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Introduction
This addendum serves to address certain errors identified in the proofs presented in our original publi-
cation. We sincerely thank the reviewers for their constructive feedback, which has allowed us to refine
and improve the mathematical rigor of our work. Specifically, we revisit the derivations related to the
wide-sense stationarity (WSS) property of Zδ, the covariance structure, and the ergodicity argument.
Additionally, we clarify the implications of our assumptions and provide alternative explanations where
necessary.

δ As a Portion of The Time Interval [0, T ]
In this document, we define the time interval length δ as a portion of the interval [0, T ], proportional to
the inhibition degree β, with the assumption:

δ = k ⋅ β, (1)

where:

• δ: The time interval length under consideration,

• β: The inhibition degree,

• k: A proportionality constant, reflecting the relative contribution of the inhibition degree to the
interval length.

This assumption links δ to β, ensuring that the time intervals are dynamically aligned with the
system’s responsiveness or resistance.

Definition of the Inhibition Degree β

The inhibition degree β is defined as:

β ∶=
⎧⎪⎪⎨⎪⎪⎩

α, if α > 3
2
,

3
2
+ ∣α∣, if α < 3

2
,

where:

• α: A parameter capturing dynamic properties of the system, such as responsiveness or resistance
to external changes.

The inhibition degree β reflects the system’s ability to absorb shocks or deviations, with larger values
of β corresponding to higher resistance or slower adjustments.

Economic Reasoning for δ = k ⋅ β
The relationship δ = k ⋅ β is motivated by economic principles and observations, as outlined below:
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Proportional Contribution of δ

In financial models, the time interval δ represents the horizon over which observations are made or
changes are measured. Scaling δ proportionally to β ensures:

• Shorter Intervals for Faster Reactions: When the system exhibits high responsiveness (low
β), δ becomes smaller, capturing short-term fluctuations in the process.

• Longer Intervals for Higher Resistance: When the system exhibits high resistance (large β),
δ becomes longer, reflecting more aggregated behavior over time.

Role of the Inhibition Degree β

The inhibition degree β encapsulates the system’s ability to resist external changes, with implications
for δ:

• Economic Shocks: A smaller β indicates a highly reactive system, resulting in shorter intervals
δ to capture rapid adjustments.

• Stability and Aggregation: A larger β indicates a more stable system, allowing longer intervals
δ to capture aggregated effects over time.

Time-Sensitivity in Financial Markets

Financial markets exhibit varying time sensitivities based on prevailing conditions:

• During periods of heightened activity (e.g., after major news releases), δ decreases to capture rapid
reactions.

• During periods of stability (e.g., low market volatility), δ increases to reflect longer-term trends.

By linking δ to β, the model dynamically adapts to these conditions, ensuring realistic representation of
market behavior.

Practical Implications of the Assumption
The assumption δ = k ⋅ β has the following implications:

• Dynamic Interval Lengths: The relationship between δ and β allows the model to dynamically
adjust time intervals based on the system’s responsiveness or resistance.

• Alignment with Economic Reality: Scaling δ with β reflects empirical observations in financial
markets, where time horizons are influenced by market activity and system stability.

• Model Flexibility: The proportionality constant k provides flexibility to calibrate δ based on
specific economic scenarios or modeling requirements.

The assumption δ = k ⋅β establishes a meaningful relationship between the time interval length δ and
the inhibition degree β, reflecting the system’s responsiveness or resistance. This assumption provides
a dynamic and realistic foundation for modeling financial processes, ensuring that time intervals are
aligned with economic behavior.

Time-Lag-Dependent Assumptions on Drift and Volatility
First, we outline the economic reasoning and justification behind the assumptions:

µt = µ0 + g(τ), σt = σ0 + h(τ),

where:

• µt: The drift of the process at time t,

• σt: The volatility of the process at time t,
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• µ0, σ0: The baseline (initial) drift and volatility of the process,

• g(τ), h(τ): Time-lag-dependent bounded adjustment functions, where τ is the time lag between t
and t + τ .

These assumptions are designed to reflect the evolving behavior of financial processes, capturing
market dynamics such as changing expectations, responses to external shocks, and clustering of volatility.

Definition of the Assumptions
We define the drift and volatility as follows:

1. Drift:

µt = µ0 + g(τ), (2)

where:

• µ0: Represents the baseline drift, which can be interpreted as the long-term average growth
rate of the process,

• g(τ): Models the adjustments in drift over the time lag τ , driven by economic factors such as
changes in market expectations or external shocks.

2. Volatility:

σt = σ0 + h(τ), (3)

where:

• σ0: Represents the baseline volatility, which reflects the inherent uncertainty or risk level of
the process,

• h(τ): Models the adjustments in volatility over the time lag τ , reflecting phenomena like
volatility clustering or market turbulence.

Economic Reasoning
Drift Assumption: µt = µ0 + g(τ)

The drift µt represents the deterministic trend or growth rate of the process, which is influenced by
several economic factors:

• Baseline Drift (µ0): The baseline drift µ0 captures the long-term average return or growth rate
of the process, which reflects stable economic conditions or intrinsic properties of the financial asset
(e.g., risk-free rate or average market return).

• Adjustment Function (g(τ)): The adjustment g(τ) reflects deviations from the baseline drift
over the time lag τ , due to:

– Changing Market Expectations: Over time, market participants update their expectations
based on new information (e.g., earnings reports, policy changes, or macroeconomic indica-
tors), causing temporary deviations in drift.

– External Shocks: Events like geopolitical crises, regulatory changes, or technological disrup-
tions introduce changes in the growth trajectory over specific time intervals.

– Time-Lagged Adjustments: Financial markets often exhibit delayed reactions to news, result-
ing in time-lagged effects on drift.
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Volatility Assumption: σt = σ0 + h(τ)

The volatility σt represents the uncertainty or variability of the process, which evolves due to various
market dynamics:

• Baseline Volatility (σ0): The baseline volatility σ0 represents the inherent risk level of the asset
or process under normal market conditions (e.g., day-to-day price fluctuations).

• Adjustment Function (h(τ)): The adjustment h(τ) models changes in volatility over the time
lag τ , caused by:

– Volatility Clustering: Financial markets often exhibit periods of high or low volatility clustered
together, driven by herding behavior, market sentiment, or structural changes.

– Market Turbulence: Events like financial crises or speculative bubbles can cause short-term
spikes in volatility, which decay over time.

– Time-Lagged Volatility Adjustments: The volatility of an asset may adjust gradually over time
as market participants reassess risk following major events.

Implications of the Assumptions
The assumptions µt = µ0 + g(τ) and σt = σ0 + h(τ) have important implications for modeling financial
processes:

• They enable the process to capture time-lag-dependent effects, making it more realistic and suitable
for analyzing financial markets where drift and volatility evolve over time.

• The adjustment functions g(τ) and h(τ) provide flexibility to model various economic scenarios,
such as mean reversion, structural breaks, or cyclical behavior.

• They ensure that the process reflects empirical observations, such as volatility clustering and de-
layed market reactions.

By defining the drift and volatility as µt = µ0 + g(τ) and σt = σ0 +h(τ), we incorporate economic rea-
soning into the modeling framework, making the process more realistic and aligned with financial market
behavior. These assumptions allow us to capture time-lag effects and ensure the model’s applicability in
various economic contexts.

Periodicity and Stationarity

Periodicity in µs and σs ensures that the integrals ∫
δ
0 σ2

sds and ∫
δ
0 µsds exhibit consistent behavior

over repeated intervals. This regularity guarantees that the covariance remains a function of τ alone,
preserving WSS. Therefore, if σs and µs are time-independent or periodic, the process Zδ satisfies both
conditions for WSS.

Wide-Sense Stationarity (WSS) of Zδ

In the original manuscript, we claimed that the process Zδ satisfies WSS. However, it is now evident
that this claim is not valid for processes starting from Z0 = 0. The critical issue lies in the implication:

Cov(Zδ, Z0) = 0 Ô⇒ Var(Zδ) = 0,
which results in Zδ = 0 almost surely—a contradiction with the intended dynamics of Zδ.

Proof Adjustment and Assumption of Z0 ≠ 0: In Lemma 3.1, to prove that the process Zδ

constructed using the ergodic maker operator (EMO) satisfies wide-sense stationarity under the new
assumption Z0 ≠ 0:

Non-Zero Initial Condition: Assuming Z0 ≠ 0 ensures that the process begins with a meaningful
state, avoiding trivial or degenerate behavior. This assumption aligns with financial applications where
initial conditions matter.

Asymptotic Stationarity: By following the derivation for Zδ, it can be shown that both the mean and
autocovariance of Zδ depend only on the time difference δ, not on the absolute time t or s, ensuring
wide-sense stationarity. The added non-zero initial condition solidifies the argument and ties to the
definition of asymptotic WSS processes in ergodic theory.
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Revised Definition
To address this, we propose a redefinition of Zδ. Instead of starting with a constant initial condition
(Z0 = 0), we suggest a stochastic initialization such as Z0 ∼ N (µ0, σ

2
0), where µ0 ≠ 0. This ensures a

non-degenerate covariance structure and consistency with stationarity.

Statement of the Lemma 3.1. Under New Assumptions
If σs and µs are time-independent (or periodic), then under the assumptions 2 and 3 Zδ = ξβδ,Wδ

[Y ′t ] is a
wide-sense stationary stochastic process.

Corrected Proof
Under this revised definition, Zδ satisfies the following WSS conditions:

E[Zδ] = constant for all δ, Cov(Zδ, Zδ+τ) = f(τ),

where f(τ) is a function of the time lag τ only.

Wide-Sense Stationarity (WSS) of Zδ

We aim to prove that the process Zδ satisfies wide-sense stationarity (WSS) under the assumption
Z0 ∼ N(µ0, σ

2
0), where µ0 ≠ 0.

Definition of Zδ

The process Zδ is defined as:

Zδ = Z0 +
1

T β ∫
δ

0
σsdWs +

WT

T β ∫
δ

0
µsds,

where:

• Z0 ∼ N(µ0, σ
2
0), with µ0 ≠ 0,

• Wt is a standard Wiener process,

• σs and µs are stochastic volatility and drift terms, respectively.

Mean of Zδ

The mean is given by:

E[Zδ] = E[Z0] +
1

T β
E [∫

δ

0
σsdWs] +

1

T β
E [WT ∫

δ

0
µsds] .

1. E[Z0] = µ0, as Z0 ∼ N(µ0, σ
2
0),

2. E [∫
δ
0 σsdWs] = 0, due to properties of Itô integrals,

3. E[WT ] = 0, since WT is a standard Wiener process.

Thus:

E[Zδ] = µ0.

This shows that Zδ has a constant mean for all δ, satisfying the first condition for WSS.
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Covariance of Zδ

The covariance between Zδ and Zδ+τ is given by:

Cov(Zδ, Zδ+τ) = E [(
1

T β ∫
δ

0
σsdWs +

WT

T β ∫
δ

0
µsds)(

1

T β ∫
δ+τ

0
σsdWs +

WT

T β ∫
δ+τ

0
µsds)]

Simplifying we have:

Cov(Zδ, Zδ+τ) =
1

T 2β
[E [(∫

δ

0
σsdWs)(∫

δ+τ

0
σsdWs)]] +

1

T 2β−1 [E [(∫
δ

0
µsds)(∫

δ+τ

0
µsds)]] .

Stochastic Integral Term

For the stochastic integral term:

E [(∫
δ

0
σsdWs)(∫

δ+τ

0
σsdWs)] .

Split the interval [0, δ + τ] into overlapping and non-overlapping parts:

∫
δ+τ

0
σsdWs = ∫

δ

0
σsdWs +∫

δ+τ

δ
σsdWs.

Using Itô isometry:

• For the overlapping term:

E
⎡⎢⎢⎢⎢⎣
(∫

δ

0
σsdWs)

2⎤⎥⎥⎥⎥⎦
= ∫

δ

0
σ2
sds.

• For the non-overlapping term:

E [(∫
δ

0
σsdWs)(∫

δ+τ

δ
σsdWs)] = 0,

due to independence of increments.

Thus, the stochastic integral term reduces to:

1

T 2β ∫
δ

0
σ2
sds.

Deterministic Drift Term

For the deterministic drift term:

1

T 2β−1 [E [(∫
δ

0
µsds)(∫

δ+τ

0
µsds)]] .

Split the drift integral as:

∫
δ+τ

0
µsds = ∫

δ

0
µsds +∫

δ+τ

δ
µsds.

Assuming µs is constant (or depends only on time):

1

T 2β−1 (∫
δ

0
µsds)

2

.
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Final Covariance Expression
Combining both terms:

Cov(Zδ, Zδ+τ) =
1

T 2β ∫
δ

0
σ2
sds +

1

T 2β−1 (∫
δ

0
µsds)

2

.

Using 2 and 3 yields:

Cov(Zδ, Zδ+τ) =
1

T 2β ∫
δ

0
(σ0 + h(τ))2ds +

1

T 2β−1 (∫
δ

0
(µ0 + g(τ))ds)

2

= 1

T 2β ∫
δ

0
(σ2

0 + h2(τ) + 2σ0h(τ))ds +
1

T 2β−1 (∫
δ

0
µ0ds +∫

δ

0
g(τ)ds)

2

= δ

T 2β
[σ2

0 + h2(τ) + 2σ0h(τ)] +
δ2

T 2β−1 [µ
2
0 + g2(τ) + 2µ0g(τ)] .

Using 1 we have:

Cov(Zδ, Zδ+τ) =
kβ

T 2β
[σ2

0 + h2(τ) + 2σ0h(τ)] +
k2β2

T 2β−1 [µ
2
0 + g2(τ) + 2µ0g(τ)] .

Assessment of Wide-Sense Stationarity (WSS)

For Zδ to satisfy wide-sense stationarity (WSS), the following conditions must hold:

1. The mean E[Zδ] must be constant for all δ. From the earlier derivation:

E[Zδ] = µ0,

which is constant, satisfying the first condition for WSS.

2. The covariance Cov(Zδ, Zδ+τ) depends only on the time lag τ , not on δ or δ+τ individually. Unless
σs and µs are time-independent (or periodic), Zδ is not strictly WSS. Therefore, under the new
assumptions 1,2, and 3 the process Zδ is wide-sense stationary.

Correctness of Equation 3.8, Page 7
The property as stated in equation 3.8 on page 7 of our manuscript, is correct, particularly because
the process constructed by the Ergodic Maker Operator (EMO) is wide-sense stationary (WSS). Let us
justify this step-by-step, focusing on why this property of scalability holds:

1. **Wide-Sense Stationarity (WSS)**:
The process constructed by the EMO is wide-sense stationary (as shown in Lemma 3.1). This
means that its statistical properties, such as mean and autocovariance, depend only on the time
lag δ and not on the absolute time . The WSS property ensures that the scaling operation aYt

does not introduce non-stationarity or violate the operator’s structure.

2. **Scalability in Stochastic Calculus**:
In stochastic calculus, scaling a process Yt by a constant a simply scales the resulting stochastic
integrals and deterministic parts by the same constant. This property is consistent with the EMO’s
action on both deterministic (drift) and stochastic (diffusion) components of Yt.

Why Definition 3.3 is Correct: Reasoning for Considering τ → 0
and Validity of the Assumption
Why τ is Considered a Small Time Length

1. **Interpretation of τ**:
The parameter τ represents the time lag in the covariance or correlation function of the stochastic
process. When τ → 0, the covariance function simplifies to:
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Covyy(τ) = E[(Yt −E[Yt])(Yt+τ −E[Yt+τ ])],

and at τ = 0, this reduces to the variance:

Covyy(0) = Var[Yt].

By analyzing small τ , we study the instantaneous or local properties of the process.

2. **Local Behavior and Stationarity**:
For wide-sense stationary (WSS) processes, the covariance depends only on the time lag τ . Ana-
lyzing small τ values helps capture the local behavior and ensures the process remains stationary
under minimal perturbations.

3. **Temporal Dependency**:
By examining τ → 0, we explore the strongest dependencies in the process, as the covariance
typically weakens for larger time lags.

Validity of the Assumption
1. **Empirical Observations**:

In real-world systems, the correlation and covariance functions are often strongest for small τ .
Assuming τ → 0 aligns with empirical findings and simplifies practical analysis.

2. **Mathematical Consistency**:
The assumption τ → 0 is consistent with the definition of variance and covariance. It ensures that
the local and instantaneous properties of the process are rigorously analyzed.

3. **Relevance to Ergodicity**:
The ergodicity condition in Definition 3.3 requires the time-averaged covariance to diminish over
time. Analyzing τ → 0 helps verify that the process exhibits long-term statistical regularity, satis-
fying the ergodicity requirements.

4. **Simplification without Loss of Generality**:
While τ can take larger values in practical scenarios, the analysis for small τ provides a founda-
tion for understanding the global behavior of the process. This assumption does not restrict the
generality of the results.

Definition 3.3 outlines the concept of a log-ergodic process, where the logarithmic transformation of
a positive stochastic process satisfies a specific covariance condition:

⟨Y ⟩ ∶= lim
T→∞

1

T
∫

T

0
(1 − τ

T
)Covyy(τ)dτ = 0, ∀ τ ∈ [0, T ].

This condition is deeply rooted in ergodicity, as established in ergodic theory references (e.g., Birkhoff’s
Ergodic Theorem). By integrating the covariance with a diminishing weight factor (1− τ/T ), Definition
3.3 captures the asymptotic behavior of the logarithmic transformation, ensuring ergodic-like properties
in the mean.

In the context of financial processes, the concept of a log-ergodic process emphasizes that while the
original process may lack ergodicity, its logarithmic transformation demonstrates statistical regularity,
aligning with the ergodic requirements for time averages and ensemble averages to converge.

Covariance Interpretation:
The term Covyy(τ) represents the covariance of the log process at a time lag τ . In our case study, this
covariance directly relates to the variance when τ → 0, as:

Covyy(0) = Var[Yt],

which aligns with the definition of variance for stationary or mean-ergodic processes. For τ > 0, Covyy(τ)
reflects the dependency structure over time, and its diminishing contribution in the integral ensures the
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ergodicity condition in the long run.

Relevance to Financial Models:
Definition 3.3 is particularly insightful for financial models where log processes, like those arising from
geometric Brownian motion or mean-reverting models, are used. The covariance structure Covyy(τ)
ensures the process adheres to log-ergodic behavior, even in dynamic market scenarios.

Reasoning for Definition 3.3 and Alignment with Mean Ergod-
icity
Substitution of Variance in Definition 3.3

1. **Interpretation of Covariance**:
The term Covyy(τ) represents the covariance between Yt and Yt+τ . For τ → 0, this reduces to the
variance:

Covyy(0) = Var[Yt].

2. **Substitution Validity**:
Since the variance is a special case of the covariance, substituting Covyy(0) = Var[Yt] is mathemat-
ically valid and aligns with the ergodicity condition. The covariance Covyy(τ) for τ > 0 reflects the
temporal dependency in the process, and its diminishing effect in the integral ensures long-term
ergodic behavior.

3. **Physical Relevance**:
The variance Var[Yt] describes the dispersion of the process, and its inclusion in Definition 3.3
emphasizes the role of Yt’s statistical stability in the long-term behavior of Xt.

Alignment with Assumptions and Mean Ergodicity
1. **Definition of Mean Ergodicity**:

A process Yt is mean-ergodic if:

lim
T→∞

1

T
∫

T

0
Yt dt = E[Yt].

Definition 3.3 ensures mean ergodicity by requiring the time-averaged covariance ⟨Y ⟩ to diminish
to zero as T → ∞. This guarantees that time averages of Yt converge to its ensemble average,
consistent with ergodic theory.

2. **Assumptions Supporting Mean Ergodicity**:
- The process Xt is assumed to be positive and log-transformable, ensuring that Yt = ln(Xt) is
well-defined.
- The covariance structure Covyy(τ) is integrable over [0, T ], satisfying the boundedness condition
for ergodic processes.

3. **Temporal Dependency and Stationarity**:
The covariance Covyy(τ) captures the temporal dependencies in Yt. The integral weight factor
(1 − τ

T
) ensures that these dependencies diminish over time, reinforcing the stationarity and mean

ergodicity of the log-transformed process.

4. **Practical Implications**:
In applications such as financial modeling, log-ergodicity provides a robust framework to analyze
processes like geometric Brownian motion or mean-reverting models, where long-term statistical
regularity is essential.
These clarifications resolve the inconsistencies in the application of ergodicity as per Stark and
Woods (1990).
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Ergodicity and Recurrence
The critique regarding recurrence versus expectation is well-taken. While the original proofs considered
recurrence moments, the expectation must average over all paths, including those that are not recurrent.
The corrected derivation demonstrates:

Cov(Z(t), Z(t + δ)) = ∫
∞

0
Pr(return to mean at time t) ⋅ f(t)dt,

where f(t) is a weight function representing the contributions of all paths.

Corrected Proof of Proposition 4.1.
1. Let rt be a stochastic process with the mean-reverting property and assume E[rt] <∞. The mean-

reverting property implies E[rt] = E[rt+δ],∀t, δ > 0, where the expectation is an ensemble average
over all possible paths.

2. Denote τ0 > 0 as the time at which the process rt first returns to its mean along a specific path ω0.
The recurrence property along ω0 is guaranteed by the Poincare recurrence theorem.

3. At τ0, we observe rτ0(ω0) = E[rτ0], meaning the process returns to its mean.

4. Now, calculate the covariance at τ0 over the ensemble:

Covrr(τ0) = E[r2τ0(ω0)] − (E[rτ0])
2
.

Since rτ0(ω0) meets its mean E[rτ0], this simplifies to:

Covrr(τ0) = E[r2τ0] −E[rτ0]
2 = 0.

5. By the definition of mean ergodicity, a process is mean-ergodic if its covariance converges to 0 as
τ →∞. Hence, rt is mean-ergodic.

Why the Covariance is Zero?

The covariance at τ0 is given by:

Covrr(τ0) = E[r2τ0(ω0)] − (E[rτ0])
2
.

Here’s why the covariance is zero:
1. The term rτ0(ω0) represents the realization of the stochastic process rτ0 along a specific path ω0.

2. By definition, the expectation E[rτ0] is an ensemble average over all possible paths, independent
of ω0.

3. When the process returns to its mean at τ0, we have:

rτ0(ω0) = E[rτ0].

This means that for the specific path ω0, the value of rτ0 coincides with the mean value.

4. Substituting this into the covariance formula:

E[r2τ0] = E[(rτ0(ω0))2].

Since rτ0(ω0) = E[rτ0], we have:

E[(rτ0(ω0))2] = (E[rτ0])
2
.

5. Therefore, the covariance becomes:

Covrr(τ0) = (E[rτ0])
2 − (E[rτ0])

2 = 0.

This shows that the covariance at τ0 is zero because the process returns to its mean along the specific
path ω0, and ensemble averages coincide with the squared expectation.
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Reasoning for Changing the Order of Summation and Integration
Consider the expression:

lim
T→∞

WT

T β+1 ∫
T

0
∑
s≤δ

∆Ys1∣∆Ys∣>1 dδ.

Changing the order of integration and summation is valid under certain conditions:
- The summation ∑s≤δ ∆Ys1∣∆Ys∣>1 must represent a measurable and integrable function over the interval
[0, T ].
- Fubini’s theorem permits the interchange since the function is integrable.

Rewrite the expression:

lim
T→∞

WT

T β+1 ∑
s≤T
∫

T

0
∆Ys1∣∆Ys∣>1dδ,

where the summation ∑s≤δ over s has been exchanged with the integral ∫
T
0 over δ, using the inde-

pendence and separability of the summation and integration operations.
Provide justification using Fubini’s theorem:

∫
T

0
∑
s≤δ

f(s, δ)dδ = ∑
s≤T
∫

T

0
f(s, δ)dδ,

where f(s, δ) =∆Ys1∣∆Ys∣>1 is measurable and integrable.
This simplifies to:

lim
T→∞

WT

T β+1 ∑
s≤T
∫

T

0
∆Ys1∣∆Ys∣>1T.

Implications of the New Assumptions
Due to the new assumption Z0 ≠ 0, the sentence on page 13: “As a result, any Poisson process, Ito
process, and compound Poisson process is partially ergodic.” should be omitted from the manuscript.
Here’s why:

1. **Overgeneralization**: The statement assumes that all Poisson processes, Itô processes, and
compound Poisson processes are partially ergodic, which may not hold universally under the new as-
sumption. Partial ergodicity depends on specific boundedness and covariance conditions that may not
be satisfied by all processes in these categories.

2. **Lack of Specificity**: While some Poisson, Itô, and compound Poisson processes could exhibit
partial ergodicity under specific scenarios (e.g., application of the Ergodic Maker Operator), this cannot
be generalized. The omission of the statement prevents readers from misinterpreting the results as
universally valid.

By omitting this sentence, the manuscript remains precise and avoids overly broad claims.

Proposition 4.5: Proof of Mean-Ergodicity
Statement of Proposition
Let Yt be a non-negative bounded stochastic process. Then, the process ξβδ,Wδ

[Yt], denoted by Zδ, is
mean-ergodic.

Proposition 4.5: Correct Proof ( After Integration by Parts, Line
21, Page 14. )
Let the process Zδ = ξβδ,Wδ

[Yt], and the remaining integral is expressed as:

∫
δ

0
µξ(s)dδ.
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Using the integration by parts formula:

∫
δ

0
µξ(s)dδ = µξ(δ)δ −∫

δ

0
δ dµξ(s),

we proceed to evaluate the terms.

First Term: µξ(δ)δ The term µξ(δ)δ is bounded, as µξ(δ) is a bounded function (∣µξ(δ)∣ ≤M for some
M > 0). Scaling by the time-dependent factor 1/T β ensures that this term vanishes in the time-average
calculation:

lim
T→∞

1

T
∫

T

0
µξ(δ)δ dδ = 0.

Second Term: ∫
δ
0 δ dµξ(s) For δ dµξ(s), the bounded variation property of µξ(s) ensures that the

integral:

∫
δ

0
δ dµξ(s)

is well-defined and finite. Furthermore, scaling by the factor 1/T β over the time interval [0, T ] leads
to:

lim
T→∞

1

T
∫

T

0
∫

δ

0
δ dµξ(s)dδ = 0.

Time-Average Calculation The time-average of Zδ is given by:

⟨Z⟩ = lim
T→∞

1

T
∫

T

0
Zδ dδ,

where Zδ = 1
Tβ ∫

δ
0 µξ(s)dδ.

Substituting the integration by parts result:

⟨Z⟩ = lim
T→∞

1

T
∫

T

0
[ 1

T β
(µξ(δ)δ −∫

δ

0
δ dµξ(s))]dδ.

Evaluating each term: 1. For the first term:

lim
T→∞

1

T
∫

T

0

1

T β
µξ(δ)δ dδ = 0,

due to the boundedness of µξ(δ) and δ, and the scaling factor 1/T β+1.
2. For the second term:

lim
T→∞

1

T
∫

T

0

1

T β ∫
δ

0
δ dµξ(s)dδ = 0,

due to the finite variation of µξ(s) and the scaling factor 1/T β+1.

Conclusion Combining these results, we have:

⟨Z⟩ = 0.

Thus, the process ξβδ,Wδ
[Yt] is mean-ergodic, and the remaining integral vanishes.
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Proof of Example 4.1, Part 2
Let Yt = γ sin(µt + σWt), where:

• γ > 0 is a constant,

• µ is the deterministic frequency term,

• σ > 0 is the stochastic amplitude, and

• Wt is a standard Wiener process.

We aim to prove that Yt is mean-ergodic.

Step 1: Time-Average of Yt

The time-average of Yt is defined as:

⟨Y ⟩ = lim
T→∞

1

T
∫

T

0
γ sin(µt + σWt)dt.

Using the trigonometric identity:

sin(µt + σWt) = sin(µt) cos(σWt) + cos(µt) sin(σWt),

we can rewrite Yt as:

Yt = γ sin(µt) cos(σWt) + γ cos(µt) sin(σWt).

Thus, the time-average becomes:

⟨Y ⟩ = lim
T→∞

γ

T
∫

T

0
sin(µt) cos(σWt)dt + lim

T→∞

γ

T
∫

T

0
cos(µt) sin(σWt)dt.

Step 2: Ensemble Average of Yt

The ensemble average of Yt is given by:

E[Yt] = E[γ sin(µt + σWt)].

Using the independence of µt and σWt, we decompose:

E[Yt] = γ (E[sin(µt)]E[cos(σWt)] +E[cos(µt)]E[sin(σWt)]) .

Contribution from sin(µt): The term sin(µt) oscillates symmetrically about zero as t →∞. There-
fore:

E[sin(µt)] = 0.

Contribution from cos(µt): Similarly, cos(µt) oscillates symmetrically about zero, and thus:

E[cos(µt)] = 0.

Hence, the ensemble average simplifies to:

E[Yt] = 0.

13



Step 3: Convergence of the Time-Average
Using the decomposition:

⟨Y ⟩ = lim
T→∞

γ

T
∫

T

0
sin(µt) cos(σWt)dt + lim

T→∞

γ

T
∫

T

0
cos(µt) sin(σWt)dt,

each term averages out due to the orthogonality and symmetric oscillation of sin(µt) and cos(µt).
Specifically:

• The integral ∫
T
0 sin(µt) cos(σWt)dt averages out to zero over the interval as T →∞.

• Similarly, the integral ∫
T
0 cos(µt) sin(σWt)dt also averages out to zero.

Thus:

⟨Y ⟩ = 0.

Step 4:
Since:

⟨Y ⟩ = E[Yt] = 0,
we conclude that Yt = γ sin(µt + σWt) is mean-ergodic.

Proof of Proposition 4.6 (Jump-Diffusion Process)
In Proposition 4.6, the application of the Ergodic Maker Operator (EMO) is incorrect. The evaluation
of the Zδ process indeed had errors in the original proposition. Here’s the corrected version:

Let Xt be defined as:

Xt =X0 exp{(µ −
1

2
σ2)t + σWt} ⋅

Nt

∏
i=1

Vi,

where:
• X0 > 0: initial value,

• µ > 0: drift coefficient,

• σ > 0: volatility parameter,

• Wt: standard Wiener process,

• ∏Nt

i=1 Vi: jump term, where Nt is a Poisson process with intensity λ > 0 and Vi are i.i.d. positive
jump sizes.

The goal is to prove that Xt is partially ergodic by showing that the expectation and time-average of Zδ

both equal zero.

Application of the Ergodic Maker Operator (EMO)
Using the Ergodic Maker Operator, the process Zδ constructed from Xt is defined as:

Zδ =
σWδ

T β
+ WT

T β
((µ − 1

2
σ2)δ + Jδ) ,

where:
• β > 3

2
: inhibition degree,

• δ = t − s: length of the time interval,

• Wδ =Wt+δ −Wt: Wiener increment,

• Jδ = ∑Nδ

i=1 ln(Vi): logarithmic jump term increment,

• (µ − 1
2
σ2)δ: deterministic drift contribution.
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Step 1: Expectation of Zδ

The expectation of Zδ is:

E[Zδ] = E [
σWδ

T β
] +E [WT

T β
((µ − 1

2
σ2)δ + Jδ)] .

First Term: The first term vanishes because Wδ has zero mean:

E [σWδ

T β
] = σ

T β
E[Wδ] = 0.

Second Term: The expectation of the jump term Jδ is:

E[Jδ] = λδE[ln(Vi)],

where λδ is the expected number of jumps in [t, t + δ], and E[ln(Vi)] is the mean logarithmic jump
size. Substituting:

E[(µ − 1

2
σ2)δ + Jδ] = (µ −

1

2
σ2)δ + λδE[ln(Vi)].

Thus:

E [WT

T β
((µ − 1

2
σ2)δ + Jδ)] =

(µ − 1
2
σ2)δ + λδE[ln(Vi)]

T β
E[WT ].

Since WT has zero mean:

E [WT

T β
((µ − 1

2
σ2)δ + Jδ)] = 0.

Therefore:

E[Zδ] = 0.

Step 2: Time-Average of Zδ

The time-average of Zδ is defined as:

⟨Z⟩ = lim
T→∞

1

T
∫

T

0
Zδ dδ.

Substituting Zδ:

⟨Z⟩ = lim
T→∞

1

T
∫

T

0
[σWδ

T β
+ WT

T β
((µ − 1

2
σ2)δ + Jδ)]dδ.

Decomposing into two integrals:

⟨Z⟩ = lim
T→∞

σ

T β+1 ∫
T

0
Wδ dδ + lim

T→∞

WT

T β+1 ∫
T

0
((µ − 1

2
σ2)δ + Jδ) dδ.

First Integral: Using Itô isometry, the stochastic term vanishes:

lim
T→∞

σ

T β+1 ∫
T

0
Wδ dδ = 0.
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Second Integral: For the deterministic term:

lim
T→∞

WT

T β+1 ∫
T

0
((µ − 1

2
σ2)δ + Jδ) dδ,

since WT /T β → 0 as T →∞ (from Theorem 3.2), this term also vanishes:

lim
T→∞

WT

T β+1 ∫
T

0
((µ − 1

2
σ2)δ + Jδ) dδ = 0.

Thus:

⟨Z⟩ = 0.

Since E[Zδ] = 0 and ⟨Z⟩ = 0, the process Zδ = ξβδ,Wδ
[Xt] satisfies the conditions for mean-ergodicity.

Therefore, the jump-diffusion process:

Xt =X0 exp{(µ −
1

2
σ2)t + σWt} ⋅

Nt

∏
i=1

Vi

is partially ergodic.

Conclusion
We regret the oversights in the original manuscript and thank the reviewers for their constructive cri-
tique. We believe these corrections strengthen the theoretical foundation of our work. The revised proofs,
clarified assumptions, and alternative suggestions presented here will hopefully enhance the utility and
rigor of our results.
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