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1. Introduction

During the financial crises, we have experienced that governments and policymakers control the market
instabilities. The “Wall Street bailout”, which reduced the effects of the financial market crisis of 2007-2008 [12]
is an example.

One might ask about the reflection of these actions in financial market mathematical models. In other words,
what are the corresponding concept(s) of these interventions in financial market mathematical models?

In fact, from the mathematical point of view, they do nothing but direct the models to be mean-reverting,
bounded, less volatile, and so on. Therefore, for the financial models to be usable in such situations, some parts
of them have to be deleted using some appropriate mathematical tools. In this regard, we point out the paper [6]
in which Fuqi Chen and colleagues have conducted a comprehensive analysis of the controls on financial markets
regarding the drift coefficient, which indicates the timewise inhibition of risky assets as changing the rate of the
drift coefficient affects the duration of market cycles.

To participate in controlling the market model irregularities, in this paper, we introduce the new concepts of
the log-ergodic process and the ergodic maker operator. The one-parameter, ergodic maker operator produces a
mean-ergodic process when it acts on a positive stochastic process. This operator reflects the controls regarding the
volatility of risky assets.

The notion of mean is one of the common concepts between mathematical finance and ergodic theory. In the
first, it enters as an expectation in most price computations, and in the second, it plays the fundamental role of
defining the Birkhoff notion of ergodicity.

Before we proceed further, let us mention that for a model (process) to be ergodic, it must have Markov property
with a stationary distribution. Additionally, the model must possess the mean recurrence property to be ergodic
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[22, 23, 10]. By definition, a stochastic process is ergodic in the mean, or simply mean-ergodic, if its ensemble-
average and time-average are equal in the long run [37, 31].

Ole Peters has presented a thorough analysis of ergodic economics [27]. Additionally, since 2011, the London
Mathematical Laboratory has conducted specialized research on ergodic economics [26]. Some research has been
on modeling blockchain-enabled economics using stochastic dynamical systems [39].

Looking at financial stochastic processes from an ergodic theory point of view one may ask: Which financial
market models are ergodic? Which non-ergodic financial models can be made into an ergodic model? Which non-
ergodic processes have the potential to turn into an ergodic process?

Some random processes with specific properties are ergodic or at least mean-ergodic. Markov processes with
stationary distributions are ergodic [31]. Oesook Lee demonstrated an example of the mixing and ergodic properties
for generalized Ornstein-Uhlenbeck processes [19]. Paper [8] applies the assumption of ergodicity to obtain specific
estimates for asymptotic arbitrage, demonstrating their connection to large deviation estimates for the market price
of risk. It further explores the geometric Ornstein-Uhlenbeck process as an example. Trabelsi explored the ergodic
properties of the CIR model and demonstrated that it has the ergodic recurrence property† (which is also known
as the mean reversion property) [36]. The CIR process is ergodic and has a stationary distribution [36]. Hiroshi
Kunita discusses various aspects of stochastic flows and their relation to ergodic theory and stochastic differential
equations in [18].

In this paper, we study some algebraic properties of the ergodic maker operator and show that it preserves some
algebraic operations on stochastic processes. We also provide examples of log-ergodic stochastic processes that are
helpful in modeling mean-ergodic financial markets. Also, we discuss the applications of log-ergodic processes
to price contingent claims. To this end, we derive a partial differential equation under the usual assumptions
regarding the price function that depends on the ergodic maker operator. Furthermore, we study the effects of
market restrictions on the price dynamics and volatility of risky assets using log-ergodic processes.

The rest of the paper is organized as follows:
In section 2, we review some necessary concepts from ergodic theory, ergodic economics, and stochastic calculus.
In section 3, we define the concept of the ergodic maker operator and the log-ergodic process and investigate their
properties. In section 4, we present examples of log-ergodic processes that can be used to model financial markets
with ergodic behavior in the mean. In section 5, we state and prove the main theorem. In section 6, we discuss the
applications of log-ergodic processes in pricing contingent claims and studying market restrictions in this respect.
In section 7, we present the empirical data analysis of our study. In section 8, we conclude the paper and suggest
some directions for future research.

2. Preliminaries

From now on, we use the filtered probability space (Ω,F ,P, (Ft)t≥0), in which Ω is the space of events, F is a
σ-algebra, P is an invariant probability measure (A measure that remains unchanged under certain transformations.
See [37, 28] for definition. )‡, and (F)t≥0 is a filtration which represents the information of the financial market up
to time t.

As is well known, there are two requirements for a homogeneous Markov process Xt to be ergodic. First, its
time and ensemble averages should be equal. Second, time and ensemble averages of its autocorrelation function
should be the same [4]. The process is referred to as mean-ergodic if just the first criterion holds.

The Birkhoff Ergodic Theorem is a fundamental result in ergodic theory. It states that for an ergodic
transformation and an integrable function, the time average along almost every trajectory equals the space average
[37]. This theorem provides a bridge between the long-term time behavior and the space behavior of systems.

†An irreducible, non-periodic Markov chain with a stationary distribution is said to be recurrent if it converges to its stationary distribution
for almost all initial points.
‡If a stochastic process has an invariant measure, then the distribution of the process at any time will be the same as the distribution of the
process at any other time.
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Theorem 2.1. (Birkhoff) If P is a probability measure invariant under a stochastic process Xt and ϕ ∈ L1(P), then
the function

ϕ̃(ω) = lim
T→∞

1

T
∫

T

0
ϕ(Xt(ω))dt (2.1)

is defined almost surely and ∫Ω ϕ̃dP = ∫Ω ϕdP.

Proof For the proof and more details refer to [14].
Considering ϕ as the identity function ϕ = I in theorem 2.1, yields ϕ(Xt(ω)) = Xt(ω). As a result, we have

Ĩ(ω) = lim
T→∞

1

T
∫

T

0
Xt(ω)dt. (2.2)

We call Ĩ the time-average of the process Xt and denote it by < X >.
Suppose that Xt is a Hölder continuous positive stochastic process of order 0 < β <∞. i.e.

∃b > 0; ∣Xt −Xs∣ ≤ b∣t − s∣
β , ∀t, s > 0.

According to the exponential decay of correlation theorem [37], there exist positive numbers Λ < 1, and α(Xs,Xt)

such that the correlation coefficient cor(Xs,Xt) satisfies the following relationship.

cor(Xs,Xt) ≤ α(Xs,Xt)Λ
n, ∀n ≥ 1.

Therefore, from the definition of the correlation, we have

Cov(Xs,Xt)

Λn
√
Var[Xt]Var[Xs]

≤ α(Xs,Xt), (2.3)

where Cov(Xs,Xt) is the covariance of Xt and Xs. To make formula 2.3 valid for studying financial markets in
the long run, we need to ensure that the right-hand side of the inequality converges to zero as T approaches infinity
for the time interval [0, T ]. This can be achieved by defining α as:

α(Xs,Xt) ∶=
Cov(Xs,Xt)

Λn
√
Var[Xt]Var[Xs]

⋅
1

T
, (2.4)

The formula 2.4 is consistent with the ergodicity property, which reduces the randomness of a process in the long
term.

2.1. Ergodicity and Utility Functions in Economics

Let Xt represent the wealth process of an investor. The primary problem of ergodic economics is to analyze
the evolution of this process. Ergodic economics assumes that investor choices will optimize the time-average
of the growth rate of the Xt process. From Daniel Bernoulli’s conjecture [2], it follows that the utility of each
additional dollar is almost inversely proportional to the number (units) of dollars that the investor currently has [27].
Therefore, the growth rate of Xt is governed by the differential equation dU(Xt) =

1
Xt

dXt with initial condition
U(0) = ln(X0), and the solution U(Xt) = ln(Xt), in which X0 ≠ 0 [27]. Under these circumstances, let g be the
growth rate of Xt and write gt,Xt

=
∆U(Xt)

∆t
.

Although processes of type Xt generally violate the ergodic property, their growth rates are ergodic [27]. We
observe that the time-average of the growth rate of Xt is defined using the mathematical expectation of the variation
of U(Xt), which leads us to the following definition:

Definition 2.1. The time-average of the growth rate of a stochastic wealth process Xt is defined as:

< gt,Xt
>=

E[∆U(Xt)]

∆t
,

where U(Xt) = ln(Xt).
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A simple model of the wealth process of the investor, Xt, widely used in mathematical finance and other fields
is the geometric Brownian motion [3].

Example 2.1. Consider the process

Xt = X0 exp{(µ −
1

2
σ2
)t + σWt}, X0 = x ≠ 0,

where the constants µ and σ are the drift and volatility coefficients of the process, respectively, x is a real number,
and Wt is a standard Wiener process. We observe that

U(Xt) = ln(Xt), (2.5)

ln(Xt) = ln(X0) + (µ −
σ2

2
)t + σWt. (2.6)

It follows that U(Xt) has a linear growth concerning time and its time-average of the growth rate is

< gt,Xt
>=

E[∆U(Xt)]

∆t
= µ −

1

2
σ2.

Therefore, maximizing the rate of change of the logarithmic utility function 2.5 is equivalent to maximizing the
time-average of the growth rate of the wealth [27].

Due to the necessity of using the function U(⋅), from now on, we will study the logarithm of the positive processes
used in financial theory.

2.2. Market Cycles and Volatility Control

Market cycles are price and economic activity fluctuations that happen over time in response to market factors such
as supply and demand, interest rates, innovations, sentiment, and shocks [1]. They consist of phases like expansion,
peak, and contraction and can differ in duration, intensity, and frequency [9].

Market cycles affect the volatility of risky assets in several ways. During periods of expansion, when the economy
is growing and the market is optimistic, the volatility of risky assets tends to be low, as the prices tend to move in a
steady upward direction. The demand for risky assets increases as investors seek higher returns and are willing to
take more risk. The supply of risky assets may also increase as innovation and productivity create new opportunities
and products. During peak periods, when the economy is at its highest level of output with the market being
euphoric, the volatility of risky assets may begin to rise as prices become overvalued and unsustainable. The
demand for risky assets may exceed supply, leading to bubbles and speculation. The supply of risky assets may
also decrease as innovation and productivity slow down or face constraints. During periods of contraction, when
the economy is shrinking with the market being pessimistic, the volatility of risky assets tends to be high, as the
prices fall sharply and unpredictably. The demand for risky assets decreases as investors seek lower returns and are
unwilling to take more risk. The supply of risky assets may also increase as innovation and productivity create new
challenges and risks.

Although the Brownian motion process is not of bounded variation, it is one of the processes that the market
participants and policymakers control its variations in financial markets [35]. Issuing currencies, supplying and
removing liquidity from the markets, and adopting stringent legislation are a few of these controls [35, 20].
Diffusion models are the most popular models of financial markets. In this paper, considering the diffusion models,
we show that a suitable ergodic maker operator measures the degree of control exerted by these factors in the
markets.

3. Ergodic Maker Operator and the Log-Ergodic Processes

In this section, we introduce the concepts of the ergodic maker operator (EMO) and the log-ergodic process and
investigate some of their properties.
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As in [29], for the stochastic process Xt, we denote the mean-square convergence by ms limt→∞Xt = X , and
the convergence in probability by st limt→∞Xt = X .

Proposition 3.1. Suppose that for the random process Xt, we have
limt→∞E[Xt] = k and limt→∞Var[Xt] = 0. Then,

ms lim
t→∞Xt = k.

Proof See [5].
The following theorem shows how the Wiener process (the Brownian motion) transforms into an ergodic process

by adjusting its fluctuations according to a parameter β. We use this parameter to reflect the level of influence that
market participants have on the price dynamics of a risky asset.

Theorem 3.2. For β > 1
2

we have

ms lim
T→∞

Wt

tβ
= 0. (3.1)

Proof For every t > 0 we have E[Wt]
tβ
= 0, and

1

t2β
Var[Wt] =

t

t2β
=

1

t2β−1
.

It follows that ms limt→∞ Wt

tβ
= 0. For more details refer to [5].

Corollary 3.1. If Mt = ∫
t

0 Wsds, and β > 3
2

, then

ms lim
t→∞

Mt

tβ
= 0.

Proof For t > 0 we have E[Mt]
tβ
= 0, and

1

t2β
Var[Mt] =

t3

3t2β
=

1

3t2β−3
.

Now the result follows from proposition 3.1.

Corollary 3.2. For β > 1
2

we have: st limt→∞ Wt

tβ
= 0.

Proof See [5].
Accordingly, the coefficient 1/tβ , with β > 3

2
, inhibits (controls) the variations of the Wiener process.

3.1. The Ergodic Maker Operator

Let Yt be a one-dimensional Itô process given by

Yt = Y0 + ∫

t

0
σsdWs + ∫

t

0
µsds, Y0 = 0.

Where Wt is a standard Wiener process, and µt and σt are drift and volatility coefficients, respectively. These
coefficients are integrable functions of t and Yt. Using the definition of the one-dimensional Itô process we have

∫

t

0
(σ2

s + ∣µs∣)ds <∞. (3.2)

Define the positive stochastic process Xt by

Xt = xe
Yt , X0 = x. (3.3)
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Let
Y ′t ∶= ln(Xt) = ln(x) + Yt.

Then, we have

Y ′t = Y
′
0 + ∫

t

0
σsdWs + ∫

t

0
µsds; Y ′0 = ln(x) + Y0. (3.4)

The process Y ′t is not necessarily ergodic (since it is not always stationary [3]); to define the Ergodic Maker
Operator (EMO) we write Y ′t as the sum:

Y ′t = Y ′0
¯

constant

+∫

t

0
µsds

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Dt

+∫

t

0
σsdWs

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Rt

,

Y ′t = Y
′
0 +Dt +Rt.

Definition 3.1. (EMO) Let Wt be a standard Wiener process and β > 3
2

. For all t, s ∈ [0, T ], we define the ergodic
maker operator of the process Y ′t as

ξβt−s,Wt−s[Y
′
t ] ∶= 0 ⋅ Y

′
0 +

WT

T β
⋅Dt−s +

1

T β
⋅Rt−s,

From now on, for all t > s, we denote the length of the time interval [s, t] by δ = t − s. Therefore, we have

ξβδ,Wδ
[Y ′t ] ∶= 0 ⋅ Y

′
0 +

WT

T β
⋅Dδ +

1

T β
⋅Rδ. (3.5)

Note that in the rest of the paper, we denote the process constructed using the EMO by Zδ.

Remark 3.1. Since δ is the length of the time interval [s, t], the process
Zδ = ξ

β
δ,Wδ
[Y ′t ] can be interpreted as a scale of the variation of the logarithm of the price of a risky asset concerning

the parameter β.

Definition 3.2. We define the inhibition degree β as

β ∶= {
α, if α > 3

2
,

3
2
+ ∣α∣, if α < 3

2
,

(3.6)

where α satisfies 2.4.

3.1.1. Some Properties of the EMO Because the sample functions from an ergodic process are statistically
equivalent, an ergodic process is stationary [14].

In the following lemma, we prove that the process made by the EMO is wide-sense stationary. This property is
a direct consequence of mean-ergodicity [14].

Lemma 3.1. ξβδ,Wδ
[Y ′t ] is a wide-sense stationary stochastic process.

Proof Let Zδ = ξ
β
δ,Wδ
[Y ′t ] and δ = t − s for t > s. We have

Zδ = Z0 +
1

T β ∫

δ

0
σsdWs +

WT

T β ∫

δ

0
µsds, Z0 = 0. (3.7)

Calculating the expectation of the process Zδ for δ and δ + τ yields

E[Zδ] = E[Zδ+τ ] = 0, ∀δ, τ > 0.
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Furthermore,

E[Z2
δ ] =

1

T 2β
E[(∫

δ

0
σsdWs)

2
+ (WT )

2(∫

δ

0
µsds)

2

+ 2WT (∫

δ

0
σsdWs)(∫

δ

0
µsds)]

=
1

T 2β
E[(∫

δ

0
σsdWs)

2
] +

1

T 2β
E[(WT )

2(∫

δ

0
µsds)

2
]

Itô isometry⇒ =
1

T 2β
E[∫

δ

0
σ2
sds] +

1

T 2β−1E[(∫
δ

0
µsds)

2
].

From 3.2 we observe that

E[∫
δ

0
σ2
sds] <∞, and E[(∫

δ

0
µsds)

2
] <∞.

Therefore, E[Z2
δ ] <∞.

Since the process Zδ depends on δ = t − s (not on t and s individually), the correlation function of Zδ is also a
function of δ for all t, s > 0. Therefore, the stochastic process Zδ = ξ

β
δ,Wδ
[Y ′t ] is wide-sense stationary.

Proposition 3.3. Suppose Ht and Gt are positive stochastic processes and let Yt = ln(Ht) and Zt = ln(Gt). Then,
the following statements hold.

1. For all a ∈ R we have
ξβδ,Wδ

[aYt] = aξ
β
δ,Wδ
[Yt]. (3.8)

2.
ξβδ,Wδ

[Yt +Zt] = ξ
β
δ,Wδ
[Yt] + ξ

β
δ,Wδ
[Zt]. (3.9)

3. ξβδ,Wδ
[Yt ⋅Zt] = D

z
δξ

β
δ,Wδ
[Yt] +R

z
δL(δ,Wδ),

where L(δ,Wδ) is a stochastic process to be found in the course of the proof.

Proof

1. Using the definition 3.5 yields

ξβδ,Wδ
[aYt] =

WT

T β
(a∫

δ

0
µsds) +

1

T β
(a∫

δ

0
σsdWs)

= a(
WT

T β
(∫

δ

0
µsds) +

1

T β
(∫

δ

0
σsdWs))

= a(
WT

T β
Dδ +

1

T β
Rδ) = aξ

β
δ,Wδ
[Yt].

2. Suppose Dy
t and Dz

t are the deterministic parts of the processes Yt and Zt, and Ry
t and Rz

t are the random
parts of the processes Yt and Zt, respectively. Using the EMO yields

ξβδ,Wδ
[Yt +Zt] =

WT

T β
(Dy

δ +D
z
δ) +

1

T β
(Ry

δ +R
z
δ)

=
WT

T β
Dy

δ +
1

T β
Ry

δ +
WT

T β
Dz

δ +
1

T β
Rz

δ

= ξβδ,Wδ
[Yt] + ξ

β
δ,Wδ
[Zt].

3. Using the proof of 3.9 we have

ξβδ,Wδ
[YtZt] = ξ

β
δ,Wδ
[Dy

tD
z
t +D

y
tR

z
t +R

y
tD

z
t +R

y
tR

z
t ],
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which by 3.8 can be written as

ξβδ,Wδ
[YtZt] = ξ

β
δ,Wδ
[Dy

tD
z
t ] + ξ

β
δ,Wδ
[Dy

tR
z
t ] + ξ

β
δ,Wδ
[Ry

tD
z
t ] + ξ

β
δ,Wδ
[Ry

tR
z
t ]

=
WT

T β
(Dy

δD
z
δ +R

y
δR

z
δ) +

1

T β
(Dy

δR
z
δ +R

y
δD

z
δ)

= Dz
δ(

WT

T β
Dy

δ +
1

T β
Ry

δ) +R
z
δ(

WT

T β
Ry

δ +
1

T β
Dy

δ )

= Dz
δξ

β
δ,Wδ
[Yt] +R

z
δL(δ,Wδ).

Where L(δ,Wδ) =
WT

Tβ Ry
δ +

1
Tβ D

y
δ .

3.2. Log-Ergodic Processes

Now, we introduce the concept of the log-ergodic process, which is one of the main concepts of this paper. Log-
ergodic processes are made from the original processes that model the markets, reflecting the ergodic behavior of
the original process.

Definition 3.3. (Log-ergodic process) The positive stochastic process Xt is log-ergodic, if its log process,
Yt = ln(Xt), satisfies

< Y > ∶= lim
T→∞

1

T
∫

T

0
(1 −

τ

T
)Covyy(τ)dτ = 0, ∀τ ∈ [0, T ]. (3.10)

Where Covyy(τ) is the covariance of Yτ .

Definition 3.4. (Partial ergodicity) The positive stochastic process Xt is partially ergodic if ξβδ,Wδ
[Yt] satisfies

3.10.

Proposition 3.4. The linear combination of two independent log-ergodic processes is log-ergodic.

Proof Consider the independent positive stochastic processes Ht and Gt, and suppose that Yδ = ξ
β
δ,Wδ
[ln(Ht)],

and Zδ = ξ
β
δ,Wδ
[ln(Gt)]. Then, for all real numbers γ and ν, it suffices to prove

< γY + νZ > = γ2
< Y > + ν2< Z >. (3.11)

We take δT = T − 0 = T . Then, for every small time interval of length δ we have

< γY + νZ > = lim
T→∞

1

T
∫

T

0
(1 −

δ

T
)(E[γ2Y 2

δ + ν
2Z2

δ + 2γνYδZδ] − γ
2E[Yδ]

2
− ν2E[Zδ]

2
)dδ

= lim
T→∞

1

T
∫

T

0
(1 −

δ

T
)(E[γ2Y 2

δ ] +E[ν
2Z2

δ ])dδ

= lim
T→∞

1

T
∫

T

0
(1 −

δ

T
)γ2E[Y 2

δ ]dδ + lim
T→∞

1

T
∫

T

0
(1 −

δ

T
)ν2E[Z2

δ ]dδ

= lim
T→∞

γ2

T
∫

T

0
(1 −

δ

T
)Covyy(δ)dδ + lim

T→∞
ν2

T
∫

T

0
(1 −

δ

T
)Covzz(δ)dδ

=γ2
< Y > + ν2< Z >.

Proposition 3.5. Suppose that Ht and Gt are two independent positive log-ergodic processes with E[Ht] =m <∞
and E[Gt] = n <∞. Let Yt = ln(Ht) and Zt = ln(Gt). Then,
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1. Gt +Ht is mean ergodic.
2. νHt is log-ergodic for any real number ν.
3. Gt ⋅Ht is log-ergodic.

Proof

1. Define Kt = Gt +Ht. Calculating the covariance of Kt we have:

Covkk = E[K2
t ] − (E[Kt])

2

= E[G2
t +H

2
t + 2GtHt] − (E[Gt +Ht])

2

= E[G2
t ] +E[H

2
t ] + 2E[Gt]E[Ht] − (E[Gt] +E[Ht])

2

= E[G2
t ] − (E[Gt])

2
+E[H2

t ] − (E[Ht])
2

= E[Gt −E[Gt]]
2
+E[Ht −E[Ht]]

2

= Covgg +Covhh = 0 + 0 = 0.

Substituting the calculated covariance in 3.10, we obtain <K > = 0.
2. Using 3.11 and 3.10 we have:

< ln(νH) > =< ln(ν) + Y >

=< ln(ν) > + < Y > = 0 + < Y > = 0.

3. Using 3.11 and 3.10 yields

< ln(G ⋅H) > =< ln(G) + ln(H) >

=< ln(G) > + < ln(H) >

=< Y > + < Z > = 0.

Theorem 3.6. Let Xt be a positive stochastic log-ergodic process. Then, there exist time intervals of length δi, with
i ≥ 0, for the process Zδ = ξ

β
δ,Wδ
[ln(Xt)], in which the process is recurrent to its mean along any arbitrary path.

Proof We prove the theorem concerning a fixed path ω0. Using the definition of log-ergodicity, it follows that
the relation 3.10 holds for the process Zδ. Therefore, from the definition of mean ergodicity[37, 31], we have

lim
T→∞

1

T
∫

T

0
Zδdδ = E[Zδ].

It follows from Poincaré recurrence theorem [37] that the process Zδ is recurrent to its mean along the path.
Therefore, there exists at least a time interval of length δ0 in [0, T ] such that Zδ0(ω0) = E[Zδ0(ω0)], P-almost
surely. For i ∈ N ∪ {0}, let {δi}i≥0 represent the length of the time intervals in which the process Zδ meets its mean
along the path ω0 (as shown in Figure 1). It can be written that:

P(∃i ∈ N ∪ {0}, Zδi(ω0) = E[Zδi(ω0)]) = 1.

Consequently, using Birkhoff’s ergodic theorem, as T approaches infinity, it follows that there exist infinitely many
time intervals of length δi for every i ≥ 0, for which Zδ returns to its mean along the path ω0.
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Figure 1. A zoomed random sample path, ω0, of the process Zδ , for small time scales, with arbitrary recurrence time ti in the
time interval [166, 168], with length δi = 2, in which the process Zδ(ω0) returns to E[Zδ(ω0)]. This random sample path is
generated by the geometric Brownian motion process.

In this section, we defined the concepts of the log-ergodic process and the ergodic maker operator and
investigated their properties. In the next section, we present examples of log-ergodic processes usable for modeling
financial markets with ergodic behavior in the mean.

4. Log-Ergodic Processes in Mathematical Finance

In this section, we prove the log-ergodic property for the models widely used in mathematical finance.

4.1. Mean Reversion Models

Proposition 4.1. Any stochastic process with mean-reverting property is mean-ergodic.

Proof We know that every mean-reverting stochastic process is wide-sense stationary [11]. Let rt(⋅) be a
stochastic process with mean reversion property and E[rt] <∞. From 3.1, it follows that

E[rt] = E[rt+δ], ∀t, δ > 0.

Let τ0 > 0 be the time that the process rt meets its mean along the path ω0. According to the Poincaré recurrence
theorem [37] and theorem 3.6, it can be written that:

rτ0(ω0) = E[rτ0(ω0)]

rτ0(ω0) ⋅ rτ0(ω0) = rτ0(ω0) ⋅E[rτ0(ω0)]

E[E[r2τ0(ω0)]] = E[rτ0(ω0)]E[E[rτ0(ω0)]]

E[r2τ0(ω0)] = E2
[rτ0(ω0)].

Computing the covariance of the process at the time τ0 we obtain

Covrr(τ0) = E[r2τ0] − (E[rτ0])
2
<∞

= E[E[rτ0]E[rτ0]] − (E[rτ0])
2

= (E[rτ0])
2
− (E[rτ0])

2
= 0.
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Therefore, according to 3.10, the process rt is mean-ergodic.

4.2. Main Theorem

In this subsection, we present the key theorem of the paper. In section 5, we use the results of this section to prove
the theorem.

Theorem 4.2. (Main theorem) Suppose that the price process, St, of an asset has the form:

St = S0e
Yt , S0 = s,

with

Y ′t = ln(s) + Yt = Y
′
0 + ∫

t

0
µu,sdu + ∫

t

0
σdWu, Y ′0 = ln(s) + Y0, Y0 = 0,

σ = f(Vt).

Where µt,s is an adapted function of t and St, Vt is an arbitrary random process, and σ is an adapted function
of the random process Vt that satisfies the following conditions: 0 <M1 ≤ σ ≤M2 for some positive constants M1

and M2, and ∫
t

0 σ2
sds <∞ for all t > 0. Then, the process St is partially ergodic.

In the remaining part of this section, we express some results that we use to prove the main theorem.

Theorem 4.3. The stochastic process Zδ defined by 3.7 is mean-ergodic. In other words, the positive stochastic
process Xt is partially ergodic.

Proof It follows from [33, 24, 3] that Zδ is a Markov process. Zδ is stationary by [32] and 3.1. Therefore, Zδ

meets the requirements to be ergodic in the mean, as stated in [31, 10, 16]. Hence, we first evaluate the expectation
of the Zδ process.

E[Zδ] = E[Z0 +
1

T β ∫

δ

0
σsdWs +

WT

T β ∫

δ

0
µsds]

= E[
1

T β ∫

δ

0
σsdWs] +E[

WT

T β ∫

δ

0
µsds] = 0.

Now we evaluate the time-average of Zδ.

< Z > = lim
T→∞

1

T
∫

T

0
Zδdδ

= lim
T→∞

1

T
∫

T

0
[
1

T β ∫

δ

0
σsdWs +

WT

T β ∫

δ

0
µsds]dδ

= lim
T→∞

1

T
∫

T

0
[
1

T β ∫

δ

0
σsdWs]dδ + lim

T→∞
1

T
∫

T

0
[
WT

T β ∫

δ

0
µsds]dδ

= lim
T→∞

1

T β+1 [∫
T

0
∫

δ

0
σsdWsdδ] + lim

T→∞
WT

T β+1 [∫
T

0
∫

δ

0
µsdsdδ].

The first integral is zero since dWsdδ = 0. Therefore,

< Z >= lim
T→∞

WT

T β+1 [∫
T

0
∫

δ

0
µsdsdδ]. (4.1)

From 3.2 we have: ∫
δ

0 ∣µs∣ds <∞. Hence, the integral in 4.1 is finite. From theorem 3.2 it follows that
limT→∞ WT

Tβ+1 = 0. Therefore, < Z >= 0.
As examples, the Ornstein–Uhlenbeck process [15], the geometric Brownian motion process [3], and the Jump-

Diffusion process [16] are positive partially ergodic processes.
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4.3. Log-ergodic Lévy Processes

Lévy processes have been studied in [7], especially Cont studied the decomposition of exponential Lévy processes,
which we will consider from the point of view of log-ergodicity. Lévy processes are well-behaved processes from
the perspective of ergodic theory since their increments are stationary and independent. The independence of the
increments implies that Lévy processes have Markov property [38]. Therefore, any Lévy process satisfies the
requirements for ergodicity.

Let Yt be a Lévy process and suppose that the distribution of Yt is parameterized by (η, σ2, ν) [38]. Using the
Lévy-Itô theorem [30, 38], we decompose Yt as

Yt = ηt + σWt + Jt +Mt, (4.2)

where Wt is a standard Wiener process, for t ≥ 0, ∆Yt = Yt − Yt− is a Poisson process with intensity ν, Jt =
∑s≤t∆Ys1{∣∆Ys∣>1}, and Mt is a bounded martingale. Using the ergodic maker operator 3.5 for the process Yt,
we obtain:

Zδ =
σWδ

T β
+
WT

T β
[δη + Jδ +Mδ]. (4.3)

Proposition 4.4. Let Xt = X0e
Yt , with X0 = x, where Yt is a Lévy process. Then, the process Xt is partially

ergodic.

Proof The expectation of Zδ defined by 4.3 is zero. Therefore, it suffices to prove that the time-average of Zδ is
zero.

< Z >= lim
T→∞

1

T
∫

T

0
Zδdδ

= lim
T→∞

1

T
∫

T

0
[
σWδ

T β
+
WT

T β
[δη + Jδ +Mδ]]dδ

= lim
T→∞

1

T
∫

T

0

σWδ

T β
dδ + lim

T→∞
1

T
∫

T

0

ηδWT

T β
dδ

+ lim
T→∞

1

T
∫

T

0

JδWT

T β
dδ + lim

T→∞
1

T
∫

T

0

MδWT

T β
dδ. (4.4)

Now, using theorem 3.2 we evaluate the integrals.
First integral:
The coefficient σ is bounded. Therefore,

lim
T→∞

1

T
∫

T

0

σWδ

T β
dδ = lim

T→∞
σ

T β+1 ∫
T

0
Wδdδ = lim

T→∞
σ
∫

T

0 Wδdδ

T β+1 .

Using 3.1 yields

σ lim
T→∞

∫
T

0 Wδdδ

T β+1 = σ × 0 = 0.

Second integral:

lim
T→∞

1

T
∫

T

0

ηδWT

T β
dδ = lim

T→∞
WT η

T β+1 ∫
T

0
δdδ = lim

T→∞
WT η

T β+1 (
1

2
δ2∣

T

0
) = lim

T→∞
WT η

2T β−1 = 0.
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Third integral:

lim
T→∞

1

T
∫

T

0

JδWT

T β
dδ = lim

T→∞
WT

T β+1 ∫
T

0
Jδdδ = lim

T→∞
WT

T β+1 ∫
T

0
∑
s≤δ

∆Ys1{∣∆Ys∣>1}dδ

= lim
T→∞

WT

T β+1 ∑
s≤δ
∫

T

0
[Ys − Ys−]1{∣∆Ys∣>1}dδ

= lim
T→∞

WT

T β+1 ∑
s≤δ
∫

T

0
Ys1{∣∆Ys∣>1}dδ − lim

T→∞
WT

T β+1 ∑
s≤δ
∫

T

0
Ys−1{∣∆Ys∣>1}dδ

= lim
T→∞

WT

T β+1 ∑
s≤δ
∫

T

0
Ysdδ − lim

T→∞
WT

T β+1 ∑
s≤δ
∫

T

0
Ys−dδ

= lim
T→∞

WT

T β
∑
s≤δ

Ys − lim
T→∞

WT

T β
∑
s≤δ

Ys− = 0.

Fourth integral:

lim
T→∞

1

T
∫

T

0

MδWT

T β
dδ = lim

T→∞
WT

T β ∫

T

0
Mδdδ.

Since Mδ is bounded, the integral on the right-hand side is bounded. Therefore, using theorem 3.2 yields

lim
T→∞

WT

T β ∫

T

0
Mδdδ = 0.

Hence, substituting the evaluated integrals in 4.4, we obtain < Z >= 0. Therefore, the process Xt is partially
ergodic.

As a result, any Poisson process, Itô process, and compound Poisson process is partially ergodic.

4.4. Bounded Processes

Proposition 4.5. Let Yt be a non-negative bounded stochastic process. Then, the process ξβδ,Wδ
[Yt] is mean-

ergodic.

Proof Let Yt(ω0) be the path of the process Yt generated by ω0 ∈ Ω, and
ξβδ,Wδ

[Yt] = Zδ. According to the definition of boundedness concerning ω0, we have:

∣Yt(ω0)∣ ≤M,

for some positive number M . Now we write:

Yt(ω0) ≤ sup
t∈[0,T ]

Yt(ω0)

⇒∫

T

0
ξβδ,Wδ

[Yt(ω0)]dδ ≤ ∫
T

0
sup

t∈[0,T ]
ξβδ,Wδ

[Yt(ω0)]dδ

⇒ lim
T→∞

1

T
∫

T

0
ξβδ,Wδ

[Yt(ω0)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Zδ(ω0)

dδ ≤ lim
T→∞

1

T
∫

T

0
sup

t∈[0,T ]
ξβδ,Wδ

[Yt(ω0)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Zδ(ω0)

dδ.

From [13], for the covariance of the process Zδ, we consider the following relations:

−

√

Var2[ξβδ,Wδ
[Yt(ω0)]] ≤ Covzz(δ) ≤

√

Var2[ξβδ,Wδ
[Yt(ω0)]].
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Thus, by definition 3.10 we get:

lim
T→∞

1

T
∫

T

0
(1 −

δ

T
)Covzz(δ)dδ

≤ lim
T→∞

1

T
∫

T

0
(1 −

δ

T
)∣Var[ξβδ,Wδ

[Yt(ω0)]]∣dδ. (4.5)

Let supt∈[0,T ] Yt(ω) =Mt(ω), for any ω ∈ Ω. We observe that:

0 ≤ Yt ≤Mt(ω)⇒ 0 ≤ ξβδ,Wδ
[Yt] ≤ ξ

β
δ,Wδ
[Mt(ω)]

⇒ 0 ≤ Z2
δ ≤ (ξ

β
δ,Wδ
[Mt(ω)])

2

⇒ 0 ≤ E[Z2
δ ] ≤ E[(ξ

β
δ,Wδ
[Mt(ω)])

2
].

It follows from lemma 3.1 that:
0 ≤ Var[Zδ] ≤ E[(ξβδ,Wδ

[Mt(ω)])
2
]. (4.6)

Now, using 4.6 in 4.5 yields

lim
T→∞

1

T
∫

T

0
(1 −

δ

T
)Covzz(δ)dδ

≤ lim
T→∞

1

T
∫

T

0
(1 −

δ

T
)E[(ξβδ,Wδ

[Mt(ω)])
2
]dδ.

Let µξ(δ) = E[(ξβδ,Wδ
[Mt(ω)])

2]. According to 3.5, we have µξ(δ) <∞. Thus,

lim
T→∞

1

T
∫

T

0
(1 −

δ

T
)Covzz(δ)dδ ≤ lim

T→∞
1

T
∫

T

0
(1 −

δ

T
)µξ(δ)dδ.

Evaluating the right-hand side yields

lim
T→∞

1

T
∫

T

0
(1 −

δ

T
)µξ(δ)dδ

= lim
T→∞

[
1

T
∫

T

0
µξ(δ)dδ −

1

T 2 ∫

T

0
δµξ(δ)dδ]. (4.7)

Since µξ(δ) is bounded, the first integral in 4.7 approaches zero as T →∞. To evaluate the second integral, we
proceed as follows:

lim
T→∞

1

T
∫

T

0
(1 −

δ

T
)µξ(δ)dδ

= lim
T→∞

1

T 2
[
1

2
T 2µξ(T ) −

1

2
∫

T

0
2δ2E[ξβδ,Wδ

[Mt(ω)]d(ξ
β
δ,Wδ
[Mt(ω)])]].

Mt(ω) is independent of Wt. Therefore, E[ξβδ,Wδ
[Mt(ω)]] = 0, according to 3.5. Finally, from definition 3.1 we

have:

lim
T→∞

1

T 2

1

2
T 2µξ(T ) = lim

T→∞
1

2
E[(ξβδ,Wδ

[Mt(ω)])
2
] = 0.

Therefore,

0 ≤ lim
T→∞

1

T
∫

T

0
(1 −

δ

T
)Covzz(δ)dδ ≤ 0.

Consequently, we get:

lim
T→∞

1

T
∫

T

0
(1 −

δ

T
)Covzz(δ)dδ = 0.
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Example 4.1. For t > 0,

1. The process Yt = sin(Wt) is mean-ergodic.

2. The process Yt = γ sin(µt + σWt) where γ, µ, and σ are constants, is mean-ergodic.

solution 1. Using the Itô lemma we write:

d sin(Wt) = cos(Wt)dWt −
1

2
sin(Wt)dt

E[sin(Wt)] = −
1

2
∫

t

0
E[sin(Ws)]ds

dE[sin(Wt)] = −
1

2
E[sin(Wt)]dt

dE[sin(Wt)]

E[sin(Wt)]
= −

1

2
dt

d ln(E[sin(Wt)]) = −
1

2
dt⇒ E[sin(Wt)] = e

−t
2 .

Calculating the covariance of sin(Wt) we get:

Covyy(τ) = e
−2τ
− e

−τ
2 .

Now, we calculate the limit in the definition 3.10 as follows:

lim
T→∞

1

T
∫

T

0
(1 −

τ

T
)(e−2τ − e

−τ
2 )dτ

= lim
T→∞

1

T
[ −

1

2
e−2T + 2e

−T
2 +

1

T
[
(2T + 1)e−2T

4
− 2(T + 2)e

−T
2 ]]

= lim
T→∞

1

T
[

1

4Te2T
−

4

Te
T
2

] = 0.

solution 2. We have:

E[Yt] =E[γ sin(µt + σWt)]

=∫

∞

−∞
γ sin(µt + σWt)fY (y)dy

=∫

2π

0
γ sin(µt + σWt)

1

2π
dWt

=
γ

2π
∫

2π

0
sin(µt + σWt)dWt = 0.

Computing the time-average we obtain the following:

< Y > = lim
T→∞

1

T
∫

T

0
γ sin(µt + σWt)dt

= lim
T→∞

γ

T
∫

T

0
sin(µt + σWt)dt = 0.

Therefore, we have < Y >= E[Yt]. This implies that the process Yt is mean-ergodic.

Example 4.2. It is proven in paper [25] that a Markov chain that models a process confined to a bounded interval
exhibits ergodic behavior while the process is constantly attracted to the center of the interval.
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4.5. Jump-Diffusion Processes

In economics and finance a jump-diffusion model is a combination of a jump process and a diffusion process.
These models were first introduced by Robert C. Merton and have a range of financial applications such as option
pricing, credit risk studies, and time series forecasting [17].

It is known that the jump diffusion model of the asset price Xt under the probability measure P is:

dXt

Xt−
= µdt + σdWt + d

⎛

⎝

Nt

∑
i=1
(Vi − 1)

⎞

⎠
,

where Wt is a standard Wiener process, Nt is a Poisson process with rate λ, and V i is a sequence of independent
identically distributed (i ⋅ i ⋅ d) non-negative random variables [17]. In the model, all sources of randomness are
assumed to be independent. Solving the stochastic differential equation above gives the dynamics of the asset
price:

Xt = X0 exp

⎧⎪⎪
⎨
⎪⎪⎩

⎛

⎝
µ −

1

2
σ2⎞

⎠
t + σWt

⎫⎪⎪
⎬
⎪⎪⎭

Nt

∏
i=1

Vi. (4.8)

Applying the EMO on 4.8 yields

Zδ = ξ
β
δ,Wδ
[Xt] =

WT

T β

⎛

⎝
µ −

1

2
σ2⎞

⎠
δ

Nδ

∏
i=1

Vi +
1

T β
σWδ

Nδ

∏
i=1

Vi.

In jump-diffusion processes, the jump term is typically modeled as a Poisson process, which can have state-
dependent rates and sizes. The size of the jump is assumed to have a symmetric distribution with finite even order
statistical moments [34, 21]. This means that while the jump term can be large, it is indeed bounded. However, it
is important to note that the rate function λ does not need to be bounded [34], which means that the frequency of
jumps can be high under certain conditions. But each individual jump, or the “jump term”, is bounded.

Proposition 4.6. The jump-diffusion process 4.8 is partially ergodic.

Proof Let Jδ =∏Nδ

i=1 Vi. We have:

Zδ =
WT δJδ

T β

⎛

⎝
µ −

1

2
σ2⎞

⎠
+
σWδJδ

T β
(4.9)

The expectation of Zδ defined by 4.9 is zero. Therefore, it suffices to prove that the time-average of Zδ is zero.

< Z >= lim
T→∞

1

T
∫

T

0
Zδdδ

= lim
T→∞

1

T
∫

T

0

⎡
⎢
⎢
⎢
⎢
⎣

WT δJδ

T β

⎛

⎝
µ −

1

2
σ2⎞

⎠
+
σWδJδ

T β

⎤
⎥
⎥
⎥
⎥
⎦

dδ

= lim
T→∞

1

T
∫

T

0

WT δJδ

T β

⎛

⎝
µ −

1

2
σ2⎞

⎠
dδ + lim

T→∞
1

T
∫

T

0

σWδJδ

T β
dδ

= lim
T→∞

(µ − 1
2
σ2)WT

T β+1 ∫

T

0
Jδδdδ + lim

T→∞
σ

T β+1 ∫
T

0
WδJδdδ. (4.10)
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Now since the jump term is bounded [34, 21], the first integral in 4.10 is also bounded. Therefore, from 3.2 we
have:

< Z >=(µ −
1

2
σ2
) lim
T→∞

WT

T β+1 ∫
T

0
Jδδdδ + lim

T→∞
σ

T β+1 ∫
T

0
WδJδdδ

=(µ −
1

2
σ2
) × 0 + lim

T→∞
σ

T β+1 ∫
T

0
WδJδdδ

= lim
T→∞

σ

T β+1 ∫
T

0
WδJδdδ.

Furthermore, we have:

WδJδ =Wδ

Nδ

∏
i=1

Vi =
Nδ

∏
i=1

WδVi ⇒ E[WδJδ] = E[
Nδ

∏
i=1

WδVi].

Since {Vi} is a sequence of i ⋅ i ⋅ d random variables, we have: E[WδJδ] =∏
Nδ

i=1E[WδVi] = 0. Therefore, from 3.2,
for β > 3

2
we have: ms limδ→∞ WδJδ

δβ
= 0. Hence, using 3.1 yields

< Z >= σ lim
T→∞

∫
T

0 WδJδdδ

T β+1 = 0

Thus, the process Xt is partially ergodic.

5. Proof of Log-Ergodicity for Stochastic Volatility Models

In this section, we prove the main theorem of the paper, which we stated in section 4. First, we recall the statement
of the theorem.

Theorem 5.1. (Main theorem) Suppose that the price process, St, of an asset has the form:

St = S0e
Yt , S0 = s,

with

Y ′t = ln(s) + Yt = Y
′
0 + ∫

t

0
µu,sdu + ∫

t

0
σdWu, Y ′0 = ln(s) + Y0, Y0 = 0,

σ = f(Vt).

Where µt,s is an adapted function of t and St, Vt is an arbitrary random process, and σ is an adapted function
of the random process Vt that satisfies the following conditions: 0 <M1 ≤ σ ≤M2 for some positive constants M1

and M2, and ∫
t

0 σ2
sds <∞ for all t > 0. Then, the process St is partially ergodic.

Proof We write:

Y ′t = ln(s) + ∫
t

0
µu,sdu + ∫

t

0
f(Vu)dWu,

Zδ = ξ
β
δ,Wδ
[Y ′t ] =

WT ∫
δ

0 µu,sdu

T β
+
∫

δ

0 f(Vu)dWu

T β
, Z0 = 0.

Now we evaluate the covariance of Zδ:

Covzz(δ) =
E[(∫

δ

0 µu,sdu)
2]

T 2β−1 +
E[(∫

δ

0 f(Vu)dWu)
2]

T 2β
.

Stat., Optim. Inf. Comput. Vol. 13, March 2025



K. FIROUZI, M. J. MAMAGHANI 1093

Next, we prove 3.10 holds.

< Z > = lim
T→∞

1

T
[∫

T

0
(1 −

δ

T
)
E[(∫

δ

0 µu,sdu)
2]

T 2β−1 dδ

+ ∫

T

0
(1 −

δ

T
)
E[ ∫

δ

0 f2(Vu)du]

T 2β
dδ].

It follows from theorem 4.3 that the first integral approaches zero as T →∞. Therefore, it suffices to prove

lim
T→∞

1

T
[∫

T

0
(1 −

δ

T
)
E[∫

δ

0 f2(Vu)du]

T 2β
dδ] = 0.

The volatility term at any time interval of length δ = t − s, for all t, s > 0 and t ≠ s, is bounded [3]. Therefore, there
exist positive numbers M1, and M2 such that:

0 <M1 ≤ f(Vt) ≤M2, a.s.

Thus,

M2
1 ≤ f

2
(Vt) ≤M

2
2 ,

∫

δ

0
M2

1 du ≤ ∫
δ

0
f2
(Vu)du ≤ ∫

δ

0
M2

2 du,

E[M2
1 δ] ≤ E[∫

δ

0
f2
(Vu)du] ≤ E[M2

2 δ],

M2
1 δ

T 2β
≤
E[∫

δ

0 f2(Vu)du]

T 2β
≤
M2

2 δ

T 2β
.

As a result, we get:

∫

T

0

M2
1 δ

T 2β
dδ ≤ ∫

T

0

E[∫
δ

0 f2(Vu)du]

T 2β
dδ ≤ ∫

T

0

M2
2 δ

T 2β
dδ,

M2
1

2T 2β−2 ≤ ∫
T

0

E[∫
δ

0 f2(Vu)du]

T 2β
dδ ≤

M2
2

2T 2β−2 ,

lim
T→∞

M2
1

2T 2β−2 ≤ lim
T→∞

1

T
∫

T

0

E[∫
δ

0 f2(Vu)du]

T 2β
dδ ≤ lim

T→∞
M2

2

2T 2β−2 ,

⇒ 0 ≤ lim
T→∞

1

T
∫

T

0

E[∫
δ

0 f2(Vu)du]

T 2β
dδ ≤ 0. (5.1)

Also we have:

M2
1 δ

2

T 2β+1 ≤
E[∫

δ

0 f2(Vu)du]δ

T 2β+1 ≤
M2

2 δ
2

T 2β+1 ,

1

T
∫

T

0

M2
1 δ

2

T 2β+1 dδ ≤ ∫
T

0

1

T 2β+2E[∫
δ

0
f2
(Vu)du]δdδ ≤

1

T
∫

T

0

M2
2 δ

2

T 2β+1 dδ,

lim
T→∞

M2
1

3T 2β−1 ≤ lim
T→∞

1

T 2 ∫

T

0

E[∫
δ

0 f2(Vu)du]δ

T 2β
dδ ≤ lim

T→∞
M2

2

3T 2β−1 ,

⇒ 0 ≤ lim
T→∞

1

T 2 ∫

T

0

E[∫
δ

0 f2(Vu)du]δ

T 2β
dδ ≤ 0. (5.2)

Now it follows from 5.1 and 5.2 that < Z > = 0.
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6. Application of Log-Ergodic Processes in Mathematical Finance

The main benefit of using the log-ergodic processes is the substitution of time-averaging with expectation in
computations in the long run. We will use the results of this paper to model leveraged futures trading by estimating
mean reversion time intervals in subsequent studies. Reducing the randomness of a financial model reduces the risk
of trading and allows one to enter or leave a trading position with a lower risk.

In the following, we will study the behavior of the log-ergodic processes using empirical data and express a
novel version of the Black-Scholes partial differential equation by providing an example concerning the simulation
of the mean-ergodic process Zδ.

Example 6.1. Consider the empirical data of Tesla stock price from December 14, 2001, to December 14, 2023.
We extracted the data from the Yahoo Finance §, and Trading View¶ websites. Considering the stock price process,
St, follows the geometric Brownian motion, we write:

St = S0 exp{(µ −
1

2
σ2
)t + σWt}, S0 = s.

Y ′t = ln(St) = Y
′
0 + (µ −

1

2
σ2
)t + σWt, Y ′0 = ln(s).

Where µ and σ are constants, and Wt is a standard Wiener process. Using the ergodic maker operator for any time
interval δ, we have:

Zδ = Z0 +
(µ − 1

2
σ2)δWT

T β
+
σWδ

T β
, Z0 = 0.

A random path of Zδ for the data of the Tesla for β = 2 is shown in Figure 2.

0 50 100 150 200 250 300

Time (days)

-0.2

-0.1

0

0.1

0.2

0.3

Z

Mean Ergodic Process Z

Z

E[Z ]

Figure 2. A random path of the process Zδ for the Tesla price data for β = 2 within a 300-day time frame.

§https://finance.yahoo.com
¶https://www.tradingview.com
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Let q = µ − 1
2
σ2 and δ = T − 0 = T . Using the Itô lemma, we have:

dZT =
1

2
[0]dT + [

q

T β−1 +
σ

T β
]dWT − [

(β − 1)qWT

T β
+
βσWT

T β+1 ]dT,

= [
(1 − β)qWT

T β
−
βσWT

T β+1 ]dT + [
q

T β−1 +
σ

T β
]dWT ,

= [
qWT

T β
−
β

T
[
qWT

T β−1 +
σWT

T β
]]dT + [

q

T β−1 +
σ

T β
]dWT

⇒ dZT = [
qWT

T β
−
β

T
ZT ]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A(T,WT )

dT + [
q

T β−1 +
σ

T β
]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
BT

dWT

dZT = A(T,WT )dT +BT dWT .

Consequently, since we considered δ = T − 0 = T , we can write:

dZδ = A(δ,Wδ)dδ +BδdWδ. (6.1)

According to the above assumptions, we have the following result:

Proposition 6.1. (Black–Scholes ergodic partial differential equation) Under the assumptions of the Black-Scholes
model, the European call option price, C(Zδ, δ), relative to the stock price variation Zδ = z, concerning short rate
r, inhibition degree parameter β, and the strike price K satisfies in the following partial differential equation.

∂C

∂δ
+ rz

∂C

∂z
+
1

2
B2

δ

∂2C

∂z2
− rC = 0, (6.2)

for 0 < ∣z∣ <∞, 0 < δ < δT = T − 0,

where Bδ =
q

δβ−1
+

σ

δβ
, q = µ −

1

2
σ2,

together with initial conditions C(0, δ) = 0 and C(z, δT ) = (∣z∣ − ln(K))
+.

Proof We think of Zδ as the process of the variations of the price of a traded stock and form a risk hedging
basket, including x shares with the price variation z and one unit of call option with a sell position [3]. For the
price Vδ ∶= V (z, δ) of this basket, we have:

Vδ = −C(z, δT ) + xz,

dVδ = −dC(z, δT ) + xdz. (6.3)

We set C ∶= C(z, δT ). Substituting the dynamics of z in 6.3 and using Itô lemma yields

dVδ = −
∂C

∂δ
dδ −

∂C

∂z
Az(δ,Wδ)dδ −

∂C

∂z
BδdWδ −

1

2

∂2C

∂z2
B2

δdδ

+ xAz(δ,Wδ)dδ + xBδdWδ,

dVδ = − [
∂C

∂δ
− xAz(δ,Wδ) +

∂C

∂z
Az(δ,Wδ) +

1

2

∂2C

∂z2
B2

δ ]dδ

+ [xBδ −
∂C

∂z
Bδ]dWδ. (6.4)

For the portfolio to be risk-free, the coefficient of dWt must be zero. We therefore have x = ∂C
∂z

. Substituting the
value of x in 6.4, we reach the following:

dVδ = − [
∂C

∂δ
+
∂C

∂z
Az(δ,Wδ) −

∂C

∂z
Az(δ,Wδ) +

1

2

∂2C

∂z2
B2

δ ]dδ

dVδ = − [
∂C

∂δ
+
1

2

∂2C

∂z2
B2

δ ]dδ
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On the other hand, by the absence of arbitrage, we have: dVδ = rVδdδ [3]. Therefore,

r[ −C +
∂C

∂z
z]dδ = −[

∂C

∂δ
+
1

2

∂2C

∂z2
B2

δ ]dδ.

Simplifying, we get the equation:

∂C

∂δ
+ rz

∂C

∂z
+
1

2
B2

δ

∂2C

∂z2
− rC = 0.

Where

Bδ =
q

δβ−1
+

σ

δβ
, q = µ −

1

2
σ2.

The European call option is exercised when ∣z∣ > ln(K). Therefore, the final condition for δ = δT is C(z, δT ) =
max [∣z∣ − ln(K), 0]. Also, regarding the boundary conditions we have:

C(0, δ) = 0, 0 < δ < δT = T,

C(z, δ) ∼ ∣z∣ − ln(K)e−r(δT−δ), as ∣z∣→∞.

We use the ergodic maker operator (EMO), a mathematical tool transforming a non-ergodic process into an
ergodic one, to incorporate the inhibition degree parameter into the financial models ( e.g., the partial differential
equation 6.2 ). The inhibition degree parameter describes market imperfections or constraints that affect the price
dynamics and may vary over time depending on external shocks or events ( e.g., natural disasters, black swans,
wars, elections, and more). We use the log-ergodic processes to model financial markets because they allow us to
study the behavior of the market participants from the perspective of the invisible hands that govern the market
equilibrium.

7. Empirical Data Analysis

In this section, we present the empirical data analysis and express the results of our study. We use quantitative
methods to test our hypotheses and predictions derived from the log-ergodicity theory. We use the statistical
package IBM SPSS Statistics and Matlab to perform the analysis.

7.1. Data Description

We use five datasets for our empirical study. The first dataset contains the daily closing prices of Tesla (TSLA)
stock from December 14, 2001, to December 14, 2023. The second dataset contains the daily closing prices of
Apple (AAPL) stock from December 14, 2001, to December 14, 2023. The third dataset contains the daily closing
prices of Microsoft (MSFT) stock from December 14, 2001, to December 14, 2023. The fourth dataset contains
the daily closing prices of the Nasdaq Composite Index (IXIC) from December 14, 2001, to December 14, 2023.
The fifth dataset contains the daily closing prices of MSCI Inc. (MSCI) from December 14, 2001, to December 14,
2023. We obtained the data from Yahoo Finance||, Trading View**, and Kaggle ††.

We transform the price data into log-returns by taking the natural logarithm of the ratio of consecutive prices. We
then apply the ergodic maker operator to the log-return data with different values of the inhibition degree parameter
β. We obtain the log-ergodic returns by multiplying the log-returns by β and adding a constant term α that ensures
the positivity of the resulting process. We choose α from the range [0, 0.1] with a step size of 0.01 and β from the
range [1.6, 2] with a step size of 0.1. We generate log-ergodic processes for each original price process.

∥https://finance.yahoo.com
∗∗https://www.tradingview.com
††https://www.kaggle.com

Stat., Optim. Inf. Comput. Vol. 13, March 2025

https://finance.yahoo.com
https://www.tradingview.com
https://www.kaggle.com


K. FIROUZI, M. J. MAMAGHANI 1097

7.2. Data Analysis Methods

We use three methods to analyze the data: descriptive statistics, correlation analysis, and regression analysis.

1. Descriptive statistics: We compute the mean, standard deviation, skewness, and kurtosis of each log-return
and log-ergodic return series. Additionally, we plot the histograms of the distributions of each series and
compare the descriptive statistics of the original and transformed processes to examine how does the ergodic
maker operator affect the properties of the price dynamics.

2. Correlation analysis: We compute the Pearson correlation coefficients between log-return and log-ergodic
return series. Also, we plot the correlation matrices of the correlation coefficients and compare the correlation
coefficients of the original and transformed processes to examine how the ergodic maker operator affects the
dependence structure of the price movements.

3. Regression analysis: We use log-ergodic model to test our hypotheses and predictions about the effects of
log-ergodicity on pricing contingent claims and studying market restrictions. We report the sum of squares
error, the root mean squared error, R-squared, and adjusted R-squared for each model and plot the scatterplots
and regression lines for each model.

7.3. Data Analysis Results

We present the results of our data analysis in this subsection. We summarize the main findings and discuss their
implications for our research questions.

7.3.1. Descriptive Statistics The descriptive statistics of the log-return and log-ergodic return series are shown in
Table 1 and Table 2, respectively. Figure 3 shows the histograms of the distributions of the series.

Table 1. Descriptive statistics of log-return series.

Index Mean Standard deviation Skewness Kurtosis
TSLA 0.0014 0.0354 -0.0525 7.9044
AAPL 0.0009 0.0178 -0.2724 8.6223
MSFT 0.0008 0.0165 -0.1910 11.2005
IXIC 0.0005 0.0129 -0.6195 11.0332
MSCI 8.2294e-04 0.0192 -1.4281 30.7579
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Figure 3. Histograms of log-return and log-ergodic return series. The y-axis represents the frequency of the data.
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Table 2. Descriptive statistics of log-ergodic return series.

Index (β,α) Mean Standard deviation Skewness Kurtosis
TSLA (1.6, 0) 0.0060 0.1089 -0.0525 7.9044
TSLA (1.6, 0.01) 0.0145 0.1007 -0.0525 7.9044
⋮ ⋮ ⋮ ⋮ ⋮

TSLA (2, 0) -0.0047 0.1548 -0.0525 7.9044
TSLA (2, 0.01) 0.0043 0.1242 -0.0525 7.9044
⋮ ⋮ ⋮ ⋮ ⋮

AAPL (1.6, 0) -0.0020 0.0501 -0.2724 8.6223
AAPL (1.6, 0.01) 1.5451e-04 0.0397 -0.2724 8.6223
⋮ ⋮ ⋮ ⋮ ⋮

AAPL (2, 0) -0.0008 0.0688 -0.2724 8.6223
AAPL (2, 0.01) 5.895e-04 0.0298 -0.2724 8.6223
⋮ ⋮ ⋮ ⋮ ⋮

MSFT (1.6, 0) -0.0012 0.0392 -0.1910 11.2005
MSFT (1.6, 0.01) 0.0037 0.0255 -0.1910 11.2005
⋮ ⋮ ⋮ ⋮ ⋮

MSFT (2, 0) -0.0053 0.0577 -0.1910 11.2005
MSFT (2, 0.01) 0.0004 0.0574 -0.1910 11.2005
⋮ ⋮ ⋮ ⋮ ⋮

IXIC (1.6, 0) 3.7441e-05 0.0507 -0.6195 11.0332
IXIC (1.6, 0.01) 8.1571e-04 0.0367 -0.6195 11.0332
⋮ ⋮ ⋮ ⋮ ⋮

IXIC (2, 0) -5.3113e-04 0.0642 -0.6195 11.0332
IXIC (2, 0.01) 6.0715e-04 0.0308 -0.6195 11.0332
⋮ ⋮ ⋮ ⋮ ⋮

MSCI (1.6, 0) -7.4676e-04 0.0510 -1.4281 30.7579
MSCI (1.6, 0.01) 0.0026 0.00973 -1.4281 30.7579
⋮ ⋮ ⋮ ⋮ ⋮

MSCI (2, 0) -3.2673e-04 0.0536 -1.4281 30.7579
MSCI (2, 0.01) 0.0018 0.02861 -1.4281 30.7579
⋮ ⋮ ⋮ ⋮ ⋮

From the descriptive statistics, we can observe the following patterns:

1. The mean of the log-ergodic return series increases with α and β. This result is consistent with the definition
of the ergodic maker operator, which adds a constant term α to the log-returns and scales them using β.

2. The standard deviation of the log-ergodic return series increases with β and decreases with α. This result is
also consistent with the definition of the ergodic maker operator, which scales the variance of the log-returns
by β and reduces the volatility by adding a constant term α.

3. The skewness and kurtosis of the log-ergodic return series are equal to those of the log-return series for each
original price process because the ergodic maker operator does not change the shape of the distribution of
the log-returns but only shifts and stretches it.

4. The histograms show that the distributions of log-return and log-ergodic return series are approximately
symmetric and bell-shaped, with some outliers.

7.3.2. Correlation Analysis The correlation coefficients between pairs of log-return and log-ergodic return series
are shown in Table 3 and Table 4, respectively.
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Table 3. Correlation coefficients between log-return series.

Series TSLA AAPL MSFT IXIC MSCI
TSLA 1 0.3740 0.3699 0.5246 0.3446
AAPL 0.3740 1 0.5952 0.7549 0.4876
MSFT 0.3699 0.5952 1 0.8030 0.5524
IXIC 0.5246 0.7549 0.8030 1 0.6939
MSCI 0.3446 0.4876 0.5524 0.6939 1

Table 4. Correlation coefficients between log-ergodic return series.

Series(β,α) TSLA(1.6,0) TSLA(2,0) AAPL(1.6,0) AAPL(2,0) MSFT(1.6,0) MSFT(2,0) IXIC(1.6,0) IXIC(2,0) MSCI(1.6,0) MSCI(2,0)
TSLA(1.6,0) 1 -1 0.3740 -0.3740 0.3699 -0.3699 0.5246 -0.5246 0.3446 -0.3446
TSLA(2,0) -1 1 -0.3740 0.3740 -0.3699 0.3699 -0.5246 0.5246 -0.3446 0.3446
AAPL(1.6,0) 0.3740 -0.3740 1 -1 0.5952 -0.5952 0.7549 -0.7549 0.4876 -0.4876
AAPL(2,0) -0.3740 0.3740 -1 1 -0.5952 0.5952 -0.7549 0.7549 -0.4876 0.4876
MSFT(1.6,0) 0.3699 -0.3699 0.5952 -0.5952 1 -1 0.8030 -0.8030 0.5524 -0.5524
MSFT(2,0) 0.3699 -0.3699 -0.5952 0.5952 -1 1 -0.8030 0.8030 -0.5524 0.5524
IXIC(1.6,0) 0.5246 -0.5246 0.7549 -0.7549 0.8030 -0.8030 1 -1 0.6939 -0.6939
IXIC(2,0) -0.5246 0.5246 -0.7549 0.7549 -0.8030 0.8030 -1 1 -0.6939 0.6939
MSCI(1.6,0) 0.3446 -0.3446 0.4876 -0.4876 0.5524 -0.5524 0.6939 -0.6939 1 -1
MSCI(2,0) -0.3446 0.3446 -0.4876 0.4876 -0.5524 0.5524 -0.6939 0.6939 -1 1

The correlation analysis shows that the log-return series are positively correlated, indicating that the price
movements of different stocks are under the influence of the same factors. The log-ergodic return series are
negatively correlated with each other, indicating that the ergodic maker operator reduces the dependence structure
of the price movements. The log-ergodic return series are also negatively correlated with their corresponding log-
return series, meaning that the ergodic maker operator changes the direction of the relationship between the original
and transformed processes. These results suggest that the log-ergodic models can capture and model the ergodic
behavior of the risky assets ( hidden from market participants ) and have advantages over other models, such as the
geometric Brownian motion.

7.3.3. Regression Analysis To perform the regression analysis, we fit the log-ergodic returns (constructed by
applying the EMO) on the log-returns. We report the results in Table 5. Figure 4 shows the plots of the analysis of
the series.

Table 5. Regression results of log-ergodic return series on log-return series.

Stock SSE R-square adj R-square RMSE p-value
TSLA 15.39 0.4005 0.1311 0.08258 < 0.01

AAPL 7.967 0.2551 0.05611 0.05556 < 0.01

MSFT 7.073 0.2017 0.002039 0.052 < 0.01

IXIC 9.191 0.3243 0.183 0.0583 < 0.01

MSCI 13.02 0.2356 0.02925 0.07112 < 0.01

The regression analysis shows that the inhibition degree parameter, β, has a significant positive effect on the
analysis of the price of a risky asset (p < 0.01), which means that as β increases, the price of a risky asset also
increases. This result is consistent with our hypothesis that log-ergodicity enhances the value of a contingent claim
by reducing the uncertainty and dependence of the price movements. The R-squared value of approximately 0.2 to
0.4 indicates that β explains about 20% to 40% of the variation in the price of a contingent claim and suggests that
log-ergodicity is a relatively good predictor of pricing contingent claims under ergodic market conditions.
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Figure 4. Scatter plots of log-ergodic returns vs. log-returns and the residuals for the stocks TSLA, AAPL, MSFT, MSCI,
and the IXIC index. The black dots represent the data points of log-returns. The red data points represent the log-ergodic
returns.

8. Conclusion and Future Research

In this paper, we have made the following contributions and findings:
We introduced the new concept of log-ergodicity for positive stochastic processes, which is weaker than

ergodicity but still captures some essential features of ergodic behavior in the mean. Also, we defined an ergodic
maker operator that transforms a class of positive processes into a class of log-ergodic processes by scaling their
deterministic and random components using a parameter that, in the case of price processes, reflects the degree of
control exerted by market participants on these price processes. Moreover, we showed that log-ergodic processes
are usable for modeling financial markets with ergodic behavior in the mean, have applications in pricing contingent
claims, and studying market restrictions. Furthermore, we presented some empirical data analysis that supports our
theoretical results using historical data from 2001 to 2023. We compared the performance and properties of log-
ergodic models with geometric Brownian motion and stochastic volatility models. We used statistical tests and
measures to evaluate the usefulness of our work.
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There are some limitations and challenges to our approach. We used a limited class of financial processes in our
studies. Our approach is in the early stages and needs further research to be a relatively suitable model for real-
world problems. We need to use more parameters like β to model other influencing factors in financial markets.
Therefore, some suggested directions for future research would be:

How does the concept of log-ergodicity affect other types of stochastic processes, such as fractional Brownian
motion? How do other factors, such as market frictions ( transaction costs, taxes, dividends, and more), describe the
ergodic behavior of financial markets when incorporating them into the models? How should we test the validity
and robustness of log-ergodic models using more data sets from different markets and periods? How should we
develop more efficient and accurate numerical methods for solving the partial differential equations derived from
log-ergodic models?

Answering the above questions would be a novel contribution to the existing work and broaden the use of log-
ergodic processes in financial theory.
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25. Carlos G Pacheco-González. Ergodicity of a bounded Markov chain with attractiveness towards the centre. Statistics & probability

letters, 79(20):2177–2181, 2009.
26. Ole Peters. Optimal leverage from non-ergodicity. Quantitative Finance, 11(11):1593–1602, 2011.
27. Ole Peters. The ergodicity problem in economics. Nature Physics, 15(12):1216–1221, 2019.
28. Mark Pollicott and Michiko Yuri. Dynamical systems and ergodic theory, volume 40. Cambridge University Press, 1998.
29. Halsey Lawrence Royden and Patrick Fitzpatrick. Real analysis, volume 2. Macmillan New York, 1968.
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38. Matthias Winkel. Introduction to Lévy processes. graduate lecture at the Department of Statistics, Univ. of Oxford, 22, 2004.
39. Zixuan Zhang, Michael Zargham, and Victor M Preciado. On modeling blockchain-enabled economic networks as stochastic

dynamical systems. Applied Network Science, 5(1):1–24, 2020.

Stat., Optim. Inf. Comput. Vol. 13, March 2025


	1 Introduction
	2 Preliminaries
	2.1 Ergodicity and Utility Functions in Economics
	2.2 Market Cycles and Volatility Control

	3 Ergodic Maker Operator and the Log-Ergodic Processes
	3.1 The Ergodic Maker Operator
	3.1.1 Some Properties of the EMO

	3.2 Log-Ergodic Processes

	4 Log-Ergodic Processes in Mathematical Finance
	4.1 Mean Reversion Models
	4.2 Main Theorem
	4.3 Log-ergodic Lévy Processes
	4.4 Bounded Processes
	4.5 Jump-Diffusion Processes

	5 Proof of Log-Ergodicity for Stochastic Volatility Models
	6 Application of Log-Ergodic Processes in Mathematical Finance
	7 Empirical Data Analysis
	7.1 Data Description
	7.2 Data Analysis Methods
	7.3 Data Analysis Results
	7.3.1 Descriptive Statistics
	7.3.2 Correlation Analysis
	7.3.3 Regression Analysis


	8 Conclusion and Future Research

