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Abstract Growing apprehension among internet users regarding cyber-security threats, particularly Distributed Reflective
Denial of Service (DRDoS) attacks, underscores a pressing issue. Despite considerable research endeavors, the efficacy
of detecting DRDoS attacks remains unsatisfactory. This deficiency calls for the development of pioneering solutions to
enhance detection capabilities and fortify cyber defenses against this sophisticated subtype of Distributed Denial of Service
(DDoS) attacks. Our study addresses this challenge by utilizing four distinct machine learning algorithms: SVM, DT, RF,
and LR, supplemented by PCA. Leveraging the “CIC Bell DNS 2021 dataset, our experiments produce compelling results.
Specifically, both DT and RF algorithms exhibit exceptional performance with 100% accuracy and perfect F1 scores. This
remarkable performance holds true with or without PCA-based feature reduction, except for dataset 4. Consequently, our
research highlights the potential of machine learning in detecting and mitigating DRDoS attacks, offering valuable insights
for bolstering cybersecurity measures against evolving threats.
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1. Introduction

In this era, cyber-attacks have emerged as a widespread concern for a substantial portion of internet users.
Among the array of cyber threats, Denial of Service (DoS), Distributed Denial of Service (DDoS), and the
newer Distributed Reflection Denial of Service (DRDoS) attacks hold particular prominence. The DRDoS attack,
a variant of DDoS, has gained increasing attention due to its distinct characteristics and assault methodology,
posing formidable challenges for mitigation. These attacks exploit reflection techniques to magnify their impact,
complicating efforts to counteract them effectively. Consequently, defending against DRDoS attacks necessitates
the implementation of advanced strategies and technologies to mitigate their disruptive potential [1]. In a DRDoS
attack, the perpetrator utilizes a falsified source IP address belonging to the victim to instigate outdated requests
toward numerous servers. Subsequently, these servers respond by dispatching messages to the targeted PC.
Importantly, these responses often surpass the size of the victim’s original requests, a phenomenon recognized
as amplification attacks. This method furnishes two key advantages to the attacker: anonymity and amplification.
By leveraging the victim’s IP address, the attacker obfuscates the victim’s true location, complicating efforts to
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trace the origin of the assault. Moreover, amplification enables the attacker to dramatically escalate the volume of
traffic directed at the victim, thereby intensifying the impact of the attack [2].

The amplification factor of Distributed Denial of Service (DDoS) attacks can cause an exponential increase
in the amount of traffic directed towards the victim, making them especially harmful. This makes managing and
mitigating it challenging, particularly for businesses without strong cybersecurity safeguards. If the attack serves
as a distraction from other malicious activities, the repercussions may include downtime, lost revenue, reputational
harm, and possible breaches. Furthermore, since the legitimate servers are frequently ignorant of their involvement
in the attack, using them to amplify attacks further complicates the process of tracking down and stopping the
source[3]. In the landscape of DDoS attacks, the DRDoS tactic has been utilized by 39 percent of attackers,
marking its prominence in the realm of cyber assaults. Over the span of more than a decade, DRDoS attacks
have maintained their status as a dependable and potent form of DDoS attack. Despite efforts to mitigate them,
these attacks seem resilient and difficult to thwart. Their enduring effectiveness and increasing popularity suggest
that they remain a formidable threat in the cybersecurity domain, posing ongoing challenges to defenders [4, 5].
To execute devastating attacks aimed at inundating networks, incapacitating websites, and disrupting corporate
targets, DRDoS attackers have resorted to exploiting various protocols on Internet-connected devices and servers.
These protocols, including DNS (Domain Name System), NTP (Network Time Protocol), SNMP (Simple Network
Management Protocol), and SSDP (Simple Service Discovery Protocol), among others, have been manipulated
by attackers to amplify their assault capabilities significantly. By exploiting vulnerabilities in these widely used
protocols, DRDoS attackers can amplify the volume of traffic directed towards their targets, intensifying the impact
of their attacks and maximizing the disruption caused to their victims [6].

The Domain Name Service (DNS) plays a crucial role in the functioning of the internet by translating numerical
IP addresses into domain names, facilitating user-friendly access to websites. When users input web addresses
into their browsers, DNS resolvers resolve these addresses by querying DNS servers, which then respond with
the corresponding IP addresses. However, in a DRDoS DNS attack scenario, attackers manipulate this process by
first spoofing the user’s IP address. Subsequently, they initiate DNS queries to DNS servers using the spoofed
IP address. As a result, the legitimate user receives unwanted responses from the DNS server, leading to a flood
of traffic directed towards the victim, thereby disrupting their online services [7]. NetBIOS, originally developed
by IBM and later adopted by Microsoft, serves as a network system facilitating various network services and
enabling communication between computers on a LAN network. It operates by establishing connections between
computers and allowing software applications to interact. Communication within this system relies on specific
protocols known as NetBIOS frames for transmitting data between network devices. NetBIOS, which stands for
Network Basic Input/Output System, is typically used over TCP/IP but functions at the Session layer (Layer 5) of
the OSI model. [8]. The 16-character NetBIOS names are used by software applications as identifiers. The initiation
and termination of NetBIOS Sessions are controlled by commands sent by clients. In the context of cyber-attacks,
attackers initiate the assault by sending NetBIOS queries or commands to the victim’s devices. Through spoofing
techniques, attackers manipulate the victim devices to appear legitimate and induce them to send a high volume of
requests to target devices, thereby disrupting their functionality [9, 10].

In a DRDoS NTP attack, the Network Time Protocol (NTP) serves as a conduit for attackers to synchronize
time across Internet servers. The attack begins with the attacker identifying the IP address of the victim machine.
Subsequently, the attacker inundates the NTP server with a substantial volume of UDP packets. These packets
are designed to support the MONLIST command, a feature of the NTP protocol that provides a list of the most
recent IP addresses querying the NTP server. Upon receiving the MONLIST command, the NTP server compiles
the list and forwards it to the source IP address, which has been spoofed by the attacker. This manipulation of
the NTP server’s functionality results in a flood of responses being directed towards the victim, overwhelming
its resources and causing disruption to its operations [11]. The User Datagram Protocol (UDP) operates as a
connectionless protocol, eliminating the need for a host-to-host connection. Working at the transport layer, UDP
transmits Datagrams across the network. Unlike some other protocols, UDP does not inspect source IP addresses,
making it an attractive choice for attackers. Exploiting this characteristic, attackers forge IP packet Datagrams,
allowing them to include a falsified source IP address. In a typical scenario, the attacker duplicates the victim’s IP
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address across a vast number of UDP packets. Consequently, when the target machine responds, it does so to the
victim machine, unwittingly facilitating the attacker’s malicious intentions [12, 13].

This paper explores the effectiveness of various machine learning algorithms, including (SVM), (DT),(RT), and
(LR), in detecting DRDoS attacks. It examines both scenarios: detecting these attacks without feature reduction
and with feature reduction using PCA. By employing these algorithms, the study aims to develop robust detection
mechanisms to safeguard internet users against DRDoS attacks. Through comparative analysis, the paper evaluates
the performance of each algorithm in accurately identifying and mitigating these malicious activities, thereby
contributing to the enhancement of cybersecurity measures in the digital landscape. The key contributions of this
paper include:

* We propose a machine learning-based model for identifying Distributed Reflection Denial of Service
(DRDoS) attacks using a technique for optimizing features.

* Four machine learning algorithms, namely SVM, LR, RF, and DT, were employed for detecting DRDoS
attacks.

* Initially, these four algorithms apply without considering the feature reduction technique. Then, the feature
reduction technique was taken into account when applying these four algorithms.

* Additionally, We assess the performance of the proposed algorithm using recall, F1-score, accuracy, and
precision efficiently.

The paper proceeds with Section 2, providing an in-depth exploration of related research on DRDoS attacks.
Section 3 outlines the methodology utilized for DRDoS attack detection. In Section 4, experimental results are
showcased, supported by pertinent tables for clarity and analysis. Section 5 encapsulates conclusive findings and
insights drawn from the study. Finally, Section 6 includes references for further exploration and validation of the
presented findings.

2. Literature Reviews

The author’s study [14] involved a thorough analysis of administered reflection denial of service attacks, with a
focus on distinguishing between DRDoS attacks that are based on TCP and UDP. Through rigorous analysis, the
author elucidated and described the distinctions in the methodologies and impacts inherent to these two variants of
attacks. This examination provided valuable insights into the unique characteristics and strategies employed by TCP
and UDP-based DRDoS attacks, shedding light on their respective strengths and weaknesses. Overall, the study
contributed to a deeper understanding of the nuanced dynamics within the realm of DRDoS attacks, informing
more targeted and effective mitigation strategies. In their paper [1], the authors introduced a novel proactive
feature selection model aimed at detecting DRDoS assaults, leveraging improved optimization techniques. Their
model is based on proactive feature selection (PFS) and integrated machine learning methods, including KNN,
RF, and SVM, for predicting DRDoS assaults. Through this approach, they achieved an accuracy rate of 89.59
percent, demonstrating the efficacy of their methodology in identifying such cyber threats. An enhanced method
for validating source IP addresses is suggested in the paper [15] to stop DDoS attacks in 5G networks. This
strategy involves enhancing the User Plane Function (UPF) within the 5G core network. The study demonstrates
that increasing the Packet Inspection Rate (PIR) through this method effectively deters DRDoS attacks.

According to Xu et al. [16], the authors presented a DRDoS Detection based on Deep Forest and Defense Method
in order to integrate Deep Forest, IoT, Big Data, and other techniques within a Big Data environment. By achieving
a greater detection rate and a lower false alarm rate in comparison to current techniques, their research proved the
effectiveness of their technology for DRDoS defense and detection. This comprehensive approach underscores the
potential of leveraging diverse techniques to enhance cybersecurity against DRDoS attacks. In order to prevent
DRDoS attacks, the authors of the paper [17] proposed a cloud-based defense that uses cloud infrastructure. Their
strategy makes use of cloud resources to efficiently lessen the effects of DRDoS attacks. In the paper [18], The
authors suggested “Visualization of Actionable Knowledge to Mitigate DRDoS Attacks”, a technology and strategy
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that gives Internet service providers (ISPs) ways to effectively defend against such attacks.A machine learning-
based approach for detecting and evaluating DDoS attacks was presented by the author of the paper [19]. This
method computed metrics such as the overall success rate, detection rate, and false positive rate. In their paper
[20], To counteract DDoS attacks, the authors presented the Protocol Independent Detection and Classification.
Effectively detecting and classifying DDoS attacks, this system uses machine learning and data mining algorithms,
like the C4.5 classification algorithm. At 99% true positive and less than 1% false positive, their method worked
wonderfully. The response packet confirmation system that the authors of the paper [21] developed is a model for
DRDoS attack detection. This system presents a straightforward and cost-effective approach to detection within
the research context.

In their study [22], the authors introduced a method for detecting Reflection Amplification (RA) attacks targeting
the UDP Protocol, utilizing classification and analysis techniques specific to RA attacks. Additionally, they
employed a detection algorithm and assessed its reliability in identifying and mitigating such attacks. The authors
of the paper [23] introduced a mechanism titled “DRDoS attacks within Mobile Ad Hoc Networks (MANETS)
are addressed by CARD (Continuous and Random Dropping) based DRDoS Attack Detection and Prevention
Techniques in MANET”. Their proposal entails leveraging CARD technology for detecting and preventing such
attacks, offering a specialized solution tailored to the challenges of MANET environments. A model for DRDoS
attack detection was created by the authors of the paper [21], using a response packet confirmation system. Their
approach achieved a high true positive rate of 99 percent and a low false positive rate of 1 percent, while also
demonstrating a 98 percent accuracy in categorizing attacks.

In order to counter advanced SIP-DRDoS attacks that take advantage of SIP feature vulnerabilities, the study [24]
presents a novel defense mechanism. The defense mechanism comprises statistics, inspection, and action modules
to mitigate such attacks effectively. Through experimentation in a simulated VoIP/SIP environment, the proposed
defense mechanism successfully detects and mitigates SIP flood attacks, significantly reducing CPU usage on the
SIP server. Overall, this approach represents a substantial improvement over existing defense mechanisms, offering
effective protection against SIP-based DRDoS attacks in VoIP systems. WSN play a crucial role in data collection
and transmission, with small sensor nodes being the primary components vulnerable to intrusion due to their
disorganized layout. The increasing digitization of human activities, accelerated by the COVID-19 pandemic, has
led to a surge in cyberattacks like DDoS and DRDoS, posing significant threats to Internet-based systems. Because
of the shortcomings of existing detection techniques and the growing danger associated with the proliferation of
IoT devices, this study offers a thorough overview of the related work for DDoS and DRDoS attack detection on
deep learning .[25, 26, 27, 28, 29].

In summary, a considerable body of research has focused on introducing various models for detecting cyber
attacks, including DoS, DDoS, and DRDoS. Yet, these models often reveal limitations within their proposed
frameworks. In response, our research aims to devise a novel approach precisely designed to detect DRDoS attacks
while mitigating the deficiencies observed in prior models. By tackling these limitations head-on, our proposed
model seeks to bolster the effectiveness and precision of cyber attack detection mechanisms, particularly in the
realm of DRDoS incidents.

3. Proposed Methodology for DRDoS Attack Detection

In our study, we introduce a machine learning model designed for identifying DRDoS attacks, employing a
Features Optimization Technique. Initially, we load the dataset and execute various data preprocessing techniques.
Subsequently, we apply two methods: one without feature reduction and the other utilizing PCA for feature
reduction. The dataset is then split into two portions: 70% for training and 30% for testing. We utilize machine
learning algorithms such as SVM, LR, DT, and RF to construct optimal models. Following this, we assess
all models using performance evaluation metrics, including accuracy, precision, and fl-score, and apply cross-
validation to validate their efficacy. Finally, we select the best-performing model for further analysis. Figure 5
represents the DRDoS Attack Detection Methodology.
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Figure 1. Proposed Architecture for DRDoS Attack Detection

3.1. Dataset

413

The study utilizes datasets openly accessible through the Canadian Institute for Cybersecurity (CIC). These datasets
consist of four sets, each containing 100,000 data points. They form the basis for the analysis and evaluation
conducted in the research.The "Benin” or "DRDoS Attack™ class is present in all four datasets’ label columns.
Table 1 shows the information about datasets.

Table 1. Dataset Description

Dataset Dataset Name No. of Features | Class

Dataset-1 | DRDoS-DNS 88 Benin/DRDoS
Dataset-2 | DRDoS-NetBIOS | 88 Benin/DRDoS
Dataset-3 | DRDoS-UDP 89 Benin/DRDoS
Dataset-4 | DRDoS-NTP 89 Benin/DRDoS

Stat., Optim. Inf. Comput.

Vol. 13, January 2025



414 A PREVALENT MODEL-BASED ON MACHINE LEARNING FOR IDENTIFYING DRDOS ATTACKS

3.2. Methods

In this study, multiple datasets were employed to facilitate the detection of DRDoS attacks. Prior to analysis,
preprocessing of the datasets was conducted, wherein a label encoding technique was utilized to convert string
data into numerical data. The research methodology encompassed two distinct approaches: Method-1 involved
detecting DRDoS attacks without employing feature reduction techniques, while Method-2 incorporated feature
reduction through Principal Component Analysis (PCA). By comparing the outcomes of these two methods, the
effectiveness of feature reduction in enhancing DRDoS attack detection performance could be evaluated.

Method-1:The dataset was split into training and testing sets after the pre-processing stage was finished, with
70% of the data going toward training and the remaining 30% going toward testing. Subsequently, each of the four
machine learning algorithms (SVM, LR, RF, DT) was trained using the training data to develop individual models.
The performance of each model was then assessed using the test data to evaluate their effectiveness in detecting
DRDoS attacks. Notably, this approach did not incorporate feature reduction techniques.

Method-2: After applying the PCA technique for feature reduction, features that contribute to 95% of the
dataset’s variance were selected to inform decision-making. Following this feature reduction step, 70% of the
data was utilized to train individual machine learning algorithms (SVM, LR, RF, DT) and develop respective
models. Subsequently, the performance of each model was evaluated using the remaining test data to assess their
effectiveness in detecting DRDoS attacks. This approach integrated PCA for feature reduction to enhance the
efficiency and efficacy of the detection process.

3.3. Algorithm of DRDoS attack Detection:

A step-by-step process or collection of guidelines for resolving a specific issue or completing a given task is
called an algorithm. It is essentially a finite sequence of well-defined instructions that can be executed to achieve
a desired outcome. Fundamental to computer science, algorithms are widely employed in a variety of disciplines,
such as engineering, data science, Al and mathematics. Algorithms are central to the development of software and
are used in a wide range of applications, including search engines, recommendation systems, image processing,
cryptography, and machine learning. Understanding algorithms and their properties is essential for computer
scientists, software engineers, and anyone working in the field of computing.

The ”’Algorithm 1” begins with loading the dataset into memory, which serves as the initial step
preceding any data processing or modeling efforts.Following the dataset loading, it undergoes preparation for
modeling, involving tasks such as handling missing values, outliers, encoding categorical variables if needed,
and normalizing/standardizing numerical features to ensure consistency and enhance model performance.The
preprocessed dataset undergoes two distinct approaches. One method entails modeling without feature reduction,
while the other employs Principal Component Analysis (PCA) for dimensionality reduction, preserving the
dataset’s variance. Subsequently, the dataset is partitioned into training and testing subsets, with a standard
allocation of 70% for training to enable pattern learning and 30% for evaluating model performance on unseen
data.During the training phase, a variety of machine learning algorithms (e.g., SVM, Random Forest, Logistic
Regression, Decision Trees) are trained on the training data. Subsequently, the trained models undergo evaluation
using cross-validation techniques (e.g., k-fold cross-validation) on the testing data to estimate performance metrics
such as accuracy, precision, recall, and F1 score. Furthermore, the obtained performance metrics from each model
are compared to identify the best-performing algorithms. Additionally, the impact of feature reduction using PCA
on model performance is analyzed. Based on the evaluation metrics, the best-performing model(s) are selected
for deployment, with an expectation of good generalization to new/unseen data. These selected model(s) are then
deployed to make predictions on new data in real-world scenarios.After selecting the best-performing model(s),
deploy them to make predictions on new or unseen data. Periodically monitor and evaluate the deployed model(s)
to ensure continued performance. Make necessary adjustments as needed based on the evaluation results. This
ensures that the deployed model(s) maintain their effectiveness over time and adapt to any changes in the data or
environment.
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Algorithm 1 Data Processing and Model Evaluation

procedure STEP-1: LOAD DATASET
end procedure
procedure STEP-2: PREPROCESS DATASET
a. Handle missing values.
b. Handle outliers.
¢. Encode categorical variables if necessary.
d. Normalize/standardize numerical features.
end procedure
procedure STEP-3: APPLY TWO APPROACHES
a. Approach 1: Without feature reduction.
b. Approach 2: With feature reduction using PCA.
end procedure
procedure STEP-4: SPLIT DATASET
a. Training data: 70% of the dataset.
b. Testing data: 30% of the dataset.
end procedure
procedure STEP-5: FOR EACH APPROACH
a. Use the training data to build Al models:
i. Train different machine learning algorithms (e.g., SVM, Random Forest, Logistic Regression, Decision
Trees) on the training data.
b. Test the models using cross-validation on the testing data:
i. Perform k-fold cross-validation (e.g., k=5) on each model.
ii. Evaluate the performance metrics (e.g., accuracy, precision, recall, F1 score) for each model.
end procedure
procedure STEP-6: COMPARE MODEL PERFORMANCE
a. Compare the mean performance metrics across different algorithms.
b. Analyze the impact of feature reduction using PCA on model performance.
end procedure
Step-7: Select the best-performing model(s) based on the evaluation metrics.
Step-8: Deploy the selected model(s) for making predictions on new/unseen data.
Step-9: Monitor and evaluate the deployed model(s) periodically to ensure continued performance and make
necessary adjustments as needed.

3.4. Machine Learning Algorithm

Machine learning algorithms such as SVM, DT, RF, and LR play a pivotal role in detecting DRDoS attacks
efficiently. Each algorithm offers distinct features and capabilities, contributing to the effectiveness of detection
methodologies. Through individual examination, researchers can gain insights into the strengths and limitations of
SVM, DT, RF, and LR in the context of DRDoS attack detection.

3.4.1. Decision Tree Algorithm(DT): The decision tree algorithm finds extensive application in data classification
across various domains. It establishes a hierarchical structure wherein nodes correspond to dataset features,
while branches represent decision rules derived from these features. At each node, the algorithm optimizes
classification accuracy by selecting the best split, progressing recursively until reaching leaf nodes that determine
final outcomes. This iterative evaluation of features enables decision trees to proficiently organize and classify data,
accommodating both categorical and numerical data types. Additionally, their interpretability aids in elucidating
underlying data patterns and justifying classification decisions. [30]. The Random Forest algorithm follows this
operational procedure:

 Selecting the target attribute.
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* Compute Information Gain with respect to the desired attribute.
* Applying the following formula to find the entropy of the other characteristics:

n

Entropy(s) = > (~Pilog, ;) (1) ¢))
i=1

* Determining the Gain(G) using the following formula::

n

Gain(S, A) = Entropy(s) — Z <i:) X Entropy(Sv)> 2)

i=1

3.4.2. Support Vector Machine(SVM): Support Vector Machine serves as a versatile tool for both classification
and regression tasks, effectively partitioning n-dimensional space into distinct categories using optimal decision
boundaries. The identification of support vectors, located closest to these boundaries, plays a critical role in
defining the margin of the decision plane, thus augmenting SVM'’s capacity for generalization and resilience to
novel data. Its efficiency in accurately allocating future data points to their respective categories underscores its
utility in scenarios demanding precise decision boundaries for accurate classification or regression. Overall, SVM’s
adaptability and effectiveness make it a powerful asset across various domains in machine learning. [31]. figure 2
depicts a classifier implemented using the Support Vector Machine algorithm.

A 4

Figure 2. Support Vector Machine(SVM)

The equation for a support vector machine (SVM) can be represented as follows:

minimize <;w|2 + C;fz> )

yl(wxz+b) 21_€l7 szOa 22172,,7’1 (4)

Where w represents the weight vector, b is the bias term, C' is the regularization parameter, x; is the feature
vector of the i-th training example, y; is the label of the i-th training example, and ¢; are slack variables.

3.4.3. Random Forest(RF): Random Forest, a renowned ensemble learning technique, constructs multiple
decision trees by utilizing random subsets of features and training data, then combines their predictions for
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final outcomes. Its versatility extends to both regression and classification tasks, while its ability to handle large
datasets and reduce noise enhances its standing in the machine-learning community. Recognized for its adaptability,
simplicity, and efficiency, Random Forest remains a highly favored approach in various application domains. Its
amalgamation of diverse decision trees allows for robust predictions, contributing to its widespread adoption and
continued relevance in modern machine learning practices[32]. Figure 3 depicts a classifier implemented using the
Random Forest algorithm.

Input data
DT DT DT DT DT : -« | DT
[T
E 4
@ Majority .
Votes
Bening | DRDoS Attack |
by Fi
\‘\.._ .-"/

Figure 3. Random Forest

The operational procedure of the Random Forest algorithm is outlined as follows:

Training Phase:

e Let X represent the feature matrix containing m features and n samples. X = {x1, 9, ...,2,}, Where
x; € R™,

e Let Y be the target vector with corresponding labels for the n samples: Y = {y1, 92, ..., yn }, Where y; €
{1,2,..., K} for classification (with K classes) or y; € R for regression.

e Let T be the number of decision trees in the forest.

¢ For each decision tree t = 1,2, ..., 71"

— Randomly sample X; and Y; from X and Y with replacement (bootstrap sample).
— Choose a portion of the features at random for every decision tree split.
— A DT trains by using X; and Y;.

Prediction Phase:

* For each new sample z,.y, predict its label using each decision tree in the forest.
« Utilize majority voting in the classification process to identify the final anticipated class.
* The final prediction for regression should be the mean of all the decision trees’ predictions.

3.4.4. Logistic Regression(LR): One popular machine learning method for binary classification problems is
logistic regression (LR). It is used to ascertain if an input is benign or not. Logistic regression (LR), sometimes
referred to as the log-linear classifier, logit regression, or maximum-entropy classifier (MaxEnt), uses the sigmoid
function to generate predictions. In this method, a linear equation (equation 1) is calculated for the input data values,
denoted by A = Al, A2, A3, ... An. The logit function, described by equation (3), is then applied to transform the
outcome of the linear equation into a probability between 0 and 1. Equation (1) plays a crucial role in calculating
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the regression coefficient using maximum likelihood estimation (MLE). Overall, LR serves as a powerful tool for
classification tasks, leveraging mathematical functions to make accurate predictions based on input data [33].

W7 =max» (Y- W;4A,) ()]
j=1
r=Y; - WTA, (6)
POy = — L )
1+ exp(—r)

When P(r) > 0.5, it displays the likelihood that the input instance is a DDoS attack, whereas when P(r) < 0.5,
it indicates the likelihood that the input instance is benign. The data points are denoted by Y.

3.5. Feature Importance Analysis

The process of figuring out which features (or variables) in the dataset have the biggest impact on a model’s
prediction is known as feature importance analysis. It is essential for figuring out which features have the greatest
influence, enhancing model performance, and comprehending the decision-making process of the model. In this
work, the contribution of each feature to the model’s predictions is revealed by the importance scores, which are
directly analyzed in tree-based models such as RF and DT. The coefficients are analyzed for SVM and LR with a
linear kernel to determine how each feature affects the detection of DRDoS attacks. PCA is also used for feature
reduction, which reduces the size of the original features into a smaller group of uncorrelated components that
represent the majority of the variance in the dataset of DDoS attacks. Through this process, important patterns
can be found, noise and redundancy can be removed, and the data can be more easily managed for modeling and
visualization.Next, we will provide a detailed discussion of Principal Component Analysis (PCA) in the upcoming
section.

3.5.1. Principal Component Analysis (PCA): PCA is a technique used for dimensionality reduction in machine
learning [34]. It identifies the most important features in a dataset by transforming the data into a new
coordinate system. PCA aims to capture as much of the dataset’s variability as possible with a smaller number
of dimensions.By determining the eigenvalues and eigenvectors of the data’s covariance matrix, it accomplishes
this. The principal components, also referred to as eigenvectors, show which directions in the data have the greatest
variance. PCA makes it possible to reduce the dimensionality of the dataset while maintaining the highest level of
information. It helps to alleviate the curse of dimensionality, reduce computational complexity, and visualize high-
dimensional data. PCA is sensitive to scaling, so it is often preceded by standardization of the features. It is widely
used in various fields such as image processing, genetics, and finance for exploratory data analysis and feature
extraction. [35]. In this study, four machine learning algorithms (SVM, DT, RF, and LR) were trained to detect
denial-of-service (DRDoS) attacks using features that were selected through feature reduction using Principal
Component Analysis (PCA), which yielded features that account for 95% of the variance in the dataset.

Following steps for PCA:

¢ The dataset is obtained.
* Putting data into an organized format.
e Data standardization.

* Determining the Covariance matrix.
1 _ _
Y= (X - X)X - X) (8)

* Compute Eigen Vectors and Eigen Values as following equation:

Av = \v )]
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Where A is a square matrix, A is a scalar known as the eigenvalue, and v is a non-zero vector known as the
eigenvector associated with the eigenvalue .

In a scatter plot of two variables, the covariance curve visually represents how the covariance between those
variables changes as one variable varies while the other is held constant. A positive covariance, or the tendency for
one variable to increase along with another, is indicated by an upward-sloping curve. A downward-sloping curve
denotes a negative covariance, which implies that one variable tends to decrease as the other increases. If the curve
is flat, it implies no covariance between the variables. We have now plotted the covariance curve for the entire
dataset in our study.
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Figure 4. Covariance Curve for all datasets

3.6. Performance parameters

In our study, we utilized four distinct datasets and applied various machine learning models for training. We
used important metrics like F1 score, Accuracy, Precision, and Recall to evaluate each model’s performance. The
confusion matrix, a vital tool for assessing model performance, is the source of these metrics. While the confusion
matrix itself does not offer direct performance measures, it plays a crucial role in computing other essential metrics.
To gain deeper insights into the classification performance of the models, we visually represented the confusion
matrix in a figure. This visualization aided in understanding the model’s ability to accurately classify instances and
guided further analysis. Overall, this methodology provided a comprehensive framework for evaluating the efficacy
of each machine learning model in identifying DRDoS attacks. Figure 5 shows the confusion matrix diagram.

Here’s the description of the parameters in a confusion matrix:

* True Positive (TP): When the algorithm predicts a positive outcome, and it is actually true, it is referred to
as True Positive.
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Normal Attack

R ERENVCE False Negative

Normal

False Posiive True Positive
(FP) (TP)

------ Predicted Data ------

Attack

Figure 5. Confusion Matrix Diagram

* False Positive (FP): When the algorithm predicts a positive outcome, but it is actually false, it is termed
False Positive.

« False Negative (FN): FN refers to an algorithm’s prediction of a negative outcome that turns out to be true.

* True Negative (TN): When the algorithm predicts a negative outcome, and it is actually false, it is known as
True Negative.

In Table [2],We outline critical performance measures, such as F1-score, Accuracy, Precision, and Recall, that
are necessary to assess how well each model detects DRDoS attacks.

Table 2. Performance Measurement Parameters

Metrics Formula
(TP¥TN)
Accuracy (TPIFP+ (FNTTN] X 100
Precision % x 100
TP
Recall m XlOO
Fl-score | 2 x % x 100

Accuracy represents the overall rate of correct predictions made by a classifier. Precision measures the percentage
of accurate predictions of a specific class among all predictions for that class. Recall quantifies the proportion
of accurately predicted instances of a particular class out of all instances belonging to that class. The F1-score
combines precision and recall to provide a single metric that reflects the reliability and accuracy of the classifier. It
is particularly useful when there is an imbalance between the classes in the dataset.[36].

3.7. Receiver Operating Characteristic (ROC) Curve

A graphical tool for assessing the effectiveness of binary classification models is the ROC curve. It displays, for a
range of threshold values, the true positive rate (Sensitivity) versus the false positive rate (1-Specificity). A visual
evaluation of the trade-off between sensitivity and specificity is provided by the curve. A model that performs
better overall in differentiating between the two classes is indicated by a higher area under the ROC curve (AUC).
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When there is an imbalance in the class distribution or a difference in the cost of false positives and false negatives,
ROC curves are especially helpful. They help determine the ideal threshold for classification decisions and provide
insightful information about a classifier’s discriminatory power. The True Positive Rate (TPR) and False Positive
Rate (FPR) can be defined mathematically as follows:

True Positives
True Positives + False Negatives
False Positives

True Positive Rate (TPR) =

False Positive Rate (FPR) = . :
v EPR) False Positives + True Negatives

These rates are calculated for various threshold values used to convert the continuous output of a classifier (e.g.,
probability score) into binary predictions. By varying the threshold, we can generate different points on the ROC
curve, with each point representing the trade-off between TPR and FPR at a specific threshold.

4. Experiment Results and Discussion

We have covered the outcomes of all four models for every dataset in this section. Initially, we talked about the
outcomes using five times the number of models for each dataset, both with and without feature reduction using
PCA. Second, we display an overview of all the findings. The authors employed four machine learning algorithms,
namely Support Vector Machine (SVM), Logistic Regression (LR), Random Forest (RF), and Decision Tree (DT),
across two approaches for each of the four datasets. Additionally, they conducted 5-fold cross-validation for each
algorithm. Subsequently, they observed and documented the findings.

4.1. Result Analysis of Dataset 1

In Dataset-1, the RF and DT classifiers both demonstrate the best performance, achieving 100% accuracy without
feature reduction. Meanwhile, the SVM and LR classifiers achieve accuracies of 98% and 99%, respectively, under
the same conditions. Furthermore, RF and DT exhibit 100% precision, recall, and F1-score, while SVM and LR
achieve 49.8% and 88.2% F1-score, respectively, along with 59.2% and 89.4% precision, and 50% and 87.6%
recall, respectively, without feature reduction.However, in the feature reduction using PCA approach, both the RF
and DT classifiers continue to demonstrate the best performance, achieving 100% accuracy. Meanwhile, the SVM
and LR classifiers achieve accuracies of 99% and 98%, respectively, under the same conditions. Additionally, RF
and DT exhibit 97.2% and 97% F1-score, 98.4% and 97.8% precision, and 96.4% and 96.4% recall, respectively.
In contrast, SVM and LR achieve 66.6% and 61.4% F1-score, along with 98.6% and 93.6% precision, and 60.2%
and 56.4% recall, respectively.

4.2. Result Analysis of Dataset 2

In Dataset-2, RF and DT classifiers both demonstrate the best performance, achieving 100% accuracy without
feature reduction. Meanwhile, the SVM and LR classifiers achieve accuracies of 99.19% and 99.89%, respectively,
under the same conditions. Furthermore, RF and DT exhibit 100% precision, recall, and F1-score, while SVM and
LR achieve 60.2% and 86.4% F1-score, respectively, along with 60% and 87.8% precision, and 60.2% and 86.4%
recall, respectively, without feature reduction.But in the feature reduction using PCA approach, both the RF and DT
classifiers continue to demonstrate the best performance, achieving 100% accuracy. Meanwhile, the SVM and LR
classifiers achieve accuracies of 99.48% and 99.50%, respectively, under the same conditions. Additionally, RF and
DT exhibit 97.4% and 96.8% F1-score, 97.4% and 96.20% precision, and 97.4% and 96.80% recall, respectively.
In contrast, SVM and LR achieve 59.2% and 63.40% F1-score, along with 100% and 95.6% precision, and 55%
and 58% recall, respectively.
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4.3. Result Analysis of Dataset 3

In Dataset-3, RF and DT classifiers both demonstrate the best performance, achieving 100% accuracy without
feature reduction. Meanwhile, the SVM and LR classifiers achieve accuracies of 99.09% and 99.40%, respectively,
under the same conditions. Furthermore, RF and DT exhibit 100% precision, recall, and F1-score, while SVM
and LR achieve 50.2% and 85.2% F1-score, respectively, along with 90% and 90.4% precision, and 50% and
77.8% recall, respectively, without feature reduction.However, in the feature reduction using PCA approach, both
the RF and DT classifiers continue to demonstrate the best performance, achieving 100% accuracy. Meanwhile,
the SVM and LR classifiers achieve accuracies of 99.13% and 99.40%, respectively, under the same conditions.
Additionally, RF and DT exhibit 94.6% and 92.8% F1-score, 96.6% and 92.6% precision, and 92.4% and 92.6%
recall, respectively. In contrast, SVM and LR achieve 52.4% and 65% F1-score, along with 100% and 71.2%
precision, and 51.2% and 61.4% recall, respectively.

4.4. Result Analysis of Dataset 4

In Dataset-4, RF and DT classifiers both demonstrate the best performance, achieving 100% accuracy without
feature reduction. Meanwhile, the SVM and LR classifiers achieve accuracies of 87.60% and 98.75%, respectively,
under the same conditions. Furthermore, RF and DT exhibit 100% precision, recall, and F1-score, while SVM and
LR achieve 80.8% and 96.4% F1-score, respectively. Additionally, SVM and LR achieve precision rates of 94.4%
and 96.40%, and recall rates of 50% and 98%, respectively, without feature reduction. However, in the feature
reduction using PCA approach, both the RF and DT classifiers continue to demonstrate performance, achieving
accuracies of 98.79% and 98.50%, respectively. Meanwhile, the SVM and LR classifiers achieve accuracies of
93.61% and 88.80%, respectively, under the same conditions. Additionally, RF and DT exhibit F1-scores of 97.8%
and 96%, precision rates of 97.4% and 96.20%, and recall rates of 97% and 96.8%, respectively. In contrast, SVM
and LR achieve F1-scores of 80.8% and 57.8%, precision rates of 95.8% and 91.6%, and recall rates of 74.8% and
55.8%, respectively.

4.5. Summary Table of Result Analysis
We have summarized all the results of five fold cross validation and presented them in the following table.

Table 3 presents the mean value derived from five fold cross-validation scores for all machine learning models
applied to dataset-1.

Table 3. Summary of the results for Dataset-1

Dataset 1
Model Method Accuracy | Precision | Recall | F1-Score

SVM . Without Feature.Reduc.tion 98% 59.2% 50% 49.8%
With Feature Reduction Using PCA 99% 98.6% 60.2% 66.6%
LR Without Feature Reduction 99% 89.4% 87.6% 88.2%
With Feature Reduction Using PCA 98% 93.6% 56.4% 61.4%

RE Without Feature Reduction 100% 100% 100% 100%
With Feature Reduction Using PCA 100% 98.4% 96.4% 97.2%

DT Without Feature Reduction 100% 100% 100% 100%
With Feature Reduction Using PCA 100% 97.8% 96.4% 97%

The mean value obtained from five fold cross-validation scores for each ML model used with dataset-2 is
displayed in Table 4.
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Table 4. Summary of the results for Dataset-2

Dataset 2
Model Method Accuracy | Precision | Recall | F1-Score

SVM . Without Feature.Reduc.tion 99.19% 60% 50.4% 60.2%
With Feature Reduction Using PCA | 99.48% 100% 55% 59.2%

LR Without Feature Reduction 99.89% 87.8% 80% 86.4%
With Feature Reduction Using PCA | 99.50% 95.6% 58% 63.4%

RE Without Feature Reduction 100% 100% 100% 100%
With Feature Reduction Using PCA 100% 97.4% 97.4% 97.2%

DT Without Feature Reduction 100% 100% 100% 100%
With Feature Reduction Using PCA 100% 96.2% 96.8% 96.8%

Table 5. Summary of the results for Dataset-3

Table 5 displays the mean value obtained from five fold cross-validation scores for each machine learning model
applied to dataset-3.

Dataset 3
Model Method Accuracy | Precision | Recall | F1-Score

SVM . Without Feature'Reduc'tion 99.09% 90% 50% 50.2%
With Feature Reduction Using PCA | 99.13% 100% 51.2% 52.4%
LR Without Feature Reduction 99.40% 90.4% 77.8% 85.2%

With Feature Reduction Using PCA | 99.04% 71.2% 61.4% 65%

RE Without Feature Reduction 100% 100% 100% 100%
With Feature Reduction Using PCA 100% 96.6% 92.4% 94.6%

DT Without Feature Reduction 100% 100% 100% 100%
With Feature Reduction Using PCA 100% 92.2% 92.6% 92.8%

The mean value derived from five fold cross-validation scores for every ML model used with dataset-4 is

displayed in Table 6.
Table 6. Summary of the results for Dataset-4
Dataset 4
Model Method Accuracy | Precision | Recall | F1-Score

SVM . Without Feature.Reduc.tion 87.60% 94.4% 50% 47%
With Feature Reduction Using PCA | 93.61% 95.8% 74.8% 80.8%
LR Without Feature Reduction 98.75% 96.4% 98% 96.4%
With Feature Reduction Using PCA | 88.80% 91.6% 55.8% 57.8%

RE Without Feature Reduction 100% 100% 100% 100%
With Feature Reduction Using PCA | 98.79% 97.4% 97% 97.8%

DT Without Feature Reduction 100% 100% 100% 100%

With Feature Reduction Using PCA | 98.50% 96.4% 96.8% 96%

4.6. Bar chat representation of Accuracy, Precision, Recall, F1-Score

To visualize the accuracy, precision, recall, fa-score results of all machine learning models across all datasets, bar
chart is presented below.
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4.7. ROC Curve Representation

For dataset-1, employing the without feature reduction technique, both RF and DT algorithms exhibit outstanding
performance, evidenced by a mean ROC area under the curve (AUC) of 1.00 shown in figure 8.
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Figure 8. ROC Curve for dataset-1(without Feature Reduction)

For dataset-1, utilizing the feature reduction technique, RF and DT algorithms continue to demonstrate
exceptional performance, achieving a mean ROC area under the curve (AUC) of 1.00 as seen in figure 9.
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Figure 9. ROC Curve for dataset-1(with Feature Reduction)

Similarly, for dataset 2, RF and DT algorithms showcase superior performance when no feature reduction
strategy is employed, achieving a mean ROC area under the curve (AUC) of 1.00 presented in Figure 10.
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Figure 10. ROC Curve for dataset-2(without Feature Reduction)
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Additionally, for dataset 2, employing the feature reduction strategy, RF and DT algorithms maintain their
superior performance, achieving a mean ROC area under the curve (AUC) of 1.00 displayed in Figure 11.

Figure 11. ROC Curve for dataset-2(with Feature Reduction)

For dataset-3 employing no feature reduction strategy, the RF and DT once more provide the best results with
mean ROC (AUC=1.00) is illustrated in Figure 12.
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Figure 12. ROC Curve for dataset-3(without Feature Reduction)

For dataset-3, when employing the feature reduction strategy, RF and DT algorithms once again demonstrate the
best performance, achieving a mean ROC area under the curve (AUC) of 1.00 is depicted in Figure 13.
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Figure 13. ROC Curve for dataset-3(with Feature Reduction)

Ultimately, for dataset-4, the DT and RF algorithms showcase the highest performance, achieving a mean ROC
area under the curve (AUC) of 1.00, without employing the feature reduction technique is seen in Figure 14.
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Figure 14. ROC Curve for dataset-4(without Feature Reduction)

The DT and RF algorithms ultimately exhibit the highest performance for dataset-4, achieving a mean ROC area
under the curve (AUC) of 1.00 when utilizing the feature reduction technique is despalyed in Figure 15.
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Figure 15. ROC Curve for dataset-4(with Feature Reduction)

4.8. Discussion

While some research has been done on DRDoS attacks in the past, it is not up to date. For this reason, the
authors attempted to propose a novel machine learning model for early detection of DDoS attacks.The author noted
that the Random Forest (RF) and Decision Tree (DT) algorithms both performed remarkably well, continuously

Stat., Optim. Inf. Comput. Vol. 13, January 2025



430

A PREVALENT MODEL-BASED ON MACHINE LEARNING FOR IDENTIFYING DRDOS ATTACKS

producing perfect F1 scores and 100% accuracy in DRDoS attack detection. Except for Dataset 4, this exceptional
performance persisted even when PCA-based feature reduction was used. A few preventative measures are taken
to stop the DRDoS attack.By preventing malicious traffic and managing data flow, network traffic filtering and
rate limiting can be used to lessen the impact of DDoS attacks. Deploy strong security measures as well, such
as intrusion detection systems and firewalls, to find and stop possible attack points. Now we demonstrate the
comparison of our model to existing work conducted by others. The comparison between our suggested method
and the other current method is shown in Table 7.

Table 7. Comparison of DRDoS Attack Detection Methods

Ref. Model + Dataset Algorithms /Methods Major Findings
Nature-inspired
1 Feature Selection Model optimization, 89.59% accuracy
KNN, RF, SVM
Deep Forest, IoT, . .
4 Deep Forest-Based Method Big Data Higher detection rate,
. false alarms
techniques
7 Machine Learning Approach SVM algorithm Dc?ftectlon S.u.c cess rate,
alse positive rates
True positive
8 PIDC System Data mining,C4.5 algorithm faizft:epg(?sioi’v .
rate <1%
10 UDP Protocol-Based Detection algorithm Higher detection rate
11 CARD in MANET Continuous and Random | g o< fully Detected.
Dropping
12 Integrated Approach E-RED, ANT Classification 99% true p0s1.t{ves,
1% false positives
With Feature SVM, LR 98% , 99 %
Dataset-1 Reduction RF,DT 100% ,100 %
Without Feature SVM, LR 99% , 98 %
Reduction RF, DT 100% ,100%
With Feature SVM, LR 99.19% , 99.48 %
Feature Dataset-2 .Reduction RF, DT 100% ,100%
Pro- | Optimization Without F_eature SVM, LR 99.89% , 99.50%
posed + I?eductlon RF,DT 100% ,100%
Model Machine With Fea-ture SVM, LR 99.09% , 99.40%
Learning Dataset-3 Reduction RF,DT 100% ,100%
Without Feature SVM, LR 99.13% , 99.04 %
Reduction RF, DT 100% ,100%
With Feature SVM, LR 87.60% , 98.75%
Dataset-4 Reduction RF,DT 100% ,100%
Without Feature SVM,LR 99.61% , 88.80%
Reduction RF , DT 98.79% , 98.50 %
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5. Conclusion

The paper presents the utilization of four machine learning (ML) algorithms, namely DT, SVM, RF, and LR, for
detecting DRDoS attacks. Additionally, the PCA technique is employed for feature reduction. Both without feature
reduction and with PCA-based feature reduction are explored for optimal results and time efficiency. Evaluation
metrics such as accuracy, precision, Fl-score, and recall are employed to assess the performance of each model.
Experimental findings reveal that RF and DT algorithms outperform SVM and LR, achieving a detection accuracy
of 100% and consistent F1 scores, except for Dataset-4. Notably, the focus of the paper lies solely on detecting
DRDoS attacks without proposing prevention strategies. While the models perform well in an experimental setting,
the paper does not address the challenges of real-time detection, including the computational cost and scalability
of implementing these algorithms in large-scale networks. The study primarily focuses on DT, RF, SVM, and
LR, potentially overlooking other machine learning or deep learning models that might offer better performance
or resilience against DRDoS attacks. Potential areas of future research could include creating and evaluating the
suggested models’ real-time application. To handle massive amounts of network traffic, this might entail evaluating
their scalability, latency, and computational efficiency in a production setting, maybe with the help of distributed
computing systems or streaming data frameworks. Future studies might investigate the application of sophisticated
deep learning models, like Convolutional Neural Networks (CNNs) or Recurrent Neural Networks (RNNs), which
have demonstrated promise in other areas of network security, in order to overcome the drawback of concentrating
on a small number of machine learning models. Furthermore, ensemble learning techniques that combine multiple
algorithms could be studied to enhance detection performance and robustness.
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