorem 4.1
Let the minimality condition (12) hold true. The least favorable spectral densities F 0(λ), G0(λ) in the classes
D0 ×DU

V for the optimal linear extrapolation of the functional Aξ⃗ are determined by relations (30), (31) for the
first pair D1

0 ×DU
V
1 of sets of admissible spectral densities; (32), (33) for the second pair D2

0 ×DU
V
2 of sets of

admissible spectral densities; (34), (35) for the third pair D3
0 ×DU

V
3 of sets of admissible spectral densities; (36),

(37) for the fourth pair D4
0 ×DU

V
4 of sets of admissible spectral densities; constrained optimization problem (26)

and restrictions on densities from the corresponding classes D0 ×DU
V . The minimax-robust spectral characteristic

of the optimal estimate of the functional Aξ⃗ is determined by the formula (13).

Corollary 4.1
Let the minimality condition (20) hold true. The least favorable spectral densities F 0(λ) in the classes Dk

0 ,
k = 1, 2, 3, 4, for the optimal linear extrapolation of the functional Aξ⃗ from observations of the sequence ξ⃗(j) at

points j ∈ Z−\S, where S =
s∪

l=1

{−Ml −Nl, . . . ,−Ml}, are determined by the following equations, respectively,

((C0(λ))⊤)∗ · (C0(λ))⊤ = α2(F 0(λ))2, (38)

((C0(λ))⊤)∗ · (C0(λ))⊤ = F 0(λ)
{
α2
kδkl

}T
k,l=1

F 0(λ), (39)

((C0(λ))⊤)∗ · (C0(λ))⊤ = α2F 0(λ)B⊤
1 F

0(λ), (40)

((C0(λ))⊤)∗ · (C0(λ))⊤ = F 0(λ)α⃗ · α⃗∗F 0(λ), (41)

constrained optimization problem (27) and restrictions on densities from the corresponding classes Dk
0 , k =

1, 2, 3, 4. The minimax spectral characteristic of the optimal estimate of the functional Aξ⃗ is determined by the
formula (18).

Corollary 4.2
Let the minimality condition (20) hold true. The least favorable spectral densities F 0(λ) in the classes DU

V
k,

k = 1, 2, 3, 4, for the optimal linear extrapolation of the functional Aξ⃗ from observations of the sequence ξ⃗(j) at

points j ∈ Z−\S, where S =
s∪

l=1

{−Ml −Nl, . . . ,−Ml}, are determined by the following equations, respectively,

((C0(λ))⊤)∗ · (C0(λ))⊤ = (β2 + γ1(λ) + γ2(λ))(F
0(λ))2, (42)
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((C0(λ))⊤)∗ · (C0(λ))⊤ = F 0(λ)
{
(β2

k + γ1k(λ) + γ2k(λ))δkl
}T
k,l=1

F 0(λ), (43)

((C0(λ))⊤)∗ · (C0(λ))⊤ = (β2 + γ′1(λ) + γ′2(λ))F
0(λ)B⊤

2 F
0(λ), (44)

((C0(λ))⊤)∗ · (C0(λ))⊤ = F 0(λ)(β⃗ · β⃗∗ + Γ1(λ) + Γ2(λ))F
0(λ), (45)

constrained optimization problem (27) and restrictions on densities from the corresponding classes DU
V
k, k =

1, 2, 3, 4. The minimax spectral characteristic of the optimal estimate of the functional Asξ⃗ is determined by the
formula (18).

5. Least favorable spectral densities in the class D = Dε × D1δ

Consider the problem of minimax extrapolation of the functional Aξ⃗ based on observations of the uncorrelated
sequences in the case where the spectral density matrices of the observed sequences are not exactly known while
the admissible spectral density matrices are from the class D = Dε ×D1δ, where

D1
ε =

{
F (λ)

∣∣∣∣TrF (λ) = (1− ε)TrF1(λ) + εTrW (λ),
1

2π

∫ π

−π

TrF (λ)dλ = p

}
;

D1
1δ =

{
G(λ)

∣∣∣∣ 12π
∫ π

−π

|Tr(G(λ)−G1(λ))| dλ ≤ δ

}
;

D2
ε =

{
F (λ)

∣∣∣∣fkk(λ) = (1− ε)f1kk(λ) + εwkk(λ),
1

2π

∫ π

−π

fkk(λ)dλ = pk, k = 1, T

}
;

D2
1δ =

{
G(λ)

∣∣∣∣ 12π
∫ π

−π

∣∣gkk(λ)− g1kk(λ)
∣∣ dλ ≤ δk, k = 1, T

}
;

D3
ε =

{
F (λ)

∣∣∣∣ ⟨B1, F (λ)⟩ = (1− ε) ⟨B1, F1(λ)⟩+ ε ⟨B1,W (λ)⟩ , 1

2π

∫ π

−π

⟨B1, F (λ)⟩ dλ = p

}
;

D3
1δ =

{
G(λ)

∣∣∣∣ 12π
∫ π

−π

|⟨B2, G(λ)−G1(λ)⟩| dλ ≤ δ

}
;

D4
ε =

{
F (λ)

∣∣∣∣F (λ) = (1− ε)F1(λ) + εW (λ),
1

2π

∫ π

−π

F (λ)dλ = P

}
,

D4
1δ =

{
G(λ)

∣∣∣∣ 12π
∫ π

−π

∣∣gij(λ)− g1ij(λ)
∣∣ dλ ≤ δji , i, j = 1, T

}
.

Here F1(λ), G1(λ) are known and fixed spectral densities, W (λ) is an unknown spectral density, p, δ, δk, pk, k =
1, T , δji , i, j = 1, T , are fixed numbers, P is a fixed positive-definite Hermitian matrices.

From the condition 0 ∈ ∂∆D(F 0, G0) we find the following equations which determine the least favourable
spectral densities for these sets of admissible spectral densities.

For the first pair D1
ε ×D1

1δ we have equations

(r0G(λ))
∗(r0G(λ))

⊤ = (α2 + γ1(λ))(F
0(λ) +G0(λ))2, (46)

(r0F (λ))
∗(r0F (λ))

⊤ = β2γ2(λ)(F
0(λ) +G0(λ))2, (47)

1

2π

∫ π

−π

∣∣Tr (G0(λ)−G1(λ))
∣∣ dλ = δ, (48)

where α2, β2 are Lagrange multipliers, γ1(λ) ≤ 0 and γ1(λ) = 0 if TrF 0(λ) > (1− ε)TrF1(λ), |γ2(λ)| ≤ 1 and

γ2(λ) = sign (Tr (G0(λ)−G1(λ))) if Tr (G0(λ)−G1(λ)) ̸= 0.
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For the second pair D2
ε ×D2

1δ we have equations

(r0G(λ))
∗(r0G(λ))

⊤ = (F 0(λ) +G0(λ))
{
(α2

k + γ1k(λ))δkl
}T
k,l=1

(F 0(λ) +G0(λ)), (49)

(r0F (λ))
∗(r0F (λ))

⊤ = (F 0(λ) +G0(λ))
{
β2
kγ

2
k(λ)δkl

}T
k,l=1

(F 0(λ) +G0(λ)), (50)

1

2π

∫ π

−π

∣∣g0kk(λ)− g1kk(λ)
∣∣ dλ = δk, (51)

where α2
k, β

2
k are Lagrange multipliers, γ1k(λ) ≤ 0 and γ1k(λ) = 0 if f0kk(λ) > (1− ε)f1kk(λ),

∣∣γ2k(λ)∣∣ ≤ 1 and

γ2k(λ) = sign (g0kk(λ)− g1kk(λ)) if g0kk(λ)− g1kk(λ) ̸= 0, k = 1, T .

For the third pair D3
ε ×D3

1δ we have equations

(r0G(λ))
∗(r0G(λ))

⊤ = (α2 + γ′1(λ))(F
0(λ) +G0(λ))B⊤

1 (F 0(λ) +G0(λ)), (52)

(r0F (λ))
∗(r0F (λ))

⊤ = β2γ′2(λ)(F
0(λ) +G0(λ))B⊤

2 (F 0(λ) +G0(λ)), (53)

1

2π

∫ π

−π

∣∣⟨B2, G
0(λ)−G1(λ)

⟩∣∣ dλ = δ, (54)

where α2, β2 are Lagrange multipliers, γ′1(λ) ≤ 0 and γ′1(λ) = 0 if ⟨B1, F
0(λ)⟩ > (1− ε)⟨B1, F1(λ)⟩, |γ′2(λ)| ≤ 1

and
γ′2(λ) = sign

⟨
B2, G

0(λ)−G1(λ)
⟩

if
⟨
B2, G

0(λ)−G1(λ)
⟩
̸= 0.

For the fourth pair D4
ε ×D4

1δ we have equations

(r0G(λ))
∗(r0G(λ))

⊤ = (F 0(λ) +G0(λ))(α⃗ · α⃗∗ + Γ(λ))(F 0(λ) +G0(λ)), (55)

(r0F (λ))
∗(r0F (λ))

⊤ = (F 0(λ) +G0(λ)) {βijγij(λ))}Ti,j=1 (F
0(λ) +G0(λ)), (56)

1

2π

∫ π

−π

∣∣g0ij(λ)− g1ij(λ)
∣∣ dλ = δji , (57)

where α⃗, βij are Lagrange multipliers, Γ(λ) ≤ 0 and Γ(λ) = 0 if F 0(λ) > (1− ε)F1(λ), |γij(λ)| ≤ 1 and

γij(λ) =
g0ij(λ)− g1ij(λ)∣∣g0ij(λ)− g1ij(λ)

∣∣ if g0ij(λ)− g1ij(λ) ̸= 0, i, j = 1, T .

The following theorem and corollaries hold true.

Theorem 5.1
Let the minimality condition (12) hold true. The least favorable spectral densities F 0(λ), G0(λ) in the classes
Dε ×D1δ for the optimal linear extrapolation of the functional Aξ⃗ are determined by relations (46) – (48) for the
first pair D1

ε ×D1
1δ of sets of admissible spectral densities; (49) – (51) for the second pair D2

ε ×D2
1δ of sets of

admissible spectral densities; (52) – (54) for the third pair D3
ε ×D3

1δ of sets of admissible spectral densities; (55)
– (57) for the fourth pair D4

ε ×D4
1δ of sets of admissible spectral densities; constrained optimization problem (26)

and restrictions on densities from the corresponding classes Dε ×D1δ. The minimax-robust spectral characteristic
of the optimal estimate of the functional Aξ⃗ is determined by the formula (13).

Corollary 5.1
Let the minimality condition (20) hold true. The least favorable spectral densities F 0(λ) in the classes Dk

ε ,
k = 1, 2, 3, 4, for the optimal linear extrapolation of the functional Aξ⃗ from observations of the sequence ξ⃗(j) at
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points j ∈ Z−\S, where S =
s∪

l=1

{−Ml −Nl, . . . ,−Ml}, are determined by the following equations, respectively,

((C0(λ))⊤)∗ · (C0(λ))⊤ = (α2 + γ(λ))(F 0(λ))2, (58)

((C0(λ))⊤)∗ · (C0(λ))⊤ = F 0(λ)
{
(α2

k + γk(λ))δkl
}T
k,l=1

F 0(λ), (59)

((C0(λ))⊤)∗ · (C0(λ))⊤ = (α2 + γ′(λ))F 0(λ)B⊤
1 F

0(λ), (60)

((C0(λ))⊤)∗ · (C0(λ))⊤ = F 0(λ)(α⃗ · α⃗∗ + Γ(λ))F 0(λ), (61)

constrained optimization problem (27) and restrictions on densities from the corresponding classes Dk
ε , k =

1, 2, 3, 4. The minimax spectral characteristic of the optimal estimate of the functional Aξ⃗ is determined by the
formula (18).

Corollary 5.2
Let the minimality condition (20) hold true. The least favorable spectral densities F 0(λ) in the classes Dk

1δ,
k = 1, 2, 3, 4, for the optimal linear extrapolation of the functional Aξ⃗ from observations of the sequence ξ⃗(j) at

points j ∈ Z−\S, where S =
s∪

l=1

{−Ml −Nl, . . . ,−Ml}, are determined by the following equations, respectively,

((C0(λ))⊤)∗ · (C0(λ))⊤ = β2γ2(λ)(F
0(λ))2, (62)

((C0(λ))⊤)∗ · (C0(λ))⊤ = F 0(λ)
{
β2
kγ

2
k(λ)δkl

}T
k,l=1

F 0(λ), (63)

((C0(λ))⊤)∗ · (C0(λ))⊤ = β2γ′2(λ)F
0(λ)B⊤

2 F
0(λ), (64)

((C0(λ))⊤)∗ · (C0(λ))⊤ = F 0(λ) {βij(λ)γij(λ)}Ti,j=1 F
0(λ), (65)

constrained optimization problem (27) and the following restrictions on densities from the corresponding classes
Dk

1δ, k = 1, 2, 3, 4, respectively,
1

2π

∫ π

−π

∣∣Tr (F 0(λ)−G1(λ))
∣∣ dλ = δ, (66)

1

2π

∫ π

−π

∣∣f0kk(λ)− g1kk(λ)
∣∣ dλ = δk, (67)

1

2π

∫ π

−π

∣∣⟨B2, F
0(λ)−G1(λ)

⟩∣∣ dλ = δ, (68)

1

2π

∫ π

−π

∣∣f0ij(λ)− g1ij(λ)
∣∣ dλ = δji . (69)

The minimax spectral characteristic of the optimal estimate of the functional Aξ⃗ is determined by the formula (18).

6. Conclusions

In this article we describe methods of the mean-square optimal linear extrapolation of functionals which depend on
the unknown values of a multidimensional stationary sequence. Estimates are based on observations of the sequence
with an additive stationary noise sequence. We develop methods of finding the optimal estimates of the functionals
in the case of missing observations. The problem is investigated in the case of spectral certainty, where the spectral
densities of the sequences are exactly known. In this case we propose an approach based on the Hilbert space
projection method. We derive formulas for calculating the spectral characteristics and the mean-square errors of
the estimates of the functionals. In the case of spectral uncertainty, where the spectral densities of the sequences are
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not exactly known while sets of admissible spectral densities are given, the minimax (robust) method of estimation
is applied. This method allows us to find estimates that minimize the maximum values of the mean-square errors
of estimates for all spectral density matrices from a given class of admissible spectral density matrices and derive
relations which determine the least favourable spectral density matrices. These least favourable spectral density
matrices are solutions of the optimization problem ∆D(F,G) = −∆(h(F 0, G0);F,G) + δ((F,G) |DF ×DG ) →
inf, which is characterized by the condition 0 ∈ ∂∆D(F 0, G0), where ∂∆D(F 0, G0) is the subdifferential of the
convex functional ∆D(F,G) at point (F 0, G0). The form of the functional ∆(h(F 0, G0);F,G) is convenient for
application of the Lagrange method of indefinite multipliers for finding solution to the optimization problem. The
complexity of the problem is determined by the complexity of calculation of the subdifferential of the convex
functional ∆D(F,G). Making use of the method of Lagrange multipliers and the form of subdifferentials of the
indicator functions we describe relations that determine the least favourable spectral densities in some special
classes of spectral densities. These are: classes D0 of densities with the moment restrictions, classes D1δ which
describe the “δ-neighborhood” models in the space L1 of a given bounded spectral density, classes DU

V which
describe the “strip” models of a given bounded spectral density, classes Dε which describe the “ε-contamination”
models of spectral densities.
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