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Abstract Let G be a connected graph with vertex set V . Let Wl be an ordered subset defined by Wl = {w1, w2, . . . , wn} ⊆
V (G). Then Wl is said to be a dominant local resolving set of G if Wl is a local resolving set as well as a dominating set of G.
A dominant local resolving set of G with minimum cardinality is called the dominant local basis of G. The cardinality of the
dominant local basis of G is called the dominant local metric dimension of G and is denoted by Ddiml(G). We characterize
the dominant local metric dimension for any graph G and for some commonly known graphs in terms of their domination
number to get some properties of dominant local metric dimension.
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1. Introduction

The dominating set and dominating number of graphs were first studied in the 1950s. These notions examined
the existence of a vertex set of a graph that causes every other vertex on the graph to be neighbors with at least
one element of the vertex set [1]. Generally, subsets of vertices with this property are not unique and are called
dominating sets. The dominating number of a graph is the cardinality of the smallest possible dominating sets.
Another notion is the metric dimension of a graph that was first introduced by Harary and Melter and mentioned
by [2]. Harary and Melter defined a resolving set of a graph as a set of vertices that makes each vertex on the
graph have a different representation with respect to the vertex set. The representation of a vertex for the resolving
set is presented as a k-ordered pair whose elements are the distance between the vertex and the vertices on the
resolving set. The resolving set that has a minimum cardinality is called a basis. If the concept of metric dimension
is obtained by looking at each vertex that has a different representation of the resolving set, then the concept of
the local metric dimension views that every two neighboring vertices have different representations of the local
resolving set [3].

From the definition of metric dimension, several concepts have emerged such as the local metric dimension
([3],[4],[5],[6]), dominant local metric dimension ([10], [17]), multiset dimension of graphs ([18],[19]), local
multiset dimension [14], and on the central-local metric dimension [16], to mention a few. For example, research
conducted successfully showed similarities between the metric dimension and the local metric dimension of graph
products in [6]. In addition, the commutative characterization of comb and corona product graphs based on their
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metric dimensions was established by Susilowati et al. [7]. By combining the notions of metric dimension and
dominating set, a new term called the resolving dominating set was introduced by Brigham et al. [8]. For an
ordered set W = {w1, w2, · · · , wk} of vertices and a vertex v in a connected graph G, the (metric) representation
of v with respect to W is the k-vector r(v|W ) = (d(v, w1), d(v, w2), · · · , d(v, wk)), where d(x, y) represents the
distance between the vertices x and y. The set W is a resolving set for G if distinct vertices of G have distinct
representations with respect to W . A resolving set of minimum cardinality is called a minimum resolving set or a
basis and the cardinality of a basis for G is its dimension dimG. A set S of vertices in G is a dominating set for G
if every vertex of G that is not in S is adjacent to some vertex of S. The minimum cardinality of a dominating set
is the domination number γ(G). A set of vertices of a graph G that is both resolving and dominating is a resolving
dominating set. The minimum cardinality of a resolving dominating set is called the resolving domination number
γr(G) [8].

The concept of determining the resolving dominating number has been studied in the literature and was first
introduced by Slater first in 1975 [20]. Furthermore, Behrooz, et al [9] determine the relations between the metric
dimension and dominating number of graphs while Henning and Oellermann combined the concept of locating
dominating set and metric dimensions in metric locating dominating set [10]. However, it is important to note that
the concepts introduced by Brigham et al. and Henning and Oellermann are equivalent. New research on this topic
was introduced by Susilowati, et al. which determined the dominant metric dimension of some well-known graphs
[11]. By referring to several concepts that have been developed regarding the concept of the metric dimension,
local metric dimension, dominating set, and dominant metric dimension, it is interesting to combine the concept
of the local metric dimension with the concept of dominating set which we call dominant local metric dimension.
A dominant local metric dimension is a vertex set that is both a minimum local resolving set and a dominating
set. Since the existence of this set is not unique, it is interesting to study the minimum cardinality of the dominant
local resolving set, called the dominant local metric dimension. Thus in this paper, besides formulating the new
definition, we characterize the dominant local metric dimension of graph G and also determine the dominant local
metric dimension of some classes of graphs.

The following theorems on special graphs such as path, cycle, star, complete, and complete bipartite graphs; will
be used in the proof of our main results for characterizing the dominant local metric dimensions of graphs. The first
theorem shows the dominating number γ(G) of these graphs while Theorem 2 describes a local metric dimension
for the complete and bipartite graphs introduced by [13]. We will denote the local metric dimension of graph G by
diml(G). All graphs considered in this study are simple and connected.

Theorem 1. Let G be a connected graph. The domination number of some of the graphs is given below[12]:
a. If G = Pm or G = Cn with m ≥ 2 and n ≥ 3, then γ(G) =

⌈
|V (G)|

3

⌉
.

b. If G = Km or G = K1,n−1 with m ≥ 1 and n ≥ 2, then γ(G) = 1.
c. If G = Km,n with m,n ≥ 3, then γ(G) = 2.

Theorem 2. Let G be a nontrivial connected graph of order n. Then diml(G) = n− 1 if and only if G = Kn and
diml(G) = 1 if and only if G is bipartite.[12]

2. Results and Discussion

We start this section by presenting the definition and some of the characteristics of the dominant local metric
dimension for some graphs. The results of the dominant local metric dimension of some graphs, such as path,
cycle, complete, star, and complete bipartite are also presented in this section.

Definition 3. Given a connected graph G. An ordered set Wl = {w1, w2, . . . , wn} ⊆ V (G) is called a dominant
local resolving set if Wl is a local resolving set and a dominating set of G. The dominant local resolving set with
minimum cardinality is called a dominant local basis. The number of vertices in a dominant local basis of G is
called the dominant local metric dimension and is denoted by Ddiml(G).
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The examples in Figure 1 illustrate useful observations of the dominant local resolving set of graphs. For the
graph in Figure 1(a.), {v1, v3} is considered to be a dominant local resolving set since it satisfies the definition
of the dominant local metric dimension, where the dominant local basis equals two. However, for Figure 1(b.),
{u1, u5} is not a dominant local resolving set since there is a vertex that can not be dominated by either u1 or u5.
Finally, for Figure 1(c.), {t1} is not a dominant local resolving set since its two adjacent vertices have the same
representation.

Figure 1. (a.) The dominant local resolving set of a graph (b.) The local resolving set of a graph (c.) The dominating set of a
graph

The following lemma provides the properties of the local resolving set of graph G.
Lemma 4. Let G be a connected graph and S ⊆ V (G) be an ordered set. Every set S containing a local resolving

set is a local resolving set
Proof. Let G be a connected graph and Wl = {vi|i = 1, 2, . . . , k} ⊆ V (G) be a local resolving set of G, such

that Wl ⊆ S ⊆ V (G). Then for every two adjacent vertices u, v ∈ V (G), r(u|Wl) ̸= r(v|Wl). Since Wl ⊆ S,
consequently r(u|S) ̸= r(v|S). Hence S is also a local resolving set of G.

The existence of element 0 in the representation of a vertex with respect to a local resolving set is described in
Lemma 5.

Lemma 5. Let G be a connected graph and Wl ⊆ V (G) be an ordered set. For every vi, vj ∈ Wl,
r(vi|Wl) ̸= r(vj |Wl), for i ̸= j.

Proof. Let Wl = {vi|i = 1, 2, . . . , k} ⊆ V (G) be an ordered set. Since for every vi, vj ∈ Wl where i ̸= j,
d(vi, vi) = 0 and d(vi, vj) ̸= 0. Hence there exist 0 on ith element in r(vi|Wl) for every vi ∈ Wl. As a result,
r(vi|Wl) ̸= r(vj |Wl) for i ̸= j.

Based on Lemma 4 and Lemma 5, we can determine the lower and upper bound of a dominant local metric
dimension of graph G as shown in Lemma 6.

Lemma 6. For every connected graph G of order n,

max{γ(G),diml(G)} ≤ D diml(G) ≤ min{γ(G) + diml(G), n− 1}.

Proof. Let G be a connected graph of order n. By Definition 3, Ddiml(G) ≥ γ(G) and Ddiml(G) ≥ diml(G),
implying that Ddiml(G) ≥ max{γ(G), diml(G)}. Since the local resolving set and dominating set of a graph may
have not intersected, and a set which consists n− 1 vertices in G is always the local resolving set and dominating
set of G, then Ddiml(G) ≤ min{γ(G) + diml(G), n− 1}.

Graph H in Figure 2 is an example of a graph that satisfies the lower bound of the local dominant metric
dimension as presented in Lemma 5.
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Figure 2. Graph H .

The vertex v4 ∈ V (H) in Figure 2(a) forms a dominating set, thus γ(H) = 1. Note also that v4, v6 ∈ V (H) in
Figure 2(b) form a local basis of graph H , therefore diml(H) = 2. Since a local basis of H is also a local dominant
basis, then Ddiml(H) = 2. Hence, H in Figure 2 satisfies the lower bound of the dominant local metric dimension.

Next, we discuss the dominant local metric dimension of the path (Pn). Note that the local resolving set of Pn

presented in Lemma 7 does not necessarily imply the smallest cardinality of the local resolving set. The lemma
simply shows part of the elements of the local resolving set. The complete proof for the dominant local metric
dimension for a path will be presented in Theorem 8.

Lemma 7. Let Pn be a path of order n ≥ 5 with the vertex set V (Pn) = {vi|i = 1, 2, 3, . . . , n} and edge set
E(Pn) = {vivi+1|i = 1, 2, 3, . . . , n− 1}. Then Wl = {v2, v5} is a local resolving set of Pn.

Proof. Choose Wl = {v2, v5}, then for every vi ∈ V (Pn) with i = 1, 2, 3, . . . , n, d(vi, vj) = |i− j|, for 1 ≤
i, j ≤ n. As a consequence,

d(vi, v2) = |i− 2|; 1 ≤ i ≤ n.
d(vi, v5) = |i− 5|; 1 ≤ i ≤ n.

Hence for every two adjacent vertices vivi+1 ∈ E(Pn), d(vi, v2) ̸= d(vi+1, v2) and d(vi, v5) ̸= d(vi+1, v5) for
i = 1, 2, . . . , n− 1. Therefore, r(vi|Wl) ̸= r(vi+1|Wl). Thus, it can be concluded that Wl is a local resolving set of
Pn.

Figure 3. The local resolving set of P6

Figure 3 shows that {v2, v5} is a local resolving set of path P6. The dominant local metric dimension of the path
is presented below.

Theorem 8. Let Pn be a path of order n ≥ 2. The dominant local metric dimension of Pn is Ddiml(Pn) = γ(Pn).
Proof. Let V (Pn) = {vi|i = 1, 2, 3, . . . , n} and E(Pn) = {vivi+1|i = 1, 2, 3, . . . , n− 1}. We consider two cases

based on n.

a. Case 1: For n = 2, 3, 4

1. If n = 2 or 3, choose Wl = {v2}. It is easy to see that Wl is a dominant local resolving set of Pn. The
cardinality of Wl is |Wl| = 1 = ⌈ 2

3⌉ = ⌈n
3 ⌉ for n = 2, and |Wl| = 1 = ⌈ 3

3⌉ = ⌈n
3 ⌉ for n = 3.

2. If n = 4, choose Wl = {v2, v4}. Taking any two adjacent vertices in P4, it is easy to see that one of
them is an element of Wl. So, Wl = {v2, v4} is a local resolving set of P4. It is also obvious that Wl is
also a dominating set. Hence, |Wl| = 2 = ⌈ 4

3⌉ = ⌈n
3 ⌉.
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By Theorem 1, we know that γ(Pn) = ⌈n
3 ⌉, so Wl is a dominant local resolving set with minimum cardinality

and Ddiml(Pn) = ⌈n
3 ⌉ = γ(Pn), for n = 2, 3, 4.

b. Case 2: For n ≥ 5
Choose Wl = {v2, v5, v8, v11, . . . , v3i−1} for n ≡ 0(mod 3) and Wl = {v2, v5, v8, v11, . . . , v3i−1, vn} for n ≡
0(mod 3), then |Wl| = ⌈n

3 ⌉. Since {v2, v5} ⊆ Wl, then by on Lemma 7 and Lemma 4, we get that Wl is a
local resolving set of Pn. Next, since E(Pn) = {vivi+1|i = 1, 2, 3, . . . , n− 1}, v3i−1 is adjacent to v3i−2

and v3i is adjacent to v3(i+1)−2. Hence, Wl is a dominating set of Pn. Based on Theorem 1, we know that
γ(Pn) = ⌈n

3 ⌉, so Wl is a minimum dominant local resolving set of Pn and Ddiml(Pn) = ⌈n
3 ⌉ = γ(Pn), for

n ≥ 5.

From the two cases above, it can be concluded that Ddiml(Pn) = γ(Pn).

The next result is the dominant local metric dimension of a cycle. By similar procedures with the dominant
local metric dimension of the path, we start the proof by finding the local resolving set of a cycle as presented in
Lemma 9 which does not imply a proof of the smallest cardinality of the local resolving set. The lemma shows
part of the elements of the local resolving set that will be used in the proof of Theorem 10.

Lemma 9. Let Cn be a cycle with order n ≥ 4, E(Cn) = {vivi+1|i = 1, 2, 3, . . . , n− 1}
⋃
{vnv1}. Then Wl =

{v1, v4} is a local resolving set of Cn.
Proof. Let Cn be a cycle with order n ≥ 4, V (Cn) = {vi|i = 1, 2, 3, . . . , n} and edge set E(Cn) = {vivi+1|i =

1, 2, 3, . . . , n− 1}
⋃
{vnv1}, and Wl = {v1, v4}.

i. if n is odd, then for every vi ∈ V (Cn)

r(vi|v1) =

 i− 1, i = 1, 2, 3, . . . , ⌈n
2 ⌉

⌊n
2 ⌋, i = ⌈n

2 ⌉+ 1
n+ 1− i, i = ⌈n

2 ⌉+ 2, ⌈n
2 ⌉+ 3, ⌈n

2 ⌉+ 4, . . . , n

r(vi|v4) =

 |i− 4|, i = 1, 2, 3, . . . , ⌈n
2 ⌉+ 3

⌊n
2 ⌋, i = ⌈n

2 ⌉+ 4
n+ 4− i, i = ⌈n

2 ⌉+ 5, ⌈n
2 ⌉+ 6, ⌈n

2 ⌉+ 7, . . . , n

ii. if n is even, then for every vi ∈ V (Cn)

r(vi|v1) =
{

i− 1, i = 1, 2, 3, . . . , n
2 + 1

n+ 1− i, i = ⌈n
2 ⌉+ 2, ⌈n

2 ⌉+ 3, ⌈n
2 ⌉+ 4, . . . , n

r(vi|v4) =
{

|i− 4|, i = 1, 2, 3, . . . , n
2 + 4

n+ 4− i, i = ⌈n
2 ⌉+ 5, ⌈n

2 ⌉+ 6, ⌈n
2 ⌉+ 7, . . . , n

Based on the description above, for every vivj ∈ E(Cn) where i ̸= j, r(vi|Wl) ̸= r(vj |Wl). Hence, Wl is a local
resolving set of Cn for n ≥ 4.

Theorema 10. Let Cn be a cycle of order n ≥ 4. The dominant local metric dimension of Cn is
Ddiml(Cn) = γ(Cn).

Proof. Let V (Cn) = {vi|i = 1, 2, 3, . . . , n− 1} with n ≥ 4 and E(Cn) = {vivi+1|i = 1, 2, 3, . . . , n−
1}

⋃
{vnv1}. Choose Wl = {v1, v4, v7, v10, . . . , v3i−2}, for n ≡ 0(mod 3) and Wl = {v1, v4, v7, v10, . . . , v3i−2, vn}

for n ≡ 0(mod 3). Then |Wl| = ⌈n
3 ⌉. Since {v1, v4} ⊆ Wl, then by Lemma 9 and Lemma 4, Wl is a local resolving

set of Cn. Next, since E(Cn) = {vivi+1|i = 1, 2, 3, . . . , n− 1}
⋃
{vnv1}, we can see that v3i−1 is adjacent to

v3i−2 and v3i is adjacent to v3(i+1)−2, for i = 1, 2, 3, . . . , n− 1. Thus Wl is a dominating set of Cn. By Theorem
1, we know that γ(Cn) = ⌈n

3 ⌉ = |Wl|, then Wl is a minimum dominant local resolving set of Cn . Therefore, it
can be concluded that Ddiml(Cn) = γ(Cn), for n ≥ 4.

In what follows, Theorems 11 and 12 show the characterization of a graph of order n that has the dominant local
metric dimension equal to 1 or n− 1.
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Figure 4. C6 graph with the dominant local basis are V1 and V4

Theorem 11. Let G be a connected graph of order n ≥ 1. Then Ddiml(G) = 1 if and only if G ≡ Sn.

Proof. Let G be a connected graph of order n ≥ 1.

1. If Ddiml(G) = 1, then G = Sn.
Let G be a connected graph of order n ≥ 1 and Ddiml(G) = 1, then there exists Wl ⊆ V (G) as a dominant
local basis of G with |Wl| = 1. We consider three cases below based on the value of n:
Case 1. For n = 1 and 2, G ≡ Kn. Since Kn ≡ Sn, for n = 1, 2, G ≡ Sn by Theorem 1.b.
Case 2. For n = 3, suppose G is not a star graph, then G is a cycle graph C3. Every singleton is not a local
resolving set of C3 which is contrary to Ddiml(G) = 1, and so G ≡ Sn by Theorem 1.b.
Case 3. For n > 3, suppose G is not a star graph, then there are four possibilities for G as below:

a. G is a cycle graph. Every singleton is not a dominating set of G. This is contrary to Ddiml(G) = 1.
b. G is a path graph, based on Theorem 8, we know that Ddiml(Pn) = γ(Pn) = ⌈n

3 ⌉ > 1 which is
contrary to Ddiml(G) = 1.

c. There exist two vertices u, v ∈ V (G) such that uv ∈ E(G) with deg(u), deg(v) ≥ 2.
– There is a vertex x such that x ∈ N(u) and x ∈ N(v). Since n > 3, it is easy to see that G is not

a bipartite graph. By Theorem 1 and Lemma 6, Ddiml(G) > 1. It is contrary to Ddiml(G) = 1.
Hence, there is no vertex x such that x ∈ N(u) and x ∈ N(v), and so every singleton can’t be the
dominating set of G. Thus, it is untrue that Ddiml(G) = 1.

d. There exist two vertices u, v ∈ V (G) such that uv /∈ E(G) with deg(u), deg(v) ≥ 2. . It is easy to see
that any singleton can’t be the dominating set of G when there are two vertices u, v with d(u, v) ≥ 2.
Thus, Ddiml(G) ̸= 1.

All of the cases above show that if Ddiml(G) = 1, G = Sn.
2. If G = Sn, then Ddiml(G) = 1.

Let V (Sn) = {u, v1, v2, v3, . . . , vn−1} and E(Sn) = {uvi|i = 1, 2, 3, . . . , n− 1}. Choose Wl = {u}, for any
two adjacent vertices u, vi ∈ E(Sn), with uvi ∈ E(Sn), i = 1, 2, 3, . . . , n− 1, it can be seen that r(u|Wl) ̸=
r(vi|Wl) and vi adjacent to u, for every i = 1, 2, 3, . . . , n− 1. Hence, Ddiml(G) = 1.

Based on the proof in points highlighted in (1.) and (2.) above, we have that Ddiml(G) = 1 if and only if
G ≡ Sn.

Theorem 12. Let G be a connected graph of order n ≥ 2. Then Ddiml(G) = n− 1 if and only if G ≡ Kn.

Proof.

a. If G be a connected graph of order n ≥ 2 and Ddiml(G) = n− 1, then G = Kn.
Let Ddiml(G) = n− 1. Then there exists Wl ⊆ V (G) as a dominant local basis of G with |Wl| = n− 1. We
divide the order of G in three cases below.
Case 1. If n = 2, then G ≡ Kn by Theorem 1.b.
Case 2. For n = 3, suppose that G is not a complete graph. Then G is a path (P3), or otherwise a disconnected
graph. From Theorem 8 we know that Ddiml(Pn) = γ(Pn) = ⌈n

3 ⌉, n > 1. Then Ddiml(P3) = 1 which is
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Figure 5. Ddiml(S6) = 1

contrary to the fact that Ddiml(G) = n− 1 = 2. Hence, G ≡ Kn.
Case 3. For n > 3, suppose that G is not a complete graph. Then there exist two vertices vi, vj ∈ V (G) such
that vivj /∈ E(G). Without loss of generality, let E(G) = E(Kn){v1v2}. Choose S = {v2, v3, v4, . . . , vn−1},
so that |S| = n− 2. There are three possibilities for any uv ∈ G.

– By Lemma 5, r(u|S) ̸= r(v|S) for every u, v ∈ S.
– For v ∈ V (G)\S, we can see that r(u|S) = (2, 1, 1, 1, . . . , 1) and r(v|S) = (1, 1, 1, 1, . . . , 1). Thus,

r(u|S) ̸= r(v|S).
– For u ∈ V (G)\S with any v ∈ S: Since v ∈ S, there exist zero elements in r(v|S), with d(u, v) ≤ 2 and

u ̸= S. Then there are no zero elements in r(u|S). Thus, r(u|S) ̸= r(v|S).

Therefore, S is a local resolving set of G. On the other hand, vn−1 ∈ S is adjacent to every vertex of V (G).
Thus, S is also a dominating set of G. Therefore S is the dominant local resolving set. This is contrary to
the fact that Ddiml(G) = n− 1. Therefore, G ≡ Kn. Based on all conditions above, we conclude that if
Ddiml(G) = n− 1, then G = Kn.

b. If G = Kn, then Ddiml(G) = n− 1.
By using Theorem 1, we know that diml(Kn) = n− 1. Suppose Wl = {v1, v2, v3, . . . , vn−1} is a local
resolving set of Kn and vn is adjacent to all vertices of Wl. Then, Wl is also a dominating set of Kn.
Next, γ(Kn) = 1 by Theorem 1.b, and Theorem 1 implies diml(Kn) = n− 1. Therefore, by the lower and
upper bound of the dominant local metric dimension in Lemma 6, we can conclude that Ddiml(Kn) = n− 1
for n ≥ 2.

Therefore, based on the proof described with points (a.) and (b.), we conclude that Ddiml(G) = n− 1 if and
only if G ≡ Kn, n ≥ 2.

Figure 6. Ddiml(K5) = 4

The last theorem in this paper shows the dominant local metric dimension of the complete bipartite graph as
follows.

Theorem 13. Let Km,n be a complete bipartite graph of order m,n ≥ 2. The dominant local metric dimension
of Km,n is Ddiml(Km,n) = γ(Km,n).
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Proof. Let V (Km,n) = {ai|i = 1, 2, 3, . . . ,m}
⋃
{bj |j = 1, 2, 3, . . . , n} and E(Km,n) = {aibj |i =

1, 2, 3, . . . ,m; j = 1, 2, 3, . . . , n}. Choose Wl = {a1, b1} such that |Wl| = 2. Observe that r(a1|Wl) ̸= r(b1|Wl),
and every two adjacent vertices have different representations to Wl, since r(ai|Wl) = (2, 1) and r(bj |Wl) = (1, 2)
for every V (Km,n)l. Therefore, Wl is a local resolving set of Km,n. On the other side, since a1 is adjacent to bj
for j = 1, 2, . . . , n and b1 is adjacent to ai for i = 1, 2, . . . ,m, we have that Wl = {a1, b1} is dominating set of
Km,n. Thus, Wl is the dominant local resolving set of Km,n. This condition satisfies Lemma 6 about the lower
bound of the dominant local metric dimension with minimum cardinality since by Theorem 1, γ(Km,n) = 2 and
Theorem 1 shows that diml(Km,n) = 1. Thus, Ddiml(Km,n) = 2 = γ(Km,n) for m,n ≥ 2. The illustration of
the dominant local resolving set of a complete bipartite graph is given in Figure 7 with m = 4 and n = 3, {a1, b1}
form the dominant local basis of K4,3.

Figure 7. Ddiml(K4,3) = 2

3. Conclusion

We conclude this paper with some open problems as below:
Open Problem 1. Determine the dominant local metric dimension of some particular classes of graphs, such as a
tree, generalized petersen graphs, and uncyclic graphs.
Open Problem 2. Generate the computer algorithm to determine the dominant local metric dimension for any
graphs.
Open Problem 3. Explore some potential applications of the dominant local metric dimension in other fields, such
as network analysis and data mining
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4. J. A. Rodrı́guez-Velázquez, C. Garcı́a Gómez, G. A. Barragán-Ramı́rez (2015) Computing the local metric dimension of a graph from

the local metric dimension of primary subgraphs. Int. J. Comput. Math. 92, 686–693.
5. J. A. Rodrı́guez-Velázquez, G. A. Barragán-Ramı́rez, C. Garcı́a Gómez (2016) On the Local Metric Dimension of Corona Product
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