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1. Introduction

The moment properties of various ordered schemes and recurrence relations between them play crucial roles in
statistics, probability theory, and various applied fields. In the characterization of distributions, moments provide
essential information about the shape and characteristics of the probability distribution. In statistical inference,
higher-order moments can provide insights into the variability, asymmetry, and peakedness of the data. This
can enhance the understanding of sample properties and improve decision making in statistical analyses. In the
fields like reliability engineering and quality control, moments of order statistics are used to model and assess
the performance and failure rates of systems and products. These help in designing and evaluating experiments
and in making predictions about future performance. The recurrence relations and identities reduce the amount of
direct computations and hence the time and labour. They also express the higher-order moments in terms of the
lower-order moments and hence make the evaluation of higher-order moments easy.

1.1. Definition

Kamps [4] proposed the concept of generalized order statistics (GOS). The GOS offers a unified approach to
various models of ordered random variables such as upper record values, order statistics, k−th upper record values,
progressively type-II censoring order statistics, sequential order statistics and Pfeifer records. These models have
valuable applications, especially in the field of reliability theory.
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Let Y1, Y2, ..., Yn be a sequence of independent and identically distributed (iid) random variables (rvs) from
an absolutely continuous population with cumulative distribution function (CDF) F (y) and probability density
function (PDF) f(y), y ∈ (α, β), where α and β may be finite or infinite. Further, assume that n ∈ N, n ≥
2, k ≥ 1, m̃ = (m1,m2, . . . ,mn−1) ∈ Rn−1, and Mi =

∑n−1
j=i mj be the parameters such that

γi = k + n− i+Mi ≥ 0 for 1 ≤ i ≤ n− 1.

Then the random variables Y(r,n,m̃,k), r = 1, 2, . . . n are called GOS from an absolutely continuous population, if
their joint PDF is given by [Kamps [4]]

k
( n−1∏

j=1

γj

)( n−1∏
i=1

[
1− F (yi)

]mi
f(yi)

)[
1− F (yn)

]k−1
f(yn) (1)

on the cone F−1(0) < y1 ≤ y2 ≤ . . . ≤ yn < F−1(1).

Several models of ordered random variables such as order statistics, record values, sequential order statistics,
and progressively type II censored order statistics, etc., can be seen as special cases of GOS. If we choose
mi = m = 0, i = 1, 2, . . . , n and k = 1 in model (1), then Y(r,n,m,k) reduces to the r−th order statistics Yr:n.
By choosing mr = Rr, k = Rn + 1, and γr = n − r + 1 +

∑m
i=r Ri, 1 ≤ r ≤ m , where Ri is a set of

prefixed integers then the model (1) reduces to the joint density based on progressively type-II censored order
statistics. If mi = m → −1, i = 1, 2, . . . , n and k > 0 be any positive integers, then Y(r,n,m,k) reduces to the k−th
upper record values Y

U
(k)
r

. By setting mr = γr − γr+1 − 1 and k = αn, α ∈ R+, in this case model (1) reduces to
the joint PDF of sequential order statistics.

1.2. Marginal and Joint Distribution

Here, we can discuss two cases of GOS:

Case I. γi ̸= γj , i, j = 1, 2, . . . , n− 1, i ̸= j.

In view of the model (1), the marginal PDF of the r−th GOS is given as (Kamps and Cramer [7])

fr,n,m̃,k(y) = Cr−1f(y)

r∑
i=1

ai(r)[F̄ (y)]γi−1, (2)

where

Cr−1 =

r∏
i=1

γi, γi = k + n− i+

n−1∑
j=1

mj > 0,

and

ai(r) =

r∏
j=1
j ̸=i

1

(γj − γi)
, 1 ≤ i ≤ r ≤ n.

The joint PDF of r−th and s−th, GOS 1 ≤ r < s ≤ n, is given as (Kamps and Cramer [7])

fr,s,n,m̃,k(y, z) = Cs−1

s∑
j=r+1

aj
(r)(s)

(
F̄ (z)

F̄ (y)

)γj

×

[
r∑

i=1

ai(r)[F̄ (y)]γi

]
f(y)

F̄ (y)

f(z)

F̄ (z)
, y < z, (3)
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where

aj
(r)(s) =

s∏
t=r+1
t ̸=j

1

(γt − γj)
, r + 1 ≤ j ≤ s ≤ n.

Case II : mi = m, i = 1, 2, . . . , n− 1.

The marginal PDF of r−th GOS of Yr,n,m,k is given as (Kamps [4])

fr,n,m,k(y) =
Cr−1

(r − 1)!
[F̄ (y)]γr−1 f(y) gr−1

m (F (y)), (4)

where

Cr−1 =

r∏
i=1

γi, γi = k + (n− i)(m+ 1),

hm(y) =


− 1

m+ 1
(1− y)m+1, m ̸= −1

log
( 1

1− y

)
, m = −1

and

gm(y) = hm(y)− hm(0) =

∫ y

0

(1− t)mdt, y ∈ [0, 1).

The joint PDF of Yr,n,m,k and Ys,n,m,k, 1 ≤ r < s ≤ n, is given as (Pawlas and Szynal [11])

fr,s,n,m,k(y, z) =
Cs−1

(r − 1)! (s− r − 1)!
[F̄ (y)]m gr−1

m (F (y))

×[hm(F (z))− hm(F (y))]s−r−1[F̄ (z)]γs−1 f(y) f(z), −∞ ≤ y < z ≤ ∞. (5)

1.3. The Lindley Pareto Distribution

The lifetime distributions have always been useful in different fields such as reliability, engineering, economics,
insurance, actuarial sciences, finances, and medicine. Lindley [8] proposed the Lindley distribution as a new
distribution to analyze lifetime data. Pareto distribution was established by Pareto [9] to analyze the unequal
distribution of wealth. It is commonly used in actuarial science because of its heavy tail properties. In this paper,
we consider one of the generalizations of Lindley distribution, which is proposed by Zeghdoudi et al. [1], called
Lindley Pareto distribution, to include a wider class of continuous distributions. The Lindley Pareto distribution
offers a partical and effective way to model data with heavy tails and it is easy to implement. The Lindley Pareto
distribution is a special case of odd-Lindley-G family of distributions seen in Gomes-Silva et al.[2]. The survival
function (SF) of this distribution is given as:

F̄ (y) = 1 − F (y) =
αβ + θyβ

(θ + 1)αβ
exp

{
−θ

(
yβ

αβ
− 1

)}
, y > α; α, β, θ > 0, (6)

and the corresponding PDF is given by

f(y) =
β θ2 y2β−1

(θ + 1)α2β
exp

{
−θ

(
yβ

αβ
− 1

)}
, y > α; α, β, θ > 0. (7)

Using (6) and (7), the relationship between SF and PDF of the Lindley Pareto distribution is written as:

F̄ (y) =
αβ

β θ2
(
αβ y1−2β + θ y1−β

)
f(y). (8)
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Figure 1. Survival functions and CDFs of the Lindley Pareto distribution for α = 0.5 and for selected values of θ and β.

Figure 2. PDFs of the Lindley Pareto distribution for α = 0.5 and for selected values of θ and β
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1.4. Literature review:

The moment properties of GOS and recurrence relations between them for various distributions have recently
attracted much attention. Many authors have studied the moments of GOS for several distributions. For instance,
Keseling [13] studied the conditional distribution of GOS and characterized some specific continuous distributions.
Pawlas and Szynal [10] presented the recurrence relations for single and product moments of GOS for Pareto,
generalized Pareto, and Burr distributions. Athar and Islam [3] gave some general results for the moments of GOS
and applied their results to a general class of distributions. Ahmad and Fawzy [15] have proposed recurrence
relations for the moments of GOS for a class of doubly truncated distributions. This class includes special cases
such as doubly truncated Weibull distribution (Exponential and Rayleigh), Burr type XII (Lomax) and Pareto
distributions. Khan and Zia [16] provided the recurrence relations for single and product moments of GOS based
on doubly truncated linear exponential distribution; furthermore, the characterization is also discussed using the
recurrence relation for single moment of GOS. Athar et al. [17] have presented the recurrence relations for
the marginal and joint moment generating functions of GOS based on the Marshall-Olkin extended exponential
distribution and characterized the said distribution. Khan et al. [5] derived the exact and explicit expressions
for single and product moments of the Lindley distribution based on GOS. Athar et al. [19] have developed the
moment properties of GOS and discussed the special cases such as record values and order statistics from Poisson
Lomax distribution. Furthermore, they also presented the characterization results using conditional moments and
recurrence relations. Alharbi et al. [18] proposed and studied a new exponentiated generalized class of distribution.
Further, they studied the moment properties of GOS in terms of recurrence relations and characterization. Athar et
al. [6] examined the moment properties of GOS derived from the modified weighted Rayleigh distribution, and also
discussed the characterization results based on these moments properties and conditional expectations. Khan [20]
has obtained the moment properties of GOS from doubly truncated power linear hazard rate distribution. For more
details on moments of GOS and characterization, one may refer to Pawlas and Szynal [11], Cramer and Kamps
[12], Saran and Pandey [14], Akhter et al. [39], [40] and references therein.

In the study of probability and statistics, the characterization of probability distributions is an important role
in this field. In the literature, a probability distribution can be characterized by various methods, namely
conditional expectation, recurrence relations, and truncated moments. For example, Franco and Ruiz [25] studied
the characterization of continuous distributions with adjacent order statistics. Ali and Khan [24] investigated
the characterization of some types of distribution, such as truncated and non-truncated distributions, by using
the recurrence relation between moments of one and two order statistics. Huang and Su [23] characterized
the distribution by using the relationships of conditional moments of residual life. Athar and Akhter [29]
characterized a general class of continuous probability distribution based on conditional expectation of two order
statistics. Using truncated moments and the relationship between the left (right) and failure (reverse) rate function,
Ahsanullah et al. [34] produce two characterization results from the Lindley distribution. Athar and Yahia [33]
developed the characterization results through the truncated moments for two general classes of continuous
probability distribution. For more details one may refer to Khan and Abu- Salih [26], Khan and Aboummaoh
[27], Balasubramanian and Beg [28], Ahsanullah [30], Noor et al. [31], [32], Glanzel [35], Kotz and Shanbhag
[36], and references given there.

In this paper, moment properties of GOS from the Lindley Pareto distribution in terms of exact expression and
recurrence relations are studied. The results for order statistics, record values, and progressive type-II right censored
order statistics are discussed as particular cases of GOS. Further, the characterization of the said distribution
through recurrence relations between moments of GOS are presented. Finally, some statistical measures of order
statistics and record values for the Lindley Pareto distribution are computed.
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2. Single moment

In this section, we derived both the exact expression and recurrence relation between single moment of GOS from
the Lindley Pareto distribution. For the sake of convenience, we shall consider

E [Y p(r, n.m̃, k)] = µ
(p)
r,n,m̃,k

Theorem 1: Suppose case I is true, then for the Lindley Pareto distribution as given in (6) and for n ∈ N, m̃ ∈
R, k > 0, 1 ≤ r ≤ n and p = 1, 2, ....

µ
(p)
r,n,m̃,k =

(
αβ

θ

)[ pβ ]

Cr−1

r∑
i=1

γi−1∑
j=0

ai(r)

(
γi − 1

j

)(
eθ

θ + 1

)γi Γ
(
[ pβ ] + j + 2, θγi

)
γ
[ pβ ]+j+2

i

, (9)

where [ pβ ] is a positive integer.

Proof
we have,

µ
(p)
r,n,m̃,k =

∫ ∞

α

ypfY (r,n,m̃,k)(y)dy

=Cr−1

∫ ∞

α

yp
r∑

i=1

ai(r)
[
F̄ (y)

]γi−1
f(y)dy

=Cr−1

r∑
i=1

ai(r)

∫ ∞

α

yp
[
eθ(αβ + θyβ)

(θ + 1)αβ
e−θ yβ

αβ

]γi−1
eθθ2βy2β−1

(θ + 1)α2β
e−θ yβ

αβ dy.

Now expanding (αβ + θyβ)γi−1 binomially, we get

µ
(p)
r,n,m̃,k = Cr−1

r∑
i=1

γi−1∑
j=0

ai(r)

(
γi − 1

j

) (
θ

αβ

)j+2 (
eθ

θ + 1

)γi

β

∫ ∞

α

yp+jβ+2β−1 e−θ γi
yβ

αβ dy.

Let yβ = t, which implies βyβ−1 dy = dt. Thus we have,

µ
(p)
r,n,m̃,k = Cr−1

r∑
i=1

γi−1∑
j=0

ai(r)

(
γi − 1

j

) (
eθ

θ + 1

)γi
(

θ

αβ

)j+2 ∫ ∞

αβ

t
p
β+j+1e−

θ

αβ γitdt. (10)

Now using the result from Gradshteyn and Ryzhik [19] (pg. 340) of incomplete gamma function in (10), we get
(9). Hence the theorem is completed.

Corollary 1: Suppose case II is true. For the condition as stated in Theorem 1.

µ
(p)
r,n,m,k =

(
αβ

θ

)[ pβ ]
Cr−1

(m+ 1)r−1(r − 1)!

r−1∑
i=0

γr−i−1∑
j=0

(−1)i
(
r − 1

i

)(
γr−i − 1

j

)

×
(

eθ

θ + 1

)γr−i Γ
(
[ pβ ] + j + 2, θγr−i

)
γ
[ pβ ]+j+2

r−i

, m ̸= −1,

(11)

=
kr

(r − 1)!

(
αβ

θ

) ∞∑
c=0

c+r−1∑
u=0

k+u−1∑
v=0

(−1)u
(
c+ r − 1

u

)(
k + u− 1

v

)

× ac(r − 1)

(
eθ

θ + 1

)k+u Γ
(
[ pβ ] + v + 2, (k + u)θ

)
(k + u)[

p
β ]+v+2

, m → −1.

(12)
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Proof
When, γi ̸= γj , but mi = mj = m, i, j = 1, 2, ..., n− 1, then

ai(r) =
1

(m+ 1)r−1
(−1)r−i 1

(i− 1)!(r − i)!
,

see Khan et al. [22]

Therefore, in view of (9), we get

µ
(p)
r,n,m,k =

(
αβ

θ

)[ pβ ]
Cr−1

(m+ 1)r−1

r∑
i=1

γi−1∑
j=0

(−1)r−i 1

(i− 1)!(r − i)!

(
γi − 1

j

)

×
(

eθ

θ + 1

)γi Γ
(
[ pβ ] + j + 2, θγi

)
γ
[ pβ ]+j+2

i

.

Hence, the expression (11) holds.

Now, when m → −1, then hm(y) = − log(1− y). Thus, the PDF of r−th GOS given in ((4)) becomes

f
U

(k)
r

(y) =
kr

Γr
[− log F̄ (y)]r−1[F̄ (y)]k−1f(y).

Therefore,

E[Y
(p)

U
(k)
r

] = µ
(p)

U
(k)
r

=
kr

(r − 1)!

∫ ∞

0

yp[F̄ (y)]k−1[− ln(1− F (y))]r−1f(y)dy. (13)

Since

[− ln(1− t)]h =

( ∞∑
g=1

tg

g

)h

=

∞∑
g=0

ag(h)t
g+h, |t| < 1,

where, ag(h) is the coefficient of tg+h in the above expansion, [see, Balakrishnan and Cohen [42]]. Thus,

µ
(p)

U
(k)
r

=
kr

(r − 1)!

∞∑
c=0

ac(r − 1)

∫ ∞

α

yp[F̄ (y)]k−1[F (y)]c+r−1f(y)dy

=
kr

(r − 1)!

∞∑
c=0

ac(r − 1)

∫ ∞

α

yp[F̄ (y)]k−1[1− F̄ (y)]c+r−1f(y)dy

=
kr

(r − 1)!

∞∑
c=0

c+r−1∑
u=0

(−1)u
(
c+ r − 1

u

)
ac(r − 1)

∫ ∞

α

yp[F̄ (y)]k+u f(y)

F̄ (y)
dy

=
kr

(r − 1)!

∞∑
c=0

c+r−1∑
u=0

(−1)u
(
c+ r − 1

u

)
ac(r − 1)

(
eθ

(θ + 1)αβ

)k+u

×
∫ ∞

α

βθ2

αβ
yp+2β−1

(
αβ + θyβ

)k+u−1
e−(k+u)θ yβ

θβ dy

=
kr

(r − 1)!

∞∑
c=0

c+r−1∑
u=0

k+u−1∑
v=0

(−1)u
(
c+ r − 1

u

)(
k + u− 1

v

)
ac(r − 1)

(
eθ

θ + 1

)k+u

× β

(
θ

αβ

)v+2 ∫ ∞

α

yp+vβ+2β−1 e−(k+u) θyβ

αβ dy.
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Suppose yβ = t, then we have

µ
(p)

U
(k)
r

=
kr

(r − 1)!

∞∑
c=0

c+r−1∑
u=0

k+u−1∑
v=0

(−1)u
(
c+ r − 1

u

)(
k + u− 1

v

)
ac(r − 1)

×
(

eθ

θ + 1

)k+u(
αβ

θ

)[ pβ ] ∫ ∞

αβ

t[
p
β ]+v+1e−(k+u) θ

αβ tdt.

Now using the results from Gradshteyn and Ryzhik [38] (pg. 340) of incomplete gamma function, we get the result
given in ((12)). Hence the theorem is proved.

Remark 1. By setting m = 0 and k = 1 in (11), we obtained the expression for single moment of order statistics
as:

µ(p)
r:n =

(
αβ

θ

)[ pβ ]

Cr:n

r−1∑
i=0

n−r+i∑
j=0

(−1)i
(
r − 1

i

)(
n− r + i

j

)(
eθ

θ + 1

)n−r+i+1

×
Γ
(
[ pβ ] + j + 2, θ(n− r + i+ 1)

)
(n− r + i+ 1)[

p
β ]+j+2

,

(14)

where µ
(p)
r:n refers to the p−th moment of r−th order statistic.

Some particular cases from ((14)) have been stated as follows:

(a) By setting r = 1, we get the p−th moment of minimum order statistics

µ
(p)
1:n =

αp

θ[
p
β ]

(
eθ

θ + 1

)n n−1∑
j=0

(
n− 1

j

)
Γ([ pβ ] + j + 2, nθ)

n[ pβ ]+j+1
.

(b) When r = n, then we get the p−th moment of maximum order statistics

µ(p)
n:n =

nαp

θ[
p
β ]

n−1∑
i=0

i∑
j=0

(−1)i
(
n− 1

i

)(
i

j

)(
eθ

θ + 1

)i+1 Γ([ pβ ] + j + 2, θ(i+ 1))

(i+ 1)[
p
β ]+j+2

.

(c) If r = n = 1, then we get the p−th moment of the Lindley Pareto distribution

µ
(p)
1:1 =

αp eθ Γ([ pβ ] + 2, θ)

θ[
p
β ](θ + 1)

.

The above results are also given by Larzi and Zeghdoudi [37].

Remark 2. If k = 1 in (12), then we get an expression for single moment of upper records as

µ
(p)
Ur

=
1

(r − 1)!

(
αβ

θ

) ∞∑
c=0

c+r−1∑
u=0

u∑
v=0

(−1)u
(
c+ r − 1

u

)(
u

v

)
× ac(r − 1)

×
(

eθ

θ + 1

)1+u Γ
(
[ pβ ] + v + 2, (1 + u)θ

)
(1 + u)[

p
β ]+v+2

,

(15)
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where µp
Ur

, is the p−th moment of upper record values.

Remark 3. If Y R̃
1:m:n < ... < Y R̃

r:m:n < ... < Y R̃
m:m:n be the m progressive type-II right censored order statistics and

for 1 ≤ m ≤ n, then from (9), we get

µR̃(p)

r:m:n =

(
αβ

θ

)[ pβ ]

Cr−1

r∑
i=1

γi−1∑
j=0

ai(r)

(
γi − 1

j

)(
eθ

θ + 1

)γi Γ
(
[ pβ ] + j + 2, θγi

)
γ
[ pβ ]+j+2

i

, (16)

where E
[
Y R̃
r:m:n

](p)
= µR̃(p)

r:m:n refers to the p−th moment of progressive type-II right censored order statistics with

γi =
∑m

j=i(Rj + 1), R̃ = (R1, R2, ..., Rm) and r = 1, 2, ...,m.

Theorem 2: Suppose Case I is satisfied. For the Lindley Pareto distributions as given in (6) and n ∈ N, m̃ ∈
R, k > 0, 1 ≤ r ≤ n, p = 1, 2, ...

µ
(p)
r,n,m̃,k − µ

(p)
r−1,n,m̃,k =

pαβ

γr β θ2

[
αβ µ

(p−2β)
r,n,m̃,k + θ µ

(p−β)
r,n,m̃,k

]
. (17)

Proof
In view of Athar and Islam [3], we have

µ
(p)
r,n,m̃,k − µ

(p)
r−1,n,m̃,k

=
pCr−1

γr

∫ ∞

α

yp−1
r∑

i=1

ai (r)
[
F̄ (y)

]γi−1 αβ

β θ2
(
αβ y1−2β + θ y1−β

)
f(y) dy.

=
pαβ

β θ2 γr
Cr−1

∫ ∞

α

(
αβ yp−2β + θ yp−β

) r∑
i=1

ai (r)
[
F̄ (y)

]γi−1
f(y) dy,

which on simplification gives (17).
Hence the theorem is proved.

Corollary 2: For case II and the condition as stated in Theorem [2].

µ
(p)
r,n,m,k − µ

(p)
r−1,n,m,k =

pαβ

γr β θ2

[
αβ µ

(p−2β)
r,n,m,k + θ µ

(p−β)
r,n,m,k

]
. (18)

Proof
Since for γi ̸= γj ; i ̸= j = 1, 2, . . . , n− 1 but mi = m

ai(r) =
1

(m+ 1)r−1
(−1)r−i 1

(i− 1)!(r − i)!
.

Therefore, the PDF given in (2) simplified to (4).
The expression given in (18), can be easily obtained by replacing m̃ with m in (17).

Remark 4: If m = 0 and k = 1, then the Lindley Pareto distribution has the following relation for a single moment
of order statistics

µ(p)
r:n − µ

(p)
r−1:n =

pαβ

β θ2 (n− r + 1)

[
αβµ(p−2β)

r:n + θ µ(p−β)
r:n

]
.
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Remark 5: If m → −1, then the recurrence relation for single moment of k−th upper record values is given as

µ
(p)

U
(k)
n

− µ
(p)

U
(k)
n−1

=
pαβ

β θ2 k

[
αβ µ

(p−2β)

U
(k)
n

+ θ µ
(p−β)

U
(k)
n

]
.

Remark 6. If Y R̃
1:m:n < ... < Y R̃

r:m:n < ... < Y R̃
m:m:n be the m progressive type-II right censored order statistics for

1 ≤ m ≤ n, then from (17), we get

µR̃(p)

r:m:n − µR̃(p)

r−1:m:n =
pαβ

γr β θ2

[
αβ µR̃(p−2β)

r:m:n + θ µR̃(p−β)

r:m:n

]
.

3. Product Moments

In this section, we obtained the recurrence relation between product moments of GOS from the Lindley Pareto
distribution. For the sake of convenience, we shall consider

E [Y p(r, n.m̃, k).Y q(s, n.m̃, k)] = µ
(p,q)
r,s,n,m̃,k

Theorem 3: Suppose Case I be satisfied. For the Lindley Pareto distributions as given in (6) and n ∈ N, m̃ ∈
R, k > 0, 1 ≤ r < s ≤ n, p, q = 1, 2, ...

µ
(p, q)
r,s,n,m̃,k − µ

(p, q)
r,s−1,n,m̃,k =

q αβ

β θ2 γs

[
αβµ

(p, q−2β)
r,s,n,m̃,k + θµ

(p, q−β)
r,s,n,m̃,k

]
. (19)

Proof
Using the result given by Athar and Islam [3], we get

µ
(p, q)
r,s,n,m̃,k − µ

(p, q)
r,s−1,n,m̃,k

=
q Cs−1

γs

∫ ∞

α

∫ ∞

y

yp zq−1

[
s∑

j=r+1

a
(r)
j (s)

[
F̄ (z)

F̄ (y)

]γj
] [

r∑
i=1

ai (r) [F̄ (y)]γi

]

× f(y)

F̄ (y)

f(z)

F̄ (z)

αβ

β θ2
(
αβ z1−2β + θ z1−β

)
dz dy.

=
q αβ Cs−1

β θ2 γs

∫ ∞

α

∫ ∞

y

(
αβ yp zq−2β + θ yp zq−β

) [ s∑
j=r+1

a
(r)
j (s)

[
F̄ (z)

F̄ (y)

]γj
]

×

[
r∑

i=1

ai (r) [F̄ (y)]γi

]
f(y)

F̄ (y)

f(z)

F̄ (z)
dz dy.

This gives (19).

Corollary 3: For case II and the condition as stated in Theorem [3]

µ
(p, q)
r,s,n,m,k − µ

(p, q)
r,s−1,n,m,k =

q αβ

β θ2 γs

[
αβµ

(p, q−2β)
r,s,n,m,k + θµ

(p, q−β)
r,s,n,m,k

]
(20)
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Proof

Since, for γi ̸= γj ; i ̸= j = 1, 2, . . . , n− 1 but mi = m

a
(r)
i (s) =

1

(m+ 1)s−r−1
(−1)s−i 1

(i− r − 1)!(s− i)!
.

Therefore, joint PDF of Yr,n,m̃,k and Ys,n,m̃,k given in (3) reduces to (5).

Thus, relation (20) can be obtained by replacing m̃ with m in (19).

Remark 7: For the Lindley Pareto distribution when m = 0 and k = 1, the relation for product moments of order
statistics is written as

µ(p, q)
r,s:n − µ

(p, q)
r,s−1:n =

q αβ

β θ2 γs

[
αβµ(p, q−2β)

r,s:n + θµ(p, q−β)
r,s:n

]
,

where µ
(p,q)
r,s:n refers to the (p, q)−th moment of order statistics.

Remark 8: Let m → −1, then the relation for product moments of k−th upper record values is given as

µ
(p,q)

U
(k)
m,n

− µ
(p,q)

U
(k)
m,n−1

=
q αβ

β θ2 k

{
αβµ

(p,q−2β)

U
(k)
m,n

+ θ µ
(p,q−β)

U
(k)
m,n

}
,

where E[Y
(p)

U
(k)
m

.Y
(q)

U
(k)
n

] = µ
(p,q)

U
(k)
m,n

, refer to the (p, q)−th moments of the k−th record values.

Remark 9. If Y R̃
1:m:n < ... < Y R̃

r:m:n < ... < Y R̃
m:m:n be the m progressive type-II right censored order statistics

for 1 ≤ m ≤ n, then using (19), we get the recurrence relation for product moments of progressive type-II right
censored order statistics

µR̃(p)

r,s:m:n − µR̃(p)

r,s−1:m:n =
q αβ

β θ2 γs

[
αβµR̃(p,q−2β)

r,s:m:n + θµR̃(p,q−β)

r,s:m:n

]
,

where E
[
Y R̃(p)

r:m:n.Y
R̃q

s:m:n

]
= µR̃(p,q)

r:m:n .

4. Characterization

In this section, using recurrence relations between the moments of GOS, the characterization of Lindley Pareto
distributions, whose PDF is given in (7), is studied.

Theorem 4: Fix a positive integer k and assume p to be a non-negative integer. A necessary and sufficient
condition for a random variable Y to be distributed with PDF given in (7) is

µ
(p)
r,n,m̃,k − µ

(p)
r−1,n,m̃,k =

pαβ

γr β θ2

[
αβ µ

(p−2β)
r,n,m̃,k + θ µ

(p−β)
r,n,m̃,k

]
. (21)

Proof
Necessary part follows from Theorem [2].
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However, suppose the relation in (21) is satisfied. Now, in view of Athar and Islam [3] and using (2) and (17) in
(21), we get

pCr−2

∫ ∞

α

yp−1
r∑

i=1

ai(r)
[
F̄ (y)

]γi
dy

=
pαβ Cr−1

β θ2 γr

∫ ∞

α

(
αβ yp−2β + θ yp−β

) r∑
i=1

ai (r)
[
F̄ (y)

]γi−1
f(y) dy.

This implies

pαβ Cr−1

βθ2 γr

∫ ∞

α

yp−1
r∑

i=1

ai (r)
[
F̄ (y)

]γi−1

×
{

β θ2

αβ
F̄ (y) −

(
αβ y1−2β + θ y1−β

)
f(y)

}
dy = 0. (22)

Now on applications of Müntz - Szász theorem [see, for example, Hwang and Lin [21]] in (22), we get

F̄ (y)

f(y)
=

αβ

β θ2
(
αβ y1−2β + θ y1−β

)
.

Thus, f(y) has a PDF as given in (7). Therefore, Theorem [4] holds.

Theorem 5: Fix a positive integer k and assume p, q to be non-negative integers. A necessary and sufficient
condition for a random variable Y to be distributed with PDF as stated in (7) is that

µ
(p, q)
r,s,n,m̃,k − µ

(p, q)
r,s−1,n,m̃,k =

q αβ

β θ2 γs

[
αβµ

(p, q−2β)
r,s,n,m̃,k + θµ

(p, q−β)
r,s,n,m̃,k

]
(23)

Proof
Necessary part follows from Theorem [3].
Now, suppose the relation in (23) is satisfied. So, in view of Athar and Islam [3] and using (3) and (19) in (23), we
get

q Cs−2

∫ ∞

α

∫ ∞

y

yp zq−1

[
s∑

j=r+1

a
(r)
j (s)

(
F̄ (z)

F̄ (y)

)γj
] [

r∑
i=1

ai (r) [F̄ (y)]γi

]
f(y)

F̄ (y)
dz dy.

=
q αβ Cs−1

β θ2 γs

∫ ∞

α

∫ ∞

y

(
αβ yp zq−2β + θ yp zq−β

) [ s∑
j=r+1

a
(r)
j (s)

[
F̄ (z)

F̄ (y)

]γj
]

×

[
r∑

i=1

ai (r) [F̄ (y)]γi

]
f(y)

F̄ (y)

f(z)

F̄ (z)
dz dy.

This implies

q αβ Cs−1

β θ2 γs

∫ ∞

α

∫ ∞

y

yp zq−1

[
r∑

i=1

ai (r) [F̄ (y)]γi

][
s∑

j=r+1

a
(r)
j (s)

[
F̄ (z)

F̄ (y)

]γj
]
f(y)

F̄ (y)

×
{

β θ2

αβ
−
(
αβ z1−2β + θ z1−β

) f(z)

F̄ (z)

}
dz dy = 0. (24)

Applying the extension of Müntz - Szász theorem [see, for example, Hwang and Lin [21]] to (24), we have

F̄ (z)

f(z)
=

αβ

β θ2
(
αβ z1−2β + θ z1−β

)
.

Therefore, f(z) is a PDF as stated in (7). Thus, Theorem [5] holds.
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5. Computations of means and some statistical properties

In this section, we have utilized the results developed in Section 2 to compute the means, variances, skewness,
kurtosis and coefficient of variation (CV) of order statistics as well as record values based on the Lindley Pareto
distribution.

For p = 1, 2, 3, 4 in (14), we systematically computed the first four moments µ
(1)
r:n, µ(2)

r:n, µ(3)
r:n and µ

(4)
r:n of the

order statistics for sample size n = 1(1)6 and then, using these four moments, the statistical measures such as
mean, variance, skewness, kurtosis, and coefficient of variation (CV) of order statistics are computed.

It can also be seen that the condition
∑n

r=1 µr:n = nE(X), as shown in David and Nagaraja [41], is satisfied.
Further, for the different values of the parameters of the Lindley Pareto distribution and using (12) the first four
moments of record values have been computed for r = 1, 2, . . . , 10. Moreover, these first four moments are used to
compute mean, variance, skewness, kurtosis and CV of record values. The given tables provide the results rounded
to six decimal places.

Table 1: The different statistical measures of order statistics from Lindley Pareto distribution for different values
of parameters

θ = 0.2, β = 0.5, α = 1.5

n r Mean Variance Skewness Kurtosis CV
1 1 6.106667 84.84892 4.283330 37.11491 1.508409

2 1 2.330278 10.10963 3.752835 28.59220 1.364457
2 9.883056 131.0659 3.468523 25.74193 1.158387

3 1 1.378866 3.132370 3.472642 24.57440 1.283555
2 4.233101 18.63304 2.856344 17.94080 1.019726
3 12.70803 163.3409 3.129529 21.69328 1.005702

4 1 0.967049 1.407326 3.291529 22.15834 1.226730
2 2.614317 6.272385 2.598078 15.10119 0.957984
3 5.851885 25.75277 2.479665 14.34289 0.867194
4 14.99342 188.3117 2.934742 19.54489 0.915247

5 1 0.741975 0.769573 3.161824 20.51614 1.182321
2 1.867344 2.945178 2.448948 13.60539 0.919034
3 3.734778 9.170804 2.223734 11.90269 0.810847
4 7.263291 31.82724 2.264007 12.51549 0.776723
5 16.92595 208.7594 2.804987 18.18459 0.853631

6 1 0.601660 0.474926 3.062920 19.31349 1.145412
2 1.443553 1.652149 2.347813 12.65365 0.890414
3 2.714926 4.453641 2.083443 10.69529 0.777320
4 4.754629 11.80778 2.007026 10.28530 0.722716
5 8.517621 37.11695 2.121510 11.40027 0.715267
6 18.60761 226.1199 2.710806 17.23212 0.808126
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Table 2: The different statistical measures of order statistics from Lindley Pareto distribution for different values
of parameters
θ = 0.5, β = 1.0, α = 2.5

n r Mean Variance Skewness Kurtosis CV
1 1 2.166667 1.888888 1.512286 6.342556 0.634324

2 1 1.444444 0.608026 1.444467 5.941332 0.539834
2 2.888889 2.126543 1.250180 5.470582 0.504785

3 1 1.176269 0.317238 1.427971 5.809329 0.478835
2 1.980796 0.758090 1.089533 4.783857 0.439563
3 3.342936 2.192292 1.165435 5.243208 0.442916

4 1 1.032407 0.200340 1.428066 5.769452 0.433544
2 1.607853 0.419582 1.034273 4.545319 0.402868
3 2.353738 0.818429 0.960222 4.456850 0.384355
4 3.672668 2.215357 1.125735 5.148646 0.405266

5 1 0.941485 0.140200 1.435034 5.770563 0.397705
2 1.396095 0.275561 1.010501 4.434915 0.376006
3 1.925490 0.467458 0.884936 4.184263 0.355083
4 2.639237 0.848634 0.894118 4.309556 0.349046
5 3.931026 2.223292 1.103565 5.10049 0.379309

6 1 0.878344 0.104627 1.444981 5.792928 0.368262
2 1.257193 0.198458 0.999934 4.377394 0.354350
3 1.673900 0.314001 0.848722 4.053974 0.334762
4 2.177080 0.494318 0.806325 4.019609 0.322946
5 2.870315 0.865602 0.854299 4.227841 0.324138
6 4.143168 2.224805 1.089838 5.073163 0.360010

Table 3: The statistical measures of record values from Lindley Pareto distribution
β = 0.5, θ = 5.0, α = 0.2, (k = 1)

r Means Variances Skewness Kurtosis CV
1 0.314667 0.017998 2.969294 18.75761 0.426341
2 0.447613 0.046508 2.284247 12.32454 0.481792
3 0.598546 0.087227 1.977006 9.959527 0.493432
4 0.767239 0.141830 1.787412 8.665135 0.490855
5 0.953512 0.211973 1.652736 7.824828 0.482852
6 1.157217 0.299300 1.549403 7.225164 0.472758
7 1.378231 0.405448 1.466066 6.771094 0.462004
8 1.616451 0.532041 1.396607 6.412882 0.451243
9 1.871790 0.680693 1.337343 6.121720 0.440777
10 2.144171 0.853021 1.285807 5.879600 0.430746
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Table 4: The statistical measures of record values from Lindley Pareto distribution
β = 1.0, θ = 5.0, α = 0.5, (k = 2)

r Means Variances Skewness Kurtosis CV
1 0.559028 0.003391 1.931688 8.473951 0.104163
2 0.617254 0.006626 1.353308 5.675314 0.131870
3 0.674808 0.009744 1.095115 4.771024 0.146275
4 0.731792 0.012769 0.943648 4.305256 0.154413
5 0.788287 0.015718 0.845134 4.000322 0.159041
6 0.844356 0.018615 0.766371 3.861982 0.161587
7 0.900053 0.021463 0.707878 3.741856 0.162770
8 0.955422 0.024269 0.662086 3.645371 0.163054
9 1.010498 0.027044 0.623771 3.576338 0.162742
10 1.065312 0.029792 0.591635 3.519405 0.162020

Table 5: The statistical measures of record values from Lindley Pareto distribution
β = 1.0, θ = 7.5, α = 1.5, (k = 3)

r Means Variances Skewness Kurtosis CV
1 1.575149 0.005593 1.965421 9.096353 0.047478
2 1.649928 0.011082 1.389168 5.857314 0.063803
3 1.724367 0.016485 1.128670 4.881361 0.074458
4 1.798495 0.021809 0.973299 4.418928 0.082112
5 1.872334 0.027069 0.866507 4.127081 0.087872
6 1.945909 0.032263 0.780445 4.341263 0.092305
7 2.019237 0.037404 0.730204 3.774945 0.09578
8 2.092335 0.042502 0.680293 3.693431 0.098531
9 2.165221 0.047549 0.641585 3.599512 0.100709
10 2.237906 0.053991 0.181780 2.097306 0.103829

6. Conclusion

In this paper, we studied the Lindley Pareto distribution, a newly defined three-parameter distribution that provides
a more flexible model for lifetime data analysis. This study focused on the moment properties of GOS, which
offers a unified approach to several models of order random variables from the Lindley Pareto distribution. The
exact and explicit expression for single moment of GOS from the Lindley Pareto distribution is driven. Further,
the recurrence relations between them for the single and product moments of GOS are also discussed. The exact
expression of moments for order statistics, record values, and progressive type-II right censored order statistics are
studied as a particular case of GOS. Moreover, the characterization of probability distribution through recurrence
relations are also discussed. The first four moments of order statistics and record values for the different values of
parameters are computed. Finally, some statistical measures of order statistics and record values for the Lindley
Pareto distribution are computed.
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