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Abstract In this paper, the generalized mixture of standard logistic and skew logistic is introduced as a new class
of distribution. Some important mathematical properties of this novel distribution are discussed along with a graphical
presentation of the density function. These properties include moment generating function, mth order moment, mean
deviation, characteristic function, entropy, among others. Moreover, a location scale type extension of the proposed
distribution is considered, and the maximum likelihood estimation method for this model is presented. To examine the
performance of the estimated parameters of the proposed distribution, a simulation study is also conducted using the rejection
sampling method. Furthermore, an application using two real-life data sets are also illustrated. Finally, the likelihood ratio
test is performed to study the discrepancies between proposed model with their counterparts.

Keywords Logistic distribution, Mixture distribution, Skew Logistic distribution, maximum likelihood estimator,
Likelihood ratio test

AMS 2010 subject classifications 62E15, 62F35

DOI: 10.19139/soic-2310-5070-2046

1. Introduction

The normal density has been widely used in probability theory for its broad versatility. Several topics in statistics
remain incomplete when relying solely on the commonly used normal distribution. Nevertheless, this renowned
distribution is applicable primarily in symmetric scenarios. When an asymmetry arises in the data, then a normal
distribution behaves only as an ideal one. To overcome these situations, [6] proposed the skew-normal density
adding the shape parameter to regulates asymmetry. The skew-normal probability density function (pdf) is

f(x;λ) = 2ϕ(x)Φ(λx); x ∈ R, λ ∈ R, (1)

where, ϕ(·) and Φ(·) are respectively the usual pdf and cumulative distribution function (cdf) of standard normal
distribution.

In real life situations, it is necessary to tackle asymmetry in data and not assume symmetry. Therefore, the skew-
normal pdf is a reasonable path and, in addition, to opening up a new path towards the study of distribution theory.
Subsequent research in the literature was carried out extensively into the skew normal distribution. Some notable
contributions includes the works of [29], [54], [6], [11], [1], and many others. However, [7] showed the inadequacy
of the normal as well as skew-normal pdf for describing situations of plurimodality. To accommodate these kind of
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situations, [31] introduced the generalized mixture of standard normal and skew-normal (GMNSND) distribution.
The GMNSND pdf is given by

f(x;α, λ) =
2

2 + α
ϕ(x)

[
1 + αΦ(λx)

]
, x ∈ R, α > −2, λ ∈ R. (2)

Posteriorly, [53] corrected α > −1 instead of α > −2.
On the other hand, [36] provided a comprehensive discussion of a new skew distribution namely skew logistic

(SLG) one. This distribution replaces the normal pdf and normal cdf in (1) with pdf and cdf of a logistic one,
respectively. The skew-logistic pdf is given by

f(x;λ) = 2

[
e−x

(1 + e−x)2

][
1

1 + e−xλ

]
, x ∈ R, λ ∈ R. (3)

[36] also discussed some properties of the skew-logistic distribution, and also stated that logistic distribution has
several interesting applications in various fields such as in geology, medicine, psychology, and several ones. As in
skew-normal case, many research were also conducted on skew-logistic distribution considering different situations
and aspects. [8] introduced a new class of skewed version of logistic distribution using a a non-cdf skew function.
[22], [45], and [35] also notably contributed with a new class of asymmetric logistic distribution. Moreover, skew-
Laplace and skew-uniform distribution were other two approaches of asymmetric versions of the Laplace and
uniform ones proposed by [5] and [37], respectively.

Despite the unimodality modelling of skew distributions, there are some other new skew distributions proposed
to supports data with uni-bimodality. For example, the alpha skew-normal distribution [16], the alpha skew-
logistic distribution [26], the alpha skew-Laplace distribution [24], the generalized alpha skew-normal distribution
[51], the two parameter bimodal skew-normal distribution [19], are some of the most popular models supporting
data with uni-bimodality. For modelling uni-bimodality data, some other class of probability distributions
have been presented under Balakrishnan mechanism [4] including Balakrishnan alpha skew-normal distribution
[27], Balakrishnan alpha skew-logistic distribution [47], Log-Balakrishnan alpha skew-normal distribution [48],
Balakrishnan Alpha Skew-Generalized t distribution [39], among others. Not only uni-bimodality has been
considered, some new proposals of skew distribution were also reported which allows to fit data with trimodal
feature as well as uni-bimodality. Alpha beta skew-normal distribution [46], alpha beta skew-logistic distribution
[19], alpha beta generalized t distribution [33], and generalized alpha beta skew-normal distribution [50] are some
remarkable works towards this approach. Some new classes of distributions for fitting both bimodal as well as
trimodal data were also introduced by [34]. They introduced some new class of symmetric distributions known
as flexible normal distribution, trimodal normal distribution, and so on. Posteriorly, using the concepts of those
distributions some new classes of asymmetric distribution were introduced which includes trimodal skew-logistic
distribution [38], flexible alpha skew-normal distribution [15], among others. Furthermore, some new family of
distributions were also reported in the literature to handle data with multimodality. Multimodal skew-normal
distribution [10], multimodal alpha skew-normal distribution [28], multimodal Balakrishnan alpha skew-normal
distribution [50], multimodal alpha skew-Laplace distribution [9], and so on, were some of the most popular
research works towards this multimodal approach.

In this article, a new class of probability distribution is proposed following the idea of generalized mixture of
standard normal and skew-normal distribution given by [31]. During this study, a generalized mixture of standard
logistic (LG(0, 1)) distribution and skew-logistic distribution [36] is considered. Moreover, a new continuous
probability distribution namely generalised skew logistic is introduced with a discussion regarding some important
mathematical properties. Furthermore, using real life data, the adaptability of the novel logistic distribution is
checked with other competitors.

The following sections of the article are organized as follows: Section 2 includes the new family of skew-logistic
distributions along with some pictorial visualizations of the pdfs as well as special cases. Some statistical properties
of the distribution are also included in Section 2. Section 3 addressed a location scale extension and parameter
estimation of the new distribution. Section 4 provides the results of simulation while applications of the proposed
distribution using two real-life data sets are considered in Section 5. The summary of the hypothesis testing results
are also listed in Section 5. Finally, Section 6 concludes the article.
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2. The Generalized Mixture of standard logistic and skew-logistic distribution

A generalized mixture of standard logistic and skew-logistic distribution [36] is proposed in this Section, resulting
a new generalized skew logistic distribution.

Definition 1
A random variable X is said to have generalized skew-logistic distribution if its pdf is given by

f(x;α, λ) =
2

2 + α

[
e−x

(1 + e−x)2

][
1 + α

(
1

1 + e−xλ

)]
, (4)

where x ∈ R, λ ∈ R and α ≥ −1. This probability distribution is denoted as GSLG(α, λ).

Remark 1
The pdf of GSLG(α, λ) can be written as

f(x;α, λ) =
2

2 + α

[
e−x

(1 + e−x)2
+ α

(
e−x

(1 + e−x)2
1

1 + e−xλ

)]

=
2

2 + α

[
g(x) +

α

2
g(x, λ)

]
, (5)

where g(x) and g(x, λ) are the pdf of standard logistic distribution and skew-logistic distribution [36], respectively.

Some special properties of GSLG distribution are:

i. when α = 0 and/or when λ = 0 then, GSLG(α, λ) reduces to standard logistic (LG(0, 1)) distribution;
ii. when α = −1, then GSLG(α, λ) reduces to SLG(−x); and

iii. when X ∼ GSLG(α, λ), then −X ∼ GSLG(α,−λ).

Some visual representations of the GSLG distribution pdf are presented in Figure 1 for various parameter choices.
It is clear from Figure 1 that positive skeweness exists for certain positive values of λ (see Figure 1 (a)). Similarly,
the pdf of the proposed distribution exhibits negative skewed behavior if negative values of λ are assumed (see
Figure 1 (b)). Furthermore, from Figure 1 (c) it can be observed that if α = λ = 0, then the pdf reduces to standard
logistic distribution and it exhibit negative skeweness for increasing values of α, considering λ to be fixed (see
Figure 1 (c)). Additionally, as can be seen in Figure 1 (d), the suggested distribution’s pdf simplifies to a standard
logistic distribution for λ = 0, while it becomes a skew logistic distribution for α = −1.

Several important issues of the new distribution are discussed in the next sections.

2.1. Cumulative distribution function

Lemma 1
The cdf of the X ∼ GSLG(α, λ) random variable is given as

F (x) =
2

2 + α


G(x) +

α

2

[
1− 2

∑∞
j=0

∑∞
k=0

(
−1
j

)(
−2
k

)
exp(−(C1x))

C1

]
, x ≥ 0,

G(x) + α

[∑∞
j=0

∑∞
k=0

(
−1
j

)(
−2
k

)
exp(−(C1x))

C1

]
, x < 0,

(6)

where G(x) is the cdf of standard logistic distribution and C1 = 1 + λj + k.
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Figure 1. Pdf of GSLG(α, λ) for several α and λ parameters.

Proof. Using the expression of the density function mention in Remark 1, cdf is defined as

F (x) =

∫ x

−∞
f(x;α, λ)dx (7)

=

∫ x

−∞

2

2 + α

[
g(x) +

α

2
g(x, λ)

]
dx

=
2

2 + α

[∫ x

−∞
g(x)dx+

α

2

∫ x

−∞
g(x, λ)dx

]
=

2

2 + α

[
I1 + I2

]
. (8)

Now, I1 is the cdf of the standard logistic distribution and I2 can be calculated using the skew-normal pdf given by
[36]. Then,

F (x) =
2

2 + α


G(x) +

α

2

[
1− 2

∑∞
j=0

∑∞
k=0

(
−1
j

)(
−2
k

)
exp(−(C1x))

C1

]
, x ≥ 0,

G(x) + α

[∑∞
j=0

∑∞
k=0

(
−1
j

)(
−2
k

)
exp(−(C1x))

C1

]
, x < 0.
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2.2. Moment generating function

Lemma 2
The moment generating function (mgf) of a X ∼ GSLG(α, λ) random variable is given as

M(t) =
2

2 + α

[
πt cscπt+ α

( ∞∑
j=0

(
−1
j

)(
1 + (t− λj)δ(1− t+ λj)

− (λ+ t+ λj)δ(1 + λ+ t+ λj)
))]

, (9)

where δ(·) is the Euler psi function given by

δ(a) =
1

2

[
ψ

(
1 + a

2

)
− ψ

(
a

2

)]
,

ψ(a) =
d log Γ(a)

da
is the digamma function, and Γ(a) =

∫∞
0
ta−1 exp(−t)dt.

Proof. Using Remark 1, the mgf of a X ∼ GSLG(α, λ) random variable is defined as

M(t) = E[exp (xt)]

=

∫ ∞

−∞
exp (xt)f(x;α, λ)dx

=
2

2 + α

[∫ ∞

−∞
exp (xt)g(x)dx+

α

2

∫ ∞

−∞
exp (xt)g(x, λ)dx

]
=

2

2 + α

[
I3 + I4

]
. (10)

From (10), it can be seen that that I3 is the mgf of the standard logistic distribution. On the other hand, I4 can be
calculated by using the mgf of the skew-logistic distribution given by [36]. Therefore, using the results of the last
two expressions of (10), we have that

M(t) =
2

2 + α

[
πt cscπt+ α

( ∞∑
j=0

(
−1
j

)(
1 + (t− λj)δ(1− t+ λj)

− (λ+ t+ λj)δ(1 + λ+ t+ λj)
))]

.

Remark 2
Replacing t by (it) in (9), the characteristic function of a X ∼ GSLG(α, λ) random variable is obtained as

ϕ(t) =
2

2 + α

[
πit cscπit+ α

( ∞∑
j=0

(
−1
j

)(
1 + (it− λj)δ(1− it+ λj)

− (λ+ it+ λj)δ(1 + λ+ it+ λj)
))]

. (11)
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2.3. Moments

Lemma 3
The mth order moments a X ∼ GSLG(α, λ) random variable are given by

E(Xm) =
2

2 + α

[
2αm!

2

((
1− 21−m

)
ζ(m) +

1

2mλm+1

∞∑
j=0

(−1)j(j + 1)ξ(j,m+ 1)

)]
, (12)

if m is odd, and

E(Xm) = 2m!
(
1− 21−m

)
ζ(m), (13)

if m is even, where ζ(a) =
∑∞

j=0

1

ja
is the Riemann’s zeta function [12], ζ(a, q) =

∑∞
j=0

1

(q + j)a
, and ξ(j, k) =

ζ

(
k,

1 + 2λ+ j

2λ

)
− ζ

(
k,

1 + λ+ j

2λ

)
.

Proof. From Remark 1, the mth order moment of a X ∼ GSLG(α, λ) random variable can be defined as

E(Xm) =

∫ ∞

−∞
xmf(x;α, λ)dx

=
2

2 + α

[∫ ∞

−∞
xmg(x)dx+

α

2

∫ ∞

−∞
xmg(x, λ)dx

]
=

2

2 + α

[
I5 + I6

]
. (14)

From (14), I5 is the mth order moment of a standard logistic random variable and I6 can be obtained from the mth

order moment of a standard skew-logistic random variable provided by [36].
Therefore, when m is odd, then by theorem of logistic distribution I5 = 0. By using again I6 from [36], the

expression for the mth order moment can be calculated as

E(Xm) =
2

2 + α

[
2αm!

2

((
1− 21−m

)
ζ(m) +

1

2mλm+1

∞∑
j=0

(−1)j(j + 1)ξ(j,m+ 1)

)]
.

If m is even, by the Lemma 2 of [21] and Example 23.11 of [30], an expression for the mth order moment is
obtained. Therefore, by putting the results in (14), the mth order moment of a X ∼ GSLG(α, λ) random variable
can be obtained as

E[Xm] = 2m!
(
1− 21−m

)
ζ(m).

Remark 3
Using Lemma 3, the first four moments of GSLG(α, λ) distribution can be derived as

E[X] =
α

λ2(2 + α)

∞∑
j=0

(−1)j(j + 1)ξ(j, 2),

E[X2] =
π2

3
,

E[X3] =
α

2 + α

[
− 9ψ′′(1)

2
+

3

2λ4

∞∑
j=0

(−1)j(j + 1)ξ(j, 4)

]
,

E[X4] =
7π4

15
.
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Table 1. Mean and variance of a X ∼ GSLG(α, λ) random variable for different values of parameters.

λ → -2 -1 1 3 4
α ↓ E[X] V ar(X) E[X] V ar(X) E[X] V ar(X) E[X] V ar(X) E[X] V ar(X)
-1 0.616 2.910 0.500 3.039 -0.500 3.039 -0.654 2.862 -0.669 2.842
1 -0.205 3.248 -0.167 3.262 0.167 3.262 0.218 3.242 0.223 3.240
2 -0.308 3.195 -0.250 3.227 0.250 3.227 0.327 3.183 0.335 3.178
3 -0.370 3.153 -0.300 3.199 0.300 3.199 0.392 3.136 0.402 3.128
4 -0.411 3.121 -0.333 3.179 0.333 3.179 0.436 3.099 0.447 3.090

Hence variance of a GSLG(α, λ) random variable can be calculated as

V ar(X) =
π2

3
− α2

λ4(2 + α)2

[ ∞∑
j=0

(−1)j(j + 1)ξ(j, 2)

]2
. (15)

The four moments values of the zeta function can be used from Section 8.17 of [20].

Additionally, the mean as well as variance of GSLG(α, λ) also can be evaluated numerically using the above
special results for some particular values of the parameter. Hence mean and variance of the said distribution are
calculated for different choices of the parameters and listed in Table 1.

2.4. Mean deviation

Lemma 4
The mean deviation of a X ∼ GSLG(α, λ) random variable about the mean µ is given by

µ1(x) =
2

2 + α

[
2 log 2 +

α

2

(
4µ

∞∑
j=1

∞∑
k=0

(−1)1+j+k 1 + k

C1
exp(C1µ)

)]
, for µ ≤ 0, (16)

and

µ2(x) =
2

2 + α

[
2 log 2 +

α

2

(
− 4 log 2 + 4

∞∑
j=0

(−1)j

(
µ+

1

1 + j
exp((1 + j)µ)

))

+ 4β

∞∑
j=1

∞∑
k=0

(−1)j+k(1 + k)

C2
1

(
exp(−C1µ)− 2

)]
, for µ ≥ 0. (17)

Proof. Remark 1 is used to calculate the mean deviation about mean defined as

µ(x) =

∫ ∞

−∞
|x− µ|f(x;α, λ)dx

=
α

2 + α

[ ∫ ∞

−∞
|x− µ|g(x)dx+

α

2

∫ ∞

−∞
|x− µ|g(x, λ)dx

]
=

α

2 + α

[
I7 + I8

]
. (18)

From (18), it can be observed that I7 is the mean deviation of standard logistic distribution given by 2 log 2. On
the other hand, I8 is the mean deviation of skew-logistic distribution given by [36]. Using these values, the integrals
related to (18) can be evaluated for both the cases, i.e, when µ ≤ 0 and µ ≥ 0. Therefore, the final results of the
mean deviation about mean of a X ∼ GSLG(α, λ) random variable can be obtained as

µ1(x) =
2

2 + α

[
2 log 2 +

α

2

(
4µ

∞∑
j=1

∞∑
k=0

(−1)1+j+k 1 + k

C1
exp(C1µ)

)]
, for µ ≤ 0, (19)
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and

µ2(x) =
2

2 + α

[
2 log 2 +

α

2

(
− 4 log 2 + 4

∞∑
j=0

(−1)j

(
µ+

1

1 + j
exp((1 + j)µ)

))

+ 4β

∞∑
j=1

∞∑
k=0

(−1)j+k(1 + k)

C2
1

(
exp(−C1µ)− 2

)]
, for µ ≥ 0. (20)

Remark 4
Replacing µ by M in (16) and (17), one can subsequently obtain the results of the mean deviation about median of
a X ∼ GSLG(α, λ) random variable.

2.5. Rényi entropy

Definition 2
For a random variable X , the Rényi entropy of order γ [42] is defined as

Rγ(X) =
1

1− γ
log

∫
f(x)γdx, (21)

where γ > 1 and γ ̸= 1. Shannon entropy is a special case of Rényi one an is obtained in the limit limγ→1Rγ(X)
[13].

The Rényi entropy of random variable X can also be defined as a measure of the uncertainty or randomness
associated with X [1]. The following Lemma considers the results of the Rényi entropy for a GSLG random
variable.

Lemma 5
The Rényi entropy of a X ∼ GSLG(α, λ) random variable is

Rγ(X) =
α

(2 + α)(1− γ)
log

[
2

λ
2F1(λ, 2λ, 1 + λ,−1)

+
α

2

(
1

2
+ 2

∞∑
j=0

(
−γ
j

)(
2F1(2γ, γ + λj, 1 + λ+ λj,−1)

γ + λj

+
2F1(2γ, γ + λj + γj, 1 + λ+ λj,−1

γ, λγ + λj

)]
, (22)

where

2F1(a, b; c;x) =

∞∑
k=0

(a)k(b)k
(c)k

xk
k!

is the Gauss hypergeometric function [20] and (x)k = x(x+ 1) · · · (x+ k − 1) is the ascending factorial.

Proof. Using the Remark 1, one can write

Rγ(X) =
1

1− γ

∫ ∞

−∞
f(x;α, λ)γdx

=
α

(2 + α)(1− γ)

[∫ ∞

−∞
g(x)γdx+

∫ ∞

−∞
g(x;λ)γdx

]
=

α

(2 + α)(1− γ)

[
I9 + I10

]
. (23)
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From Definition 2, we see that I9 is the Rényi entropy of the standard logistic distribution which can be defined as

I9 =
α

(2 + α)(1− γ)
log

∫ ∞

−∞

(
e−x

(1 + e−x)
2

)λ

dx

Now, putting y = e−x and subsequently applying the equations (3.194.1)-(3.194.2) of [20], I9 can be calculated as

I9 =
α

(2 + α)(1− γ)
log

[
2

λ
2F1(λ, 2λ, 1 + λ,−1)

]
.

On the other hand, I10 is the Rényi entropy of a skew-logistic random variable which was already calculated by
[36]. Then substituting the results of I9 and I10 in (23), final expression for Rényi entropy of X is obtained.

3. Maximum likelihood estimation

We proposed a location-scale-type extension for the GSLG distribution considering the location (µ) and scale (β)
parameters. The transformation used to do this is Y = µ+ βX . The, the pdf of the location-scale-type extension
of GSLG one is

f(x;µ, β, α, λ) =
2

2 + α


exp

(
− x− µ

β

)
(
1 + exp

(
− x− µ

β

))2

β


1 + α

 1

1 + exp

(
− λ(x− µ)

β

)

 , (24)

where x ∈ R, µ ∈ R, β > 0 and α ≥ −1. If X has the pdf (24), then is denoted as X ∼ EGSLG(µ, β, α, λ).

Estimation of parameter vector θ = (µ, β, α, λ) of EGSLG(µ, β, α, λ) pdf is discussed next. Let x1, x2, x3, . . . , xn be
a set of n independently and identically distributed random variables drawn from the EGSLG(µ, β, α, λ) one, then the
log-likelihood equations for the three parameters is

l(θ) = n log(2)− n log(2 + α)− n log(β) +
1

β

n∑
i=1

(xi − µ)− 2

n∑
i=1

log

[
1 + exp

(
−xi − µ

β

)]

+

n∑
i=1

1 + α

 1

1 + exp

(
−λ(xi − µ)

β

)

 . (25)
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Now, differentiating the equation (25) with respect to the set of parameters, one can have the likelihood equations given as

∂l(θ)

∂µ
= −n

β
− αλ

β

n∑
i=1

exp(−Y (µ, β, λ))(
1 + exp(−Y (µ, β, λ))

)2(
1 +

α

1 + exp(−Y (µ, β, λ))

)
− 2

β

n∑
i=1

exp(−Y (µ, β))

1 + exp(−Y (µ, β))

∂l(θ)

∂β
= −n

β
− 1

β2

n∑
i=1

(yi − µ)− 2

β2

n∑
i=1

(yi − µ) exp

(
µ

β

)
exp

(
µ

β

)
+ exp

(
yi
β

)

+
αλ

2β2

n∑
i=1

Sech

[
λ(xi − µ)

2β

]
(xi − µ)[

−2− α+ α tanh

[
λ(xi − µ)

2β

]]
∂l(θ)

∂α
=

n

2 + α
+

n∑
i=1

1

1 + exp(−Y (µ, β, λ)) + α

∂l(θ)

∂λ
= −α

β

n∑
i=1

Sech

[
λ(xi − µ)

2β

]2
(xi − µ)[

4 + 2α− 2α tanh

[
λ(xi − µ)

2β

]] .
The estimates of the four parameters can be obtained after solving the latter equations. Explicit solutions can not directly
obtained, therefore numerical procedure could be implemented using the GenSA package of R software.

4. Simulation Study

A simulation study is considered in this Section to evaluate the effectiveness of maximum likelihood estimates (MLEs) for
GSLG(µ, β, α, λ) model parameters. To generate the random sample from GSLG(µ, β, α, λ) distribution, we employ the
relationship given in Remark 1. The “rlogis” function is used to generate a random sample from g(x) in Remark 1 and to
generate a random sample from g(x, λ), the rejection sampling method (see [44]) has been applied. The simulation process is
replicated 10,000 times, incorporating three distinct sample sizes (n = 100, 300, and 500). Subsequently, the GenSA package
of R software [40] is used to compute maximum likelihood estimates for each generated sample. Finally, the are evaluated
in terms of bias and mean square error (MSE):

Bias(θ̂) = E(θ̂)− θ,

MSE(θ̂) = V (θ̂) +Bias(θ̂)
2
,

respectively, where θ̂ = (µ̂, σ̂, λ̂).
From Tables 2-5, it can be see that the MLEs perform well in estimated parameters of the GSLS model. In addition, the

results also showed that with an increase in sample size, bias and MSE of the MLEs decrease, indicating an asymptotic
consistency of the MLEs of GSLG(α, λ) random variable.

5. Applications

This section examines the applicability and adaptability of the proposed distribution to be compared with some competitor
models. For this comparison, normal distribution N(µ, β), Laplace distribution La(µ, β), logistic distribution LG(µ, β), skew
normal distribution SN(µ, β, λ) and skew-logistic distribution SLG(µ, β, λ) are considered. Akaike information Criteria
(AIC) and Bayesian information criteria (BIC) are used for the comparisons. Additionally, as the newly proposed distribution
looks like a heavy-tailed unimodal skew distribution, thus different real-life data sets exhibiting heavy-tailed behavior are
taken into consideration for applications in real life.
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Table 2. Simulation results.

µ = 0, β = 1
µ β λ α

α λ n Bias MSE Bias MSE Bias MSE Bias MSE

-1

-2
100 -0.0399 0.0214 -0.1096 0.0734 -0.0650 0.0498 -0.0447 0.0649
300 -0.0239 0.0137 -0.0650 0.0530 -0.0440 0.0390 0.0391 0.0239
500 -0.0099 0.0196 0.0398 0.0369 0.0160 0.0190 0.0194 0.0260

-1
100 0.0498 0.0381 -0.0447 0.0331 -0.0641 0.0361 -0.0599 0.0431
300 -0.0190 0.0329 -0.0194 0.0195 0.0329 0.0332 -0.0247 0.0340
500 0.0189 0.0110 0.0187 0.0145 0.0207 0.0232 -0.0189 0.0321

0
100 0.0398 0.0338 -0.0499 0.0323 -0.0810 0.0588 0.0498 0.0506
300 -0.0215 0.0189 -0.0267 0.0198 -0.0568 0.0340 -0.0345 0.0245
500 0.0163 0.0120 0.0173 0.0109 -0.0210 0.0194 0.0254 0.0430

1
100 0.0827 0.0387 -0.0533 0.0419 0.0470 0.0498 -0.0879 0.0321
300 0.0485 0.0350 0.0274 0.0289 -0.0332 0.0286 0.0340 0.0156
500 -0.0189 0.0162 -0.0137 0.0180 -0.0233 0.0187 0.0189 0.0199

2
100 -0.0750 0.0898 0.0890 0.0651 -0.1000 0.0120 0.0992 0.0855
300 0.0636 0.0550 -0.0540 0.0480 0.0755 0.0844 -0.0755 0.0650
500 0.0404 0.0393 -0.0424 0.0390 -0.0665 0.0498 -0.0331 0.0265

Table 3. Simulation results.

µ = 0, β = 1
µ β λ α

α λ n Bias MSE Bias MSE Bias MSE Bias MSE

1

-2
100 -0.0990 0.0678 0.0465 0.0631 -0.0487 0.0355 0.0396 0.0468
300 0.0565 0.0500 -0.0327 0.0344 -0.0310 0.0296 -0.0320 0.0356
500 -0.0320 0.0238 -0.0256 0.0325 -0.0268 0.0208 0.0129 0.0271

-1
100 0.0509 0.0556 -0.0924 0.1056 0.0237 0.0312 0.0750 0.0986
300 -0.0464 0.0345 -0.0645 0.0480 -0.0267 0.0109 0.0489 0.0498
500 0.0195 0.0199 -0.0222 0.0164 0.0198 0.0109 -0.0259 0.0232

0
100 -0.0699 0.0840 -0.0689 0.0190 -0.0351 0.0240 0.0672 0.0380
300 -0.0361 0.0389 0.0595 0.0281 -0.0198 0.0098 -0.0587 0.0406
500 0.0285 0.0291 -0.0297 0.0100 -0.0100 0.0100 -0.0321 0.0144

1
100 -0.0859 0.0592 -0.0433 0.0459 -0.0778 0.0823 -0.1157 0.0987
300 0.0627 0.0442 -0.0365 0.0235 0.0870 0.0670 -0.0636 0.0646
500 -0.0351 0.0297 -0.0301 0.0154 0.0332 0.0160 -0.0444 0.0460

2
100 0.1301 0.0940 0.1160 0.2301 0.0450 0.0459 -0.0957 0.0900
300 -0.1054 0.0359 -0.0950 0.0497 -0.0410 0.0541 -0.1201 0.0784
500 0.0452 0.0335 -0.0620 0.0166 -0.0197 0.0197 0.0618 0.0609

Table 4. Simulation results.

µ = 0, β = 1
µ β λ α

α λ n Bias MSE Bias MSE Bias MSE Bias MSE

-1

-2
100 -0.0520 0.0599 -0.0650 0.0551 -0.0990 0.1090 -0.1266 0.0686
300 0.0499 0.0463 -0.0450 0.0342 0.0623 0.0609 -0.0694 0.0577
500 0.0318 0.0323 0.0349 0.0268 -0.0198 0.0450 -0.0422 0.0358

-1
100 0.0639 0.0461 -0.2004 0.1009 0.0478 0.0777 -0.0775 0.0766
300 0.0457 0.0381 0.1087 0.0658 -0.0407 0.0289 -0.0398 0.0524
500 -0.0302 0.0213 0.0499 0.0421 0.0370 0.0380 -0.0520 0.0649

0
100 -0.0630 0.0739 -0.0660 0.0732 0.0498 0.0740 0.0810 0.0987
300 -0.0232 0.0655 -0.0358 0.0250 -0.0360 0.0390 0.0344 0.0458
500 -0.0241 0.0323 -0.0250 0.0295 -0.0298 0.0378 -0.0279 0.0254

1
100 -0.0920 0.1027 -0.0859 0.0659 -0.0987 0.0598 -0.0990 0.0990
300 -0.0879 0.0723 0.0633 0.0237 0.0613 0.0457 -0.0546 0.0784
500 0.0330 0.0290 -0.0219 0.0240 -0.0198 0.0201 0.0164 0.0238

2
100 -0.1000 0.0823 -0.0390 0.0457 -0.0390 0.0455 -0.0681 0.0409
300 -0.0650 0.0562 -0.0229 0.0288 0.0265 0.0422 0.0370 0.0481
500 0.0601 0.0335 -0.0297 0.0212 0.0309 0.0350 -0.0353 0.0378

5.1. Distant galaxy dataset
This application considers the dataset of velocities of 82 distant galaxies, diverging from Milky Way galaxy. The data set
was reported earlier by [43] and is available at http://www.stats.bris.ac.uk/˜peter/mixdata. The results
of the maximum likelihood estimators (MLEs), log-likelihood, AIC and BIC of the models are reported in the Table 6.

From Table 6, it is clear to see that GSLG(µ, β, α, λ) distribution is more appropriate and better fitted among the other
competitors in terms of log-likelihood, AIC and BIC. The flexibility of the new distribution can also be visualized from
Figure 2.
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Table 5. Simulation results.

µ = 0, β = 1
µ β λ α

α λ n Bias MSE Bias MSE Bias MSE Bias MSE

1

-2
100 0.0989 0.0756 0.0650 0.0520 0.0786 0.0675 0.0872 0.0511
300 -0.0660 0.0698 -0.0566 0.0327 0.0491 0.0239 -0.0755 0.0497
500 0.0331 0.0387 -0.0320 0.0168 0.0259 0.0209 0.0397 0.0458

-1
100 -0.0655 0.0488 0.0997 0.0974 -0.0741 0.0650 0.0776 0.0560
300 0.0270 0.0401 -0.0730 0.0569 0.0389 0.0397 0.0591 0.0489
500 0.0236 0.0247 -0.0386 0.0382 -0.0206 0.0247 0.0304 0.0199

0
100 -0.0799 0.0658 0.0655 0.0594 0.0656 0.0297 0.0689 0.0490
300 -0.0682 0.0459 0.0455 0.0394 0.0500 0.0552 -0.0438 0.0424
500 0.0541 0.0198 -0.0194 0.0197 0.0279 0.0323 -0.0200 0.0248

1
100 -0.0859 0.0686 0.0660 0.0897 -0.0850 0.0598 -0.0960 0.0982
300 0.0655 0.0566 0.0434 0.0557 0.0569 0.0424 -0.0698 0.0397
500 -0.0279 0.0354 -0.0390 0.0223 0.0293 0.0329 -0.0209 0.0361

2
100 -0.2465 0.0990 -0.1298 0.0890 -0.0630 0.0864 0.1456 0.0870
300 -0.0967 0.0564 -0.0950 0.0595 0.0497 0.0553 -0.0960 0.0845
500 -0.0857 0.0510 0.0397 0.0348 -0.0247 0.0398 0.0197 0.0634

Table 6. MLEs, log-likelihood, AIC and BIC of models fitted to 82 distant galaxies.

Distributions µ β α λ logL AIC BIC
N(µ, β) 20.832 4.540 – – -240.410 484.820 489.633
La(µ, β) 20.834 2.997 – – -228.830 461.660 466.470
LG(µ, β) 21.074 2.204 – – -233.649 471.298 476.111
SN(µ, β, λ) 24.610 5.907 – -1.394 -239.210 484.420 491.640
SLG(µ, β, λ) 21.532 2.219 – -0.154 -233.314 472.628 479.848
GSLG(µ, β, α, λ) 18.596 2.789 -0.867 -17.909 -222.316 452.632 462.258

Figure 2. Plots of observed and expected densities of 82 distant galaxies.

5.2. Acidity Index of Lakes dataset
For this application, the dataset consisting in an acidity index measured in a sample of 155 lakes from Northeastern US
is considered, which was previously considered for a mixture of normal pdfs on the log-scale by [14]. The results of the
maximum likelihood estimators (MLEs), log-likelihood, AIC and BIC of the models are presented in the Table 7.

From Table 7 it is clear to observe that GSLG(µ, β, α, λ) distribution is more appropriate and better fitted among the
other competitors in terms of log-likelihood, AIC and BIC. The flexibility of the new distribution can also be visualized from
Figure 3.

5.3. Hypothesis Testing
This section performs the likelihood ratio test (LRT) to discriminate between GSLG(µ, β, α, λ) and some other nested
models. The statistic considered for this test is

Stat., Optim. Inf. Comput. Vol. 14, November 2025



2926 GENERALIZED MIXTURE SKEW LOGISTIC DISTRIBUTION

Table 7. MLEs, log-likelihood, AIC and BIC of models fitted to acidity index measured in a sample of 155 lakes in the
Northeastern United States.

Distributions µ β α λ logL AIC BIC
N(µ, β) 5.105 1.038 – – -225.785 455.570 461.656
La(µ, β) 4.727 0.892 – – -244.649 493.298 499.384
LG(µ, β) 5.023 0.631 – – -232.790 469.580 475.486
SN(µ, β, λ) 4.061 1.473 – 1.937 -220.618 447.236 456.366
SLG(µ, β, λ) 3.845 0.941 – 7.681 -210.306 426.612 435.742
GSLG(µ, β, α, λ) 3.849 0.938 -0.992 -13.594 -206.589 421.178 433.350

Figure 3. Plots of observed and expected densities of 155 acidity index of lakes

(i) To discriminate LG(µ, β) from GSLG(µ, β, α, λ) distribution, the null hypothesis H0 : α = 0, λ = 0 is considered
against H1 : α ̸= 0, λ ̸= 0. Then the test statistic is

−2 log(LRT ) =− 2[log L(µ̂1, β̂1, α = 0, λ = 0|x)− log L(µ̂2, β̂2, α̂2, λ̂2)]

∼ χ2
2,

where (µ̂1, β̂1) and (µ̂2, β̂2, λ̂2, α̂2) are the MLEs of LG(µ, β) and GSLG(µ, β, λ, α) distributions, respectively; and
r = 2 is the difference between the number of parameters.

(ii) To discriminate SLG(µ, β, λ) from GSLG(µ, β, α, λ) distribution, the null hypothesis H0 : α = 0 is considered
against H1 : α ̸= 0. Then, the test statistic is

−2 log(LRT ) =− 2[logL(µ̂1, β̂1, λ̂1, α = 0|x)− logL(µ̂2, β̂2, α̂2, λ̂2)]

∼ χ2
1,

where (µ̂1, β̂1, λ̂1) and (µ̂2, β̂2, λ̂2, α̂2) are the MLEs of SLG(µ, β, λ) and GSLG(µ, β, λ, α) distributions,
respectively; and r = 1 is the difference between the number of parameters.

The results of the LRT are listed in Table 8 for both Aircraft Windshield dataset and Acidity Index of Lakes dataset. From
Table 8, it can be seen that for both null hypothesis, LRT statistic is higher than tabulated critical value at the 5% level of
significance. Therefore, it can be concluded that null hypothesis are rejected indicating that data comes from the novel family
of distribution rather than simpler distributions.
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Table 8. The value of LR test statistic for different hypotheses for the data set I and data set II.

Hypothesis LRT statistic d.f. Critical Values at 5 %
Dataset I Dataset II

H0 : α = 0, λ = 0 Vs H1 : α ̸= 0, λ ̸= 0 22.666 52.420 2 5.990
H0 : α = 0 Vs H1 : α ̸= 0 21.996 7.434 1 3.841

6. Conclusion

In this paper, a new family of continuous probability distributions were proposed by considering a generalized mixture
of standard logistic and skew-logistic distribution [36]. The graphical visualization of the new model was checked for
different parameters. Some important mathematical properties of proposed probability distribution were also discussed.
A simulation study was also conducted using rejection sampling method where was observed that the estimated parameter
were asymptotically consistent with the increasing number of sample size. Furthermore, application of proposed distribution
to real-life datasets reveals that proposed model was much flexible and useful compared to some competitors. Executing
likelihood ratio test, differences between the new distributions were checked with their counterparts showing a better
goodness of fit.

Further work can be developed, by comparing the proposed model with existing ones [32, 41, 25, 52]; and under risk
analysis, VaR modelling and insurance data approaches [23, 2, 3, 18].
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Appendix

R codes used in this study are available at github repository: https://github.com/jondeep98/FASLa.Code
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