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Abstract Taking into account the importance of extropy (see Lad et al. 2015), and its various generalizations, in the
present communication we consider and study the generalized extropy of order α and type β based on Varma’s (Varma,
1966) information measure for both discrete and continuous random variables. The dynamic versions (residual and past,
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1. Introduction

Information theory is the mathematical examination of the ideas, parameters, and laws regulating the transmission
of messages across communication systems. The building block of information theory is Shannon entropy [18]. To
quantify the information Shannon gave a numerical measure of information, also called measure of uncertainty or
the entropy measure. Afterwards, study of entropy-based random systems has seen a noticeable increase with
applications in a variety of sectors. Various characterizations and generalizations and their residual and past
versions have been examined by many researchers [3], and a non-additive measure of Tsallis entropy [20], [16],
and [21].
Varma entropy of two parameters is essential as a measure of complexity and uncertainty to explain many chaotic
systems and is directly applicable in several fields including physics, electronics, and engineering. More results
and applications of generalized entropy measure of order α and type β have been studied by many researchers,
refer to [7], [11], [9], [6], [10], [1], and [19].
It is interesting to learn that the complementary dual of the Shannon entropy measure exists and has some common
properties. This new measure of uncertainty has been introduced by [12] and is known as extropy. Although there
are some mathematical analogies between the two measures, extropy typically has different uses and interpretations
than entropy. Since the practical use of extropy is still in its infancy, it has the potential to have intriguing
applications in information theory in the future. Moreover, the Extropy measure has been extensively employed in
numerous domains, see [4]. lifetime distribution [8]. The concept of extropy of order statistics and record value.
Also, the residual extropy of order statistics has been studied by [15]. The residual extropy of k-record values
has been studied by [5], and [17]. Testing symmetry based on the extropy of record values has been studied by
[22]. Recently, the Complementary dual of Renyi entropy has been studied by [13]. The complementary dual of
generalized entropy measures based on order α and type β is still an open issue.
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Extropy is a cornerstone for measuring information uncertainty. While, some probability distributions are
nottraceable in such cases density-based measures have limitations. Extropy of order α and type β acts as a
generalization, offering more flexibility in capturing different aspects of uncertainty. In this paper, we studied
generalized extropy measures of order α and type β for both discrete and continuous random variables. Also,
dynamic versions of generalized extropy with their inter-relationship have been examined.
The structure of the paper is as follows: Preliminaries are given in Section 2, including Shannon entropy, Renyi
entropy, and complementary duals of these entropies, Varma entropy measure. In Section 3, a generalized extropy
measure for discrete random variable (random variable) is introduced and also some theorems for generalized
extropy have been studied. Some numerical examples and graphical representations are also been given in the same
section. Dynamic versions of generalized extropy measures are studied in section 4. In Section 5, a generalized
extropy measure for a continuous random variable has been introduced and investigated the maximum generalized
extropy measure. In Section 5, interval generalized extropy is studied. In Section 6, a letter-catching experiment
problem as an application part is given, and Section 7 concludes this paper.

2. Preliminaries

For a given observable space X with finite discrete possible values {x1, x2 · · ·xn} and corresponding probability
mass function (p.m.f) P = {p1, p2 . . . pn}, the measure of uncertainty given by Shannon [18] is

H(P ) = −
n∑

i=1

pi log pi, ∀ 0 ≤ pi ≤ 1,

n∑
i=1

pi = 1. (1)

A generalization of measure (??) for order α and type β is Varma entropy (Varma, 1966), defined as follows:

Hβ
α(P ) =

1

β − α
log

n∑
i=1

(pi)
α+β−1, ∀ β − 1 ≤ α < β. (2)

The generalized measure (2) for discrete uniform distribution is given as

Hβ
α(PU ) =

1

β − α
log (n)2−α−β . (3)

By using complementary dual to Shannon entropy, a novel method of measuring uncertainty that shares some
characteristics with Shannon’s entropy is introduced by [12] and it is defined as follows:

J(X) = −
n∑

i=1

(1− pi) log (1− pi). (4)

Recently, the complementary dual of Renyi entropy and its conditional and joint versions have been studied by
[13].

3. Generalized Extropy of Order α and Type β

In this section, we present the generalized extropy measurements for the discrete random variable. Equations (2)
and (4) serve as representative forms of extropy in our study. Further, we define the generalized extropy of order α
and type β for the discrete random variable based on the concept of discrete Renyi extropy [13].
For a given observable space X with finite discrete possible values {x1, x2 · · ·xn} and corresponding probability
mass function P = {p1, p2 . . . pn}, we follow the concept complementary of entropy and extropy arises from the
fact that the extropy of mass a function, equal a location and scale transform of the entropy of another mass function
that is complementary, qn = (1−pn)

(n−1) (see Lat et al. 2015). Thus the generalized extropy of order α and type β is
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defined as follows:

Jβ
α(P ) =(n− 1)

[
Hβ

α(q)− log(n− 1)
]

=(n− 1)

[
Hβ

α

(
1− pn
n− 1

)
− log(n− 1)

]
=(n− 1)

[
1

β − α
log

n∑
i=1

(
1− pi
n− 1

)α+β−1

− log(n− 1)

]

Jβ
α(P ) =

−(2β − 1)(n− 1)log(n− 1) + (n− 1) log
∑n

i=1 (1− pi)
α+β−1

β − α
, (5)

where, n = |X| is the cardinality for observable space.

Example 3.1
For a given discrete random variable X = {a, b}, with cardinality 2, corresponding probability distribution
p(a) = 2

3 , p(b) =
1
3 , without loss of generality for the parameters α = 0.7 and β = 1.2, calculated generalised

extropy and Varma’s entropy are equal.

Jβ
α(P ) = Hβ

α(P ) =
log [(p(a))

α+β−1
+ (p(b))α+β−1]

β − α

Hβ
α(P ) =

log [(23 )
0.9

+ ( 13 )
0.9]

0.5
= 0.05575411.

Jβ
α(P ) =

log [( 13 )
0.9

+ ( 23 )
0.9]

0.5
= 0.05575411.

Example 3.2
For a given discrete uniformly distributed random variable (|X| = 3) X = {a, b, c}, with their corresponding
probabilities p(a) = p(b) = p(c) = 1

3 calculated generalized extropy of order α and type β and Varma’s entropy
for the parameters (α = 0.8, β = 1.1) are

Jβ
α(P ) =

−(2β − 1)(2) + (2) log(3( 23 )
0.9)

β − α
= −0.28398,

and

Hβ
α(P ) =

log(3)( 13 )
0.9

β − α
= 0.100343.

Remark 3.1
We observe that for |X| = 2, generalized entropy measure (2) and extropy measure (5) have equal values.

Example 3.3
Consider a random variable with a probability mass function

P (X = i) = pi =
2i

n(n+ 1)
, i = 1, 2, ..., n,

substituting this in (5) and we obtain the discrete generalized extropy of order α and type β

Jβ
α(P ) =

−(2β − 1)(n− 1)log(n− 1) + (n− 1) log
∑n

i=1 (
n(n+1)−2i
n(n+1) )α+β−1

β − α
.

Example 3.4
Consider a random variable with a probability mass function

P (X = i) = pi =
1

n
, i = 1, 2, ..., n.
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Then we obtain the discrete generalized extropy of order α and type β for uniform distribution

Jβ
α(P ) =

n− 1

β − α

{
log

(n− 1)α−β

nα+β−2

}
. (6)

For β = 1, equation (6) will reduce to Jα(P ) = (n− 1) log n
n−1 , a Renyi extropy for uniform distribution; a result

obtained by Liu and Xiao, (2021).

Next, we will show that the maximum of the generalized extropy measure (5) depends on its parameters.

Theorem 3.1
The generalized extropy measure of order α and β (5) may not attain their maximum when random variable follows
a uniform distribution.

Proof
Let us consider the Langrage function under equation (5).

L =
−(2β − 1)(n− 1)log(n− 1) + (n− 1) log

∑n
i=1 (1− pi)

α+β−1

β − α
+ λ(

n∑
i=1

pi − 1). (7)

Calculate the gradient and stationary point

∂L

∂pi
=
n− 1

β − α

(
1∑i=n

i=1 (1− pi)α+β−1

)
∂

∂pi

{
n∑

i=1

(1− pi)
α+β−1

}
+ λ = 0

=
(n− 1)(α+ β − 1)

(β − α)
∑i=n

i=1 (1− pi)α+β−1
(1− pi)

α+β−2 + λ = 0

⇒ (n− 1)(α+ β − 1)

(β − α)
(1− pi)

α+β−2 = λ

i=n∑
i=1

(1− pi)
α+β−1

⇒(1− pi)
α+β−2 =

(1− pi)
α+β−2

(n− 1)(α+ β − 1)
(β − α)λ

i=n∑
i=1

(1− pi)
α+β−1 (8)

The right-hand side of the equation (8) is constant, so (1− p1)
α+β−2 = (1− p2)

α+β−2 = ...(1− pn)
α+β−2. It

provides

p1 = p2 = . . . = pn =
1

n
.

After substituting the above values in equation (5), we get

Jβ
α(P ) =

−(β − α)(n− 1)log(n− 1) + (n− 1)(2− α− β) log n

β − α
. (9)

The equation (9) is not free from the parameters. Hence proved the result.

Example 3.5
Generalized extropy (5) for a uniformly distributed random variable is given as

Jβ
α(PU ) =

(
n− 1

β − α

)
{(2− α− β) log n− (β − α) log(n− 1)}. (10)

The following example shows that the maximum value for the generalized extropy measure (5) depends on
parameters.
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Example 3.6
For a given uniformly distributed discrete random variable X = {a, b}, with probabilities p(a) = p(b) = 1

2 ,
without loss of generality for (α = 0.7, β = 1.2) and (α = 0.6, β = 1.5), values of the calculated generalized
extropy (5) are 0.60206 and −0.03345 respectively.

The figure 1 shows that the generalized extropy measure of order α and type β for |X| = 2 attains its maximum
or minimum values when random variables follow a uniform distribution. For α+ β < 2 or > 2, Jβ

α(Pu) attains its
maximum and minimum values, respectively.

Figure 1. Values of Jβ
α(P ) for (α = 2, β = 2.5) and (α = 0.5, β = 1.49) for |X| = 2.

The following theorem compares Varma’s entropy and generalized extropy of order α and type β for uniform
distribution.

Theorem 3.2
For cardinality greater than 2 and uniformly distributed random variable, the Varma entropy (1) is always greater
than or equal to the generalized extropy (5)

Hβ
α(PU ) ≥ Jβ

α(PU ), ∀n ≥ 2.

Proof
We will prove this theorem in two parts: in part 1, we will conclude the result for n = 2, and in part II, we will
prove the result for n ≥ 3.
Part-1 In remark (5) result has been already shown for |X| = 2. Part-II for n≥ 3, Subtracting (7) from (3) we get,

[Hβ
α(PU )]− [Jβ

α(PU )] = (n− 1) log (n− 1)− (n− 2)

(
2− (α+ β)

β − α

)
log n. (11)

If α+ β = 2, then (11) gives Hβ
α(PU )− Jβ

α(PU ) = (n− 1) log(n− 1) = +ve ∀ n ≥ 3.
If, α+ β < (>)2, then (11) reduces to

Hβ
α(PU )− Jβ

α(PU ) = log

(
(n− 1)(n−1)

n
(n−2)(2−(α+β))

β−α

)
,

since, (n−1)(n−1)

n
(n−2)(2−(α+β))

β−α

> 1, ∀n ≥ 3. Hence the result is also true for n ≥ 3.
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Table 1. Value of Hβ
α(PU ) and Jβ

α(PU ) for different the permeters when cardinality changes

.

|X| β α Hβ
α(PU ) Jβ

α(PU )

for, n = 2, 1.1 0.8 0.100343 0.100343
1.49 0.59 −0.02676 −0.02676
1.5 0.6 −0.3345 −0.3345
1.5 0.5 0 0

for,n = 3, 1.1 0.8 −0.15904 −0.92014
1.49 0.59 −0.04241 −0.68688
1.5 0.6 −0.05301 0.70809
1.5 0.5 0 −0.60206

for, n=4, 1.1 0.8 0.2000687 −0.8293
1.49 0.59 −0.05352 −1.59199
1.5 0.6 −0.0669 −1.63205
1.5 0.5 0 −1.43136

for, n=5, 1.1 0.8 0.23299 −1.47628
1.49 0.59 −0.06213 −2.65676
1.5 0.6 −0.07766 −2.65676
1.5 0.5 0 −2.4082

for, n=6, 1.1 0.8 0.80071 −2.19793
1.49 0.59 −0.06917 −3.807
1.5 0.6 0.08646 −3.92716
1.5 0.5 0 −3.4948

for, n=7, 1.1 0.8 0.281699 −2.97871
1.49 0.59 −0.07512 −5.11963
1.5 0.6 −0.0939 −5.23231
1.5 0.5 0 −4.6689

For uniformly distributed random variables, Table 1 clarifies the relationship between Varma’s entropy and the
generalized extropy measure for various cardinalities. We observe that the values of the generalized extropy
measure of order α and type β for a uniformly distributed discrete random variable decrease as cardinality
increases. But Varma’s entropy behavior conflicts with it.

Keeping α and β fixed and changing n from 2 to 7 it shows the discrepancy between the values of the
generalized extropy measure and Varma’s entropy measure as shown in Figure 2.
The Varma entropy is always zero for α+ β = 2, but not for the generalized extropy measure, as Figure 3

illustrates.
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1450 SOME RESULTS OF GENERALIZED EXTROPY MEASURE AND ITS APPLICATION

Figure 2. Hβ
α(PU ) and Jβ

α(PU ) at (α = 0.8, β = 1.1) and (α = 0.59, β = 1.49) for |X| = [2, 7].

Figure 3. Hβ
α(PU ) and Jβ

α(PU ) at (α = 0.5, β = 1.5).

4. Dynamic Versions of Generalized Extropy Jβ
α(P ).

The generalized extropy measure (5) is useless for a system that has survived for a unit of time. Since uncertainty
and diversity fluctuate over time in actual events, dynamic extropy measures account for dynamic changes in
uncertainty and consider both the system’s past and residual state, leading to better information. In this section, we
will study dynamic versions of generalized extropy Jβ

α(P ).
If X is a discrete supported random variable [1, n] and Xt = (X − t|X > tis) be residual lifetime whose
probability mass function Pt =

pi

Rt
and X̄t = (X|X ≤ t) be past lifetime whose probability mass function P̄t =

pi

F (t) . The discrete form of residual generalized extropy measure of order α and type β is defined as follows:

Jβ
α(Pt) =

−(2β − 1)(n− t)log(n− t) + (n− t) log
∑i=n

i=t (1− ( pi

Rt
))α+β−1

β − α
. (12)

In parallel to (12), the past version of generalized extropy is defined as

Jβ
α(P̄t) =

−(2β − 1)(t− 1)log(t− 1) + (t− 1) log
∑i=t

i=1 (1− ( pi

Ft
))α+β−1

β − α
. (13)
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For β = 1, both of the measures (12) and (13) reduce to the dynamic (residual and past) versions of Renyi extropy
given as

Jα(Pt) =
−(n− t)log(n− t) + (n− t) log

∑i=n
i=t (1− ( pi

F̄t
))α

1− α
.

and

Jα(P̄t) =
−(t− 1)log(t− 1) + (t− 1) log

∑i=t
i=1 (1− ( pi

Ft
))α

1− α
.

respectively. refer to Jawa, et al. (2022).

Example 4.1
Suppose that the discrete random variable X has a uniform distribution. Then, the residual and past generalized
extropy (12) and (13) are given, respectively, by

Jβ
α(Pt) =

−(2β − 1)(n− t)log(n− t) + (n− t) log
∑i=n

i=t (1− ( 1
n−t+1 ))

α+β−1

β − α

=
−(2β − 1)(n− t)log(n− t) + (n− t) log(n− t+ 1)(1− ( 1

n−t+1 ))
α+β−1

β − α

=
−(2β − 1)(n− t)log(n− t) + (n− t) log ( (n−t)

α+β−1

(n−t+1)α+β−2 )

β − α
,

and

Jβ
α(P̄t) =

−(2β − 1)(t− 1)log(t− 1) + (t− 1) log
∑i=t

i=1 (1− ( 1
n−t+1 ))

α+β−1

β − α
;

=
−(2β − 1)(t− 1)log t(t− 1) + (t− 1) log (( n−t

n−t+1 ))
α+β−1

β − α
,

respectively.

Example 4.2
Consider a random variable with a probability mass function

P (X = i) = pi =
2i

n(n+ 1)
, i = 1, 2, ..., n, (14)

and survival function corresponding to X given as

F̄ (i) = 1− F (i− 1) = 1− i(i− 1)

n(n+ 1)
, (15)

using the given distribution function in (12) and (13) respectively and we obtain the discrete residual generalized
extropy measure and past generalized extropy measure

Jβ
α(P, t) =

−(2β − 1)(n− t)log(n− t) + (n− t) log
∑i=n

i=t (1− ( 2i
n(n+1) ))

α+β−1

β − α
, (16)

and

Jβ
α(P̄t) =

−(2β − 1)(n− t)log(n− t) + (n− t) log
∑i=t

i=1 (
t−i
t ))α+β−1

β − α
, (17)

respectively.
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Remark 4.1
For β = 1, both of the measures (16) and (17) reduce to the dynamic (residual and past) versions of Renyi extropy
for the same distribution

J(P, t) = −
i=n∑
i=t

(
1− 2i

n(n+ 1)− t(t− 1)

)
log

(
1− 2i

n(n+ 1)− t(t− 1)

)
,

and

Jβ
α(P̄t) = −

i=t∑
i=1

(
t− i

t

)
log

(
t− i

t

)
respectively.

5. Continuous Generalized Extropy

In this section, we introduce the continuous generalized extropy based on continuous distribution lifetime.
Continuous extropy is a more theoretical, concept used to quantify the information content or uncertainty associated
with a continuous probability distribution. The extropy of the continuous random variable X supported on R
defined as

J(X) = −
∫
R

(1− f(x)) log(1− f(x))dx. (18)

Let X be a continuous random variable having p.d.f, f(x) with support in [a, b], −∞ < a < b < ∞ and b− a ̸= 1.
Then, analogous to (5) continuous generalized extropy is proposed as

CJβ
α(X) =

−(2β − 1)(b− a− 1)log(b− a− 1) + (b− a− 1) log
∫ b

a
(1− f(x))α+β−1dx

β − α
(19)

Example 5.1
Suppose that the continuous random variable X has uniform distribution over [a, b], provided that b− a ̸= 1. Then,
continuous generalized extropy (20) is defined as

CJβ
α(X) =

−(2β − 1)(b− a− 1)log(b− a− 1) + (b− a− 1) log
∫ b

a
(1− 1

b−a )
α+β−1dx

β − α
,

=
−(2β − 1)(b− a− 1)log(b− a− 1) + (b− a− 1) log

∫ b

a
( b−a−1

b−a )α+β−1dx

β − α
,

= (b− a− 1)

(
(α− β)log(b− a− 1)− (α+ β − 2) log(b− a)

β − α

)
,

where b− a ̸= 1.

5.0.1. The Maximum Generalized Extropy Measure Provided that X is a continuous random variable supported in
[a, b], −∞ < a < b < ∞. Then we show that X has the maximum continuous generalized extropy if and only if it
follows the continuous uniform distribution. As,

CJβ
α(X) =

−(2β − 1)(b− a− 1)log(b− a− 1) + (b− a− 1) log
∫ b

a
(1− f(x))α+β−1dx

1− α
,

subjected to constraints ∫ b

a

f(x)dx = 1. (20)
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We can obtain the maximization of Continuous generalized extropy using the Lagrange multipliers method as
follows:

L(X) =
1

β − α
[−(2β − 1)(b− a− 1)log(b− a− 1) + (b− a− 1) log

∫ b

a

(1− f(x))α+β−1dx.

Differentiating L(X) w.r.t. f(x), then equating to zero we obtain

dL(X)

df(x)
=

1

β − α

[
−(b− a− 1)(α+ β − 1)(1− f(x))α+β−2∫ b

a
(1− f(x))α+β−1dx

]
+ λ = 0

f(x) = 1−

[
λ(β − α)

(b− a− 1)(α+ β − 1)

∫ b

a

(1− f(x))α+β−1dx

] 1
α+β−2

.

Now putting this value in equation 20, we get

∫ b

a

1−

[
λ(β − α)

(b− a− 1)(α+ β − 1)

∫ b

a

(1− f(x))α+β−1dx

] 1
α+β−2

dx = 1 (21)

λ =
(b− a− 1)(α+ β − 1)

(β − α)
∫ b

a
(1− f(x))α+β−1dx

(
1− 1

b− a

)α+β−2

(22)

now putting this value in equation (5.3), we get f(x) = 1
b−a , which is a pdf of uniform distribution.

6. Interval Generalized Extropy of Order α and Type β

Overall, interval extropy offers a valuable tool for delving deeper into the uncertainty associated with events within
specific timeframes. Unlike extropy [12], which deals with the overall uncertainty in a system, interval extropy
focuses on the uncertainty within a specific time interval. This makes it particularly relevant in reliability analysis
and related fields where understanding the remaining lifespan or failure time is critical. In the next section, we study
the interval generalized extropy of order α and type β. If a continuous random variable is supported in [t1, t2], then
corresponding extropy measure can be define as

J(X) = −
∫ t2

t1

(1− f(x)) log(1− f(x))dx (23)

The doubly truncated random variable (X|t1 < X < t2) represents the lifetime of a unit which fails between t1
and t2 where (t1, t2) ∈ D =

{
(u, v) ∈ R2

+ : F (u) < F (v)
}

, then interval (doubly truncated) generalized extropy
measure can be defined as follow:

CIJ(X) = −
∫ t2

t1

(
1− f(x)

F (t2)− F (t1)

)
log

(
1− f(x)

F (t2)− F (t1)

)
dx (24)

Analogus to (5), we proposed doubly truncated generalized extropy of order α and type β which is defined as
follow:

CIJβ
α(X) =

−(2β − 1)(t2 − t1 − 1)log(t2 − t1 − 1) + (t2 − t1 − 1) log
∫ t2
t1

(
1− f(x)

F (t2)−F (t1)

)α+β−1

dx

β − α
. (25)
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Measure (25) is an extension of interval extropy and is known as ”doubly truncated generalized extropy of order α
and type β”.
Proposition 6.1. Providing that X is a continuous random variable. Then, from (24) and (25), we have

lim
α⇒1, β=1

CIJβ
α(X) = CIJ(X),

Proof
Using (25), with applying L’Hospital rule, we get

lim
α⇒1, β=1

CIJβ
α(X) = lim

α→1

−(t2 − t1 − 1)log(t2 − t1 − 1) + (t2 − t1 − 1) log
∫ t2
t1

(
1− f(x)

F (t2)−F (t1)

)α
dx

1− α

= lim
α→1

(t2 − t1 − 1)
∫ t2
t1

d
dα

(
1− f(x)

F (t2)−F (t1)

)α
dx

−
∫ t2
t1

(
1− f(x)

F (t2)−F (t1)

)α
dx

= lim
α→1

(t2 − t1 − 1)
∫ t2
t1

(
1− f(x)

F (t2)−F (t1)

)α
log
(
1− f(x)

F (t2)−F (t1)

)
dx

−
∫ t2
t1

(
1− f(x)

F (t2)−F (t1)

)α
dx

=−
∫ t2

t1

(
1− f(x)

F (t2)− F (t1)

)
log

(
1− f(x)

F (t2)− F (t1)

)
dx

=CIJ(X).

Remark 6.1
If β = 1 and α = 2, doubly truncated generalized extropy (25) of order α and type β have a relationship with
Interval extropy measure IJ(t1, t2) (Buono et al. 2021).

Proof
Putting β = 1 and α = 2 in equation (25) we get,

CIJβ
α(X) =(t2 − t1 − 1)log(t2 − t1 − 1)− (t2 − t1 − 1) log

∫ t2

t1

(
1− f(x)

F (t2)− F (t1)

)2

dx

=(t2 − t1 − 1)

[
log(t2 − t1 − 1)− log

∫ t2

t1

(
1 +

f2(x)

(F (t2)− F (t1))2
− 2f(x)

F (t2)− F (t1)

)
dx

]
=(t2 − t1 − 1) [log(t2 − t1 − 1)− log ((t2 − t1)− 2IJ(t2 − t1)− 2)]

(26)

7. Application

A letter-catching experiment is used to investigate the connection between generalized extropy and Information
theory. Hypothesize that each of the four buckets contains eight letters. ”AAAAAAAA” are letters in the
1st bucket, ”AAAABBCD” are the letters in 2nd bucket, ”AAABBBCD” are the letters in 3rd bucket, and
”AABBCCDD” are the letters in 4th bucket. Easily, someone can observe entropy in 1st bucket have less
uncertainty. But the difference between the 2nd, 3rd, and 4th is not easy just by observation. Renyi extropy,
Varma entropy, and generalized extropy are calculated for each bucket, probability distributions corresponding
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to buckets are P1 = [1, 0, 0, 0] P2 = [1/2, 1/4, 1/8, 1/8] P3 = [3/8, 3/8, 1/8, 1/8] and P4 = [1/4, 1/4, 1/4, 1/4]
respectively.
Calculated Renyi extropy for the parameter α = 2 is, Jα(P1) = 0, Jα(P2) = 0.7406, J̇α(P3) =
0.7808, and Jα(P4) = 0.8630.
Calculated Varma entropy and generalized extropy for the parameters α = 2, β = 2.5, are
Hβ

α(P1) = 0, Hβ
α(P2) = −2.0212, Hβ

α(P3) = −2.3613, Hβ
α(P4) = −3.0103.

Jβ
α(P1) =

−12 log 3 + 3 log 3

0.5
= −8.58812

Jβ
α(P2) =

−12 log 3 + 3 log[(1/2)3.5 + (3/4)3.5 + (7/8)3.5 + (7/8)3.5]

0.5
= −9.92588,

Jβ
α(P3) =

−12 log 3 + 3 log[(5/8)3.5 + (5/8)3.5 + (7/8)3.5 + (7/8)3.5]

0.5
= −10.16291,

and

Jβ
α(P4) =

−12 log 3 + 3 log[(3/4)3.5 + (3/4)3.5 + (3/4)3.5 + (3/4)3.5]

0.5
= −10.46226.

Calculated generalized extropy for the parameter α = 0.8, β = 1.1 are

Jβ
α(P1) =

−3.3 log 3 + 3 log(3)

0.3
= −0.477121,

Jβ
α(P2) =

−3.3 log 3 + 3 log[(1/2)0.9 + (3/4)0.9 + (7/8)0.9 + (7/8)0.9]

0.3
= −0.36099,

Jβ
α(P3) =

−3.3 log 3 + 3 log[(5/8)0.9 + (5/8)0.9 + (7/8)0.9 + (7/8)0.9]

0.5
= −0.35764,

and

Jβ
α(P4) =

−12 log 3 + 3 log[(3/4)0.9 + (3/4)0.9 + (3/4)0.9 + (3/4)0.9]

0.5
= −0.352182.

Some observations and calculated results are as follows:

• For the parameter α = 2, Renyi extropy is observed as Jα(P1) < Jα(P2) < J̇α(P3) < Jα(P4).
• For the parameters α = 2, and β = 2.5 such that α+ β > 2 Varma entropy and generalized extropy are

observed as follow,
Hβ

α(P1) > Hβ
α(P2) > Hβ

α(P3) > Hβ
α(P4),

and
Jβ
α(P1) > Jβ

α(P2) > Jβ
α(P3) > Jβ

α(P4)

.
• But for the parameter α = 0.8, and β = 1.1 such that α+ β < 2, generalized extropy is observed as

Jβ
α(P1) < Jβ

α(P2) < Jβ
α(P3) < Jβ

α(P4)

.

8. Conclusion

The concept of extropy has garnered significant recognition within the realm of information theory. Recently, the
generalized extropy measure has excellent performance in uncertainty measurement. In this article, the proposed
generalized extropy of order α and type β has been studied. At the same time, interval generalized extropy are
studied. A few numerical examples, theorems, and proofs are given in addition. A brief overview of some of this
paper’s key results has been given below.
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• Generalised extropy degenerates into Renyi extropy if the parameter β equal to 1.
• For |X| = 2, the generalized extropy and the Varma entropy exhibit equality.
• For n = 2, and α+ β> (<)2, Jβ

α(P ) and Hβ
α(P ) will be negative and positive respectively.

• For n ≥ 2, and α+ β = 2, Hβ
α(P ) is always zero. It is not for Jβ

α(P ).
• The value of uniformly distributed generalized extropy measure of order α and type β for discrete random

variable decreases as cardinality increases.
• Difference between Varma entropy and generalized extropy of order α and type β increases as cardinality

increases.

When assessing distributions without a trackable distribution, the generalised extropy measure (3.1) has limitations.
The quantile function can be used to define a probability distribution. In certain situations, quantile-based
generalized extropy measurements may prove beneficial for further research.
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