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Abstract We are interested in the performance of nonlinear conjugate gradient methods for unconstrained optimization. In
particular, we address the conjugate gradient algorithm with strong Wolfe inexact line search. Firstly, we study the descent
property of the search direction of the considered conjugate gradient algorithm based on a new direction obtained from a new
parameter. The main objective of this parameter is to improve the speed of convergence of the obtained algorithm. Then, we
present a complete study that shows the global convergence of this algorithm. Finally, we establish comparative numerical
experiments on well-known test examples to show the efficiency and robustness of our algorithm compared to the algorithm
of Hager and Zhang.
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1. Introduction

Consider the following unconstrained nonlinear optimization problem{
min f(x)
x ∈ Rn , (1)

where f : Rn −→ R is a continuously differentiable function.
The nonlinear conjugate gradient methods are efficient to solve problem (1), which reflects several concrete

problems arising from industry, medicine and engineering, such as image restoration, robotics, sparse signal
recovery problems, especially for large dimensions. The iterative shame of the conjugate gradient method is given
as follows:

x1 ∈ Rn, xk+1 = xk + αkdk, (2)

where xk is the current iterate point, αk > 0 is the step size which can be found by one of the line search methods
and dk is the search direction defined by:

dk =

{
−g1
−gk + βkdk−1

for k = 1
for k ≥ 2,

(3)

where gk = ∇f(xk) is the gradient of f at xk and βk is a scalar conjugacy coefficient.
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The first conjugate gradient method was proposed by Hestenes and Stiefel (HS) in 1952 [10], to solve a linear
system of equations. After the introduction of the nonlinear conjugate gradient method of Fletcher and Reeves (FR)
in 1964 [8], many parameters βk have been proposed which give different conjugate gradient directions dk. The
most famous parameters βk are those of Polak-Ribiere-Polyak (PRP) [13, 14], Conjugate Descent (CD) [7], Liu-
Storey (LS) [11], Dai-Yuan (DY) [3, 4], Hager-Zhang (HZ) [9], Wei et al. (WYL) [18], the MN method proposed
by Fan et al. in [6] and Rivaie-Mustafa-Ismail-Leong (RMIL) [15]. Later, many combinations and new families of
conjugate gradient methods were proposed, such as those of Sellami and Chaib [16, 17], the different hybridization
methods proposed by Mtagulwa and Kaelo [12] and Dalladji et al. [5].

We cite some formulas of the βk mentioned above:

βHS
k =

gTk yk−1

dTk−1yk−1
, βFR

k =
∥ gk ∥2

∥ gk−1 ∥2
, βPRP

k =
gTk yk−1

∥ gk−1 ∥2
, βCD

k = − ∥ gk ∥2

gTk−1dk−1
,

βLS
k = − gTk yk−1

gTk−1dk−1
, βDY

k =
∥ gk ∥2

dTk−1yk−1
, βRMIL

k =
gTk yk−1

∥ dk−1 ∥2
,

βHZ
k = (yk−1 − 2dk−1

∥yk−1∥2

dTk−1yk−1
)

gk
dTk−1yk−1

,

βWYL
k =

∥gk∥ 2 − ∥gk∥
∥gk−1∥

gTk gk−1

∥gk−1∥ 2
, βMN

k =

∥gk∥ 2 − ∥gk∥
∥gk−1∥

gTk gk−1

µ
∣∣gTk dk−1

∣∣+ ∥gk−1∥ 2
/ µ > 1,

βSC
k =

(1− λ) ∥gk∥ 2 + λ(−gTk dk−1)

−gTk−1dk−1
, 0 < λ < 1,

βSC∗

k =
λk ∥gk∥ 2 + (1− λk)g

T
k yk−1)

(1− λk − µk) ∥gk−1∥ 2 + (λk + µk)(yTk−1dk−1)
,

with 0 < λk < 1 and 0 < µk < 1− λk,

where yk−1 = gk − gk−1, sk−1 = xk − xk−1 and ∥ . ∥ denotes the Euclidean vector norm.
The step size αk is determined using the following strong Wolfe line search conditions

f(xk + αkdk) ≤ f(xk) + ραkg
T
k dk, (4)

|gTk+1dk| ≤ −σgTk dk, (5)

where 0 < ρ < σ < 1
2 .

The aim of this paper is to propose an efficient conjugate gradient method for nonlinear optimization using a
new parameter βk which leads to a new descent direction. The rest of this paper is organized as follows. In Section
2, we give the new formula of βk and describe the corresponding algorithm. We present a complete analysis of
the descent condition of the obtained direction, then, we show the global convergence of the new algorithm using
the strong Wolfe line search. Section 3 includes numerical experiments on some examples, considering the well-
known test functions in the literature, to show the performance of the considered algorithm. Finally, we end with a
conclusion in Section 4.

2. New formula of βk and description of the corresponding algorithm

The main ingredients of the conjugate gradient method, which play a very important role in convergence analysis
and the behavior of the associated algorithm, are the parameter βk and the displacement step αk. In this study,
motivated by the recent work of Wei et al. [18] and Hager and Zhang [9], we present a new conjugate parameter
βOKB
k defined as follows:

βOKB
k =

∥gk∥2 − ∥gk∥
∥dk−1∥

∣∣gTk dk−1

∣∣
dTk−1yk−1

. (6)
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2.1. Description of the algorithm OKB

Begin algorithm

• Given a starting point x1 ∈ Rn and a parameter ε > 0.
• Set k = 1 and compute d1 = −g1.
• While ∥gk∥ > ε do

– Find αk > 0 satisfying the strong Wolfe conditions (4) and (5), σ = 0, 4 and ρ = 10−4.
– Take xk+1 = xk + αkdk.
– Compute βk+1 by the new formula (6).
– Compute dk+1 = −gk+1 + βk+1dk.
– Set k = k + 1.

• End while.

End algorithm

2.2. Sufficient descent property and global convergence analysis

We start with the following basic assumptions on the objective function in order to establish the global convergence
results for the new algorithm.

Assumptions

• (A1) f is bounded below on the level set Ω = {x ∈ Rn : f(x) ≤ f(x1)} .
• (A2) In some neighborhood Ω0 of Ω, f is differentiable and it is gradient g(x) is Lipschitz continuous,

namely, there exist a constant L > 0 such that

∥g(x)− g(y)∥ ≤ L∥x− y∥,∀x, y ∈ Ω0. (7)

Under these assumptions, there exist a constant c > 0 such that

∥gk∥ ≤ c,∀k ≥ 1. (8)

Lemma 2.1
Suppose that Assumption (A2) holds, let the sequence {xk} generated by (2) and the step size αk satisfies strong
Wolfe conditions (4) and (5), then

gTk dk ≤ 2σ − 1

1− σ
∥gk∥2. (9)

Furthermore, for any k as soon as gk ̸= 0, the descent property of dk is satisfied, i.e.,

gTk dk < 0. (10)

Proof: The lemma is proved by induction. For k = 1, since d1 = −g1, therefore (9) and (10) are verified.
For some k > 1, we suppose that (9) and (10) are true.
Using (3), we get

gTk+1dk+1 = −∥gk+1∥2 + βOKB
k+1 gTk+1dk, (11)

and from (6), we have

gTk+1dk+1 = −∥gk+1∥2 +
∥gk+1∥2 − ∥gk+1∥

∥dk∥

∣∣gTk+1dk
∣∣

dTk yk
gTk+1dk. (12)

Set yk = gk+1 − gk. Then, from (5) we obtain

dTk yk = dTk gk+1 − dTk gk > σdTk gk − dTk gk = (σ − 1)dTk gk > 0. (13)
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By substituting (5) and (13) into (12), we obtain

gTk+1dk+1 ≤ −∥gk+1∥2 +
∥gk+1∥2 − ∥gk+1∥

∥dk∥

∣∣gTk+1dk
∣∣

(σ − 1)dTk gk
(−σdTk gk). (14)

We know that
0 ≤

∣∣gTk+1dk
∣∣ ≤ ∥gk+1∥.∥dk∥, (15)

this leads to

0 ≤ ∥gk+1∥2 −
∥gk+1∥
∥dk∥

∣∣gTk+1dk
∣∣ ≤ ∥gk+1∥2, (16)

hence, (14) becomes

−∥gk+1∥2 ≤ gTk+1dk+1 ≤ −∥gk+1∥2 +
σ

1− σ
∥gk+1∥2. (17)

Now, observe that for all k ≥ 1, we have

−∥gk+1∥2 ≤ gTk+1dk+1 ≤ 2σ − 1

1− σ
∥gk+1∥2. (18)

Since 0 < σ < 1
2 , it results that

−1 <
2σ − 1

1− σ
< 0. (19)

Therefore, gTk+1dk+1 < 0. This completes the proof.

Lemma 2.2
Suppose that Assumptions (A1) and (A2) hold. Consider common iterate by (2) , with dk is a sufficient descent
direction and αk is determinate by the strong Wolfe line search condition (4) and (5). Then, the Zoutendjik
condition

∞∑
k=1

(gTk dk)
2

∥dk∥2
< ∞, (20)

holds.

Proof: See [19].

Theorem 2.1
Consider the iteration xk+1 = xk + αkdk, where dk is defined by (3) and suppose that Assumption (A2) holds,
then the new algorithm OKB either stops at stationary point or converges in the sense

lim
k−→∞

inf ∥gk∥ = 0. (21)

Proof: We consider for all the demonstration that βk = βOKB
k .

We suppose that lim
k−→∞

inf ∥gk∥ ≠ 0, i.e., for all k, ∃ c > 0 such that

∥gk∥ > c. (22)

From (3), we get for all k ≥ 2

dk + gk = βkdk−1

∥dk∥2 + ∥gk∥2 + 2gTk dk = β2
k ∥dk−1∥2

∥dk∥2 = −∥gk∥2 − 2gTk dk + β2
k ∥dk−1∥2 . (23)
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Dividing by (gTk dk)
2, we get

∥dk∥2

(gTk dk)
2

= − ∥gk∥2

(gTk dk)
2
− 2

gTk dk
+ β2

k

∥dk−1∥2

(gTk dk)
2

= −
(
∥gk∥
gTk dk

+
1

∥gk∥

)2

+
1

∥gk∥2
+ β2

k

∥dk−1∥2

(gTk dk)
2

≤ 1

∥gk∥2
+

∥dk−1∥2

(gTk−1dk−1)2
×

β2
k(g

T
k−1dk−1)

2

(gTk dk)
2

. (24)

We remark that β2
k(g

T
k−1dk−1)

2

(gT
k dk)2

< 1.
In fact, we have

β2
k(g

T
k−1dk−1)

2 − (gTk dk)
2 =

(
βkg

T
k−1dk−1 − gTk dk

) (
βkg

T
k−1dk−1 + gTk dk

)
,

from (13) and (16), we can deduce that βk is a positive scalar.
From (10) and the positive scalar βk, we get

βkg
T
k−1dk−1 + gTk dk < 0, (25)

and

βkg
T
k−1dk−1 − gTk dk = βkg

T
k−1dk−1 − gTk (−gk + βkdk−1)

= −βky
T
k−1dk−1 + ∥gk∥2

= −∥gk∥2 +
∥gk∥

∥dk−1∥
|gkdk−1|+ ∥gk∥2

=
∥gk∥

∥dk−1∥
|gkdk−1| > 0. (26)

Then, from (25) and (26) we get
β2
k(g

T
k−1dk−1)

2 − (gTk dk)
2 < 0.

So, the formula (24) becomes

∥dk∥2

(gTk dk)
2

≤ 1

∥gk∥2
+

∥dk−1∥2

(gTk−1dk−1)2
,

which gives

∥dk∥2

(gTk dk)
2
− ∥dk−1∥2

(gTk−1dk−1)2
≤ 1

∥gk∥2
,

and implies
∥dk∥2

(gTk dk)
2
− ∥d1∥2

(gT1 d1)
2
≤

k∑
i=2

1

∥gi∥2
.

As, d1 = −g1, we have
∥d1∥2

(gT1 d1)
2
=

1

∥g1∥2
,
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therefore,

∥dk∥2

(gTk dk)
2
− 1

∥g1∥2
≤

k∑
i=2

1

∥gi∥2
,

which gives

∥dk∥2

(gTk dk)
2
≤

k∑
i=1

1

∥gi∥2
, (27)

from (22) and (27), we obtain

(gTk dk)
2

∥dk∥2
>

c2

k
.

This implies

∞∑
k=1

(gTk dk)
2

∥dk∥2
= ∞,

thus, contradicting the Zoutendijk condition (20) and guarantying (21), i.e., lim
k−→∞

inf ∥gk∥ = 0. This completes

the proof.

3. Numerical experiments

In this section, we present some numerical tests on a set of test functions [1, 2] of unconstrained nonlinear
optimization problems using Matlab R2019. Our tests are conducted on DELL PC (Intel (R) Core (TM) i7-
77000HQ CPU @ 2.80 GHz, 32 Go RAM), on Windows 10.

The object of these experiments is to show the performance of our new coefficient in comparison with other class
of classical existing coefficients. In numerical tests, we consider the algorithm OKB based on our new coefficient
βOKB
k (6) compared to the Hager-Zhang (HZ) method using βHZ

k [9].
In the table of results we designate by:

• n: the dimension of the problem,
• iter: the number of iterations,
• Time: the total time in second required to complete the evaluation process.
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Test Function βOKB
k βHZ

k

n iter T ime iter T ime

DENSCHNA 100 30 0,011245 49 0,019950
200 30 0,016902 50 0,030366
500 30 0,032006 50 0,075188
1000 31 0,062500 51 0,131070

Extended Block Diagonal 1 100 25 0,002885 37 0,004162
200 25 0,004796 37 0,007083
500 25 0,034679 38 0,047336
1000 26 0,038550 38 0,063640

DIXMAANA 100 16 0,006063 19 0,007706
200 16 0,010358 16 0,012170
500 17 0,034679 18 0,047336
1000 17 0,064801 18 0,086842

DIXMAANB 100 14 0,005521 17 0,006647
200 14 0,009459 20 0,013884
500 14 0,028822 20 0,050333
1000 15 0,509552 21 0,098544

Extended Hiebert 100 186 0,021666 782 0,097860
200 262 0,050333 703 0,142559
500 150 0,149345 682 0,752066
1000 302 0,325097 836 1,539170

Extended Rosenbrock 100 127 0,015588 361 0,045206
200 108 0,031787 700 0,149684
500 199 0,097230 505 0,487145
1000 121 0,144109 623 0,781642

DIXMAAND 100 20 0,006672 20 0,008616
200 21 0,013145 22 0,015209
500 21 0,048954 22 0,056010
1000 21 0,082428 21 0,103713

Extended White and Holst 100 69 0,023580 97 0,038436
200 69 0,044379 107 0,083291
500 84 0,124510 95 0,173380
1000 72 0,216234 104 0,373296

Extended Beale 100 109 0,046908 267 0,124510
200 119 0,092719 247 0,222006
500 127 0,248663 190 0,437382
1000 115 0,440869 239 1,063390

Extended Woods 100 219 0,088517 944 0,102763
200 363 0,057954 1007 0,168555
500 346 0,133696 1072 0,505063
1000 286 0,280782 1114 1,169708

Raydan 1 100 12 0,000175 20 0,000353
200 12 0,000311 20 0,000444
500 12 0,000438 20 0,000901
1000 16 0,001061 Failed Failed
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Test Function βOKB
k βHZ

k

n iter T ime iter T ime

Extended Powell 100 433 0,208014 Failed Failed
200 402 0,364384 Failed Failed
500 497 1,099740 Failed Failed
1000 615 2,729780 Failed Failed

DIXMAANC 100 16 0,007667 19 0,008081
200 17 0,012793 18 0,014042
500 18 0,035370 19 0,049259
1000 18 0,074232 20 0,095920

Power 100 1140 0,064120 1814 0,138626
200 2545 0,201966 3487 0,369626
500 6544 0,830418 9740 1,672919
1000 10804 2,824616 18669 5,641824

Quadratic Diagonal 100 159 0,016168 220 0,028212
Perturbed 200 200 0,052648 426 0,079868

500 292 0,026646 384 0,067986
1000 336 0,081887 548 0,154064

Rodenstein and Roth 100 82 0,016210 169 0,037357
200 82 0,092719 265 0,222006
500 69 0,055907 187 0,238901
1000 96 0,176877 118 0,290437

HARKERP 100 299 0,017223 510 0,029777
200 383 0,057954 952 0,168555
500 141 0,027043 243 0,098434
1000 219 0,059078 362 0,165848

Extended Tridiagonal 1 100 54 0,019141 72 0,029115
200 54 0,033980 Failed Failed
500 54 0,083032 Failed Failed
1000 65 0,198614 Failed Failed

3.1. Commentaries

From the results obtained in the tables above, it is clear that our new algorithm based on the βOKB
k parameter is

more efficient than the HZ method in terms of number of iterations and computation time. There is a significant
reduction in the number of iterations using the OKB algorithm compared to HZ algorithm. Furthermore, our
algorithm is more competitive in terms of computation time with the HZ method. On the other hand, when the
size of some examples becomes large, the HZ algorithm fails to provide the optimal solution after a number of
iterations kmax = 50000.

4. Conclusion

We have proposed a new βk, also we have provided proof of the global convergence of our proposed algorithm OKB
for nonlinear functions using the strong Wolfe line search. The numerical tests carried out confirm the effectiveness
of the new algorithm OKB. It has a good performance compared to Hager-Zhang (HZ) method for the selected list
of test functions.
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