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Abstract In medical research, proportional hazard models are much more common, but accelerated failure time (AFT)
models are still widely used. Variables in the AFT model influence the event time by altering the logarithm of the dependent
variable’s survival time. The parametric forms typically utilized by AFT models are restricted and cannot be represented
otherwise. The selection of variables and parameter estimation for the Weibull distribution is a common practice. This
predictive approach is often applied in reliability studies in engineering and medical forecasts, particularly for estimating
survival time. Additionally, we present an empirical example using our prediction method on a publicly accessible dataset.
Sand cat swarm optimization (SCSO) is a new metaheuristic algorithm that mimics the survival behavior of sand cats. The
results reveal that SCSO outperforms other methods in terms of convergence speed and finds all or most local/global optima.
The SCSO algorithm is introduced to identify critical variables in the Weibull AFT regression model. Thus, variations of the
SCSO algorithm can be applied to address the Weibull AFT problem.
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1. Introduction

survival data is information sets that quantify the time until an event occurs. Some interesting variables include the
employment duration and heart transplant recipients’ survival rate. Any analysis involving such data must consider
certain factors [1, 2].

An event time variable that indicates how long it will take for a particular event to occur and makes up survival
data, as does a potential collection of independent variables that are hypothesized to be related to the failure time
variable. These independent variables, also known as concurrent variables, covariates, or prognostic factors, might
be continuous, like age or temperature, or discrete, like sex or race. As with most medical data, the system that
causes the event of interest might be biological or physical, as in the case of engineering data [3, 4]. The two
primary goals of survival analysis are modeling the failure time variable’s underlying distribution and evaluating
its reliance on the independent variables.

In both cases, the only rate of failure that is clearly apparent to be related to a given censored observation
is the lower boundary. It postulated that such observation is right censored. An extra variable is added to the
study to identify which failure times are censored and which are observed event times. More broadly, the failure
time may only be known to be inside a specific interval (interval-censored) or to be smaller than a set value
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(left-censored). In survival analysis, several potential censorship strategies surface. In addition to [5] discussing
several filtering systems, [6] examines some comparable censoring circumstances. Longer-lived persons are often
more likely to be right-censored, among other reasons; hence, data including censored observations cannot be
analyzed, disregarding the censored observations. The censoring must be considered in the analysis process, and
the censored and uncensored observations must be used appropriately. [2] applied AFT to patients with acute liver
failure in India, AFT survival models can provide the appropriate model for data if the researcher can determine an
appropriate survival time distribution.

AFT is a fully parametric model, allowing it to make conclusions that would be challenging in a non- or semi-
parametric framework, such as estimating tail probabilities. AFT models are linear mixed models that analyze
survival time data by applying a log transformation, accounting for censoring and capturing the correlation in
survival data. The compromise is that one must assume a particular survival time distribution, which may need to
be revised. According to the AFT model, a covariate’s impact will either speed up or slow down a disease’s course
by a certain amount. In AFT models, a covariate affects the full distribution of the response variable and the time
scale. On the other hand, in the Proportional Hazard (PH) models, the effect of covariate is in multiplicative sense
in terms of hazard rates [7]. Parametric survival models exist that do not necessitate the restricted assumption of
PH. Accelerated failure time (AFT) models provide benefits in interpretability, management of censored data, and
versatility in mediation analysis with survival results compared to proportional hazards (PH) models. Researchers
should take into account these distinctions when selecting the suitable model for their mediation analysis [4, 8].
Conditional models of Cox type and models of AFT are based on some basic assumptions that are the basis of
the connection between the survival and coincidence of the variables. Another common and rather flexible model
is the Cox model, which can be used assuming that the underlying assumption of proportional hazards is met.
The PH assumption requires all independent variables to be independent of time in the final model for the Cox
model to be used appropriately; in other words, the risk ratio of the event remains constant, although it happens
over a given period. The precision of this assumption will facilitate further investigation of the output classification
process, which will be more facilitated compared to the interpretation of parametric models [9]. AFT models are
beneficial for analyzing the distribution of survival times and are particularly helpful when the proportional hazards
assumption is not met [10]. Furthermore, parametric survival models offer several benefits, including the ability
to use complete likelihood to estimate parameters and provide estimates based on survival rather than outcome
hazards [2]. [11] recommend using AFT models as the recommended analytical tool for analyzing latency to the
platform in Multi-Walled Carbon Nanotubes on Morris water maze research by comparing AFT with the logistic
regression model and analysis of variance (ANOVA).

The Weibull distribution [12], whose application was started within the industrial field to carry out reliability
testing, is one of the most obvious probabilistic distributions capable of studying survival data. This distribution
is just as necessary to the parametric analysis of survival data as linear modeling’s normal distribution. The AFT
assumption is suitable for comparing survival times, while the PH assumption is suitable for comparing hazards
[13].

2. Regression Models for Survival Data

We need alternative regression models because using a linear regression model is not a feasible solution given
the nature of the data. Logistic regression models are used for binary outcomes that are nominal or ordinal.
Because baseline risks or survivor functions are not stated, proportional hazards and accelerated failure models are
semiparametric models. However, if the underlying probability distributions are provided, the accelerated models
can also be parametric [14].

Regression models for survival data are used to statistically analyze data in which the outcome variable is the
duration of time until a specific event occurs. The methodology of survival analysis can be extended to several
alternative scenarios, but common events include failure, relapse, and death. For survival data, the Cox Proportional
Hazards model and parametric survival models are the two main categories of regression models. The proportional
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hazard rate (PH) model is defined as follows:

h(tXi) = h0(t). exp(β1X1 + β2X2 + ...+ βpXp) (1)

Where h0(t) are defined as baseline hazard, β1, β2, ...βp are coefficient regression of the independent variable
X1, X2, ..., Xp.

The only difference between a parametric model and a semi-parametric model is that in the former, the
distribution of the survival time is known, and thus the model is capable of estimating risk factors in detail,
whereas, in the latter, the analysis stresses the covariates rather than the risk. Moreover, the parametric model
specification distinguishes itself from other models, including the non-parametric and semi-parametric models,
since it can determine the distribution of survival time by employing full maximum likelihood in estimating the
parameters, using residuals to measure the difference between observed and estimated survivor’s time values, and
give clinically useful estimates from the identified parameters [15, 16]. The failure time model with an accelerated
rate is:

Ln(Ti) = β0 + β1X1 + β2X2 + ...+ εi, i = 1, 2, ..., n (2)

Where ε is not specified, when ε is defined, an explicitly stated accelerated failure time model becomes a
parametric regression model. Tirepresent the failure time logarithm, it is composed of β1X1, β2X2, ..., βpXp

[17, 14, 18].

3. Weibull AFT

With the Weibull regression model is currently among the most commonly used parametric models, coefficients of
explanatory variables and the estimation of the baseline risk function are the outputs based on this methodology.
The application is not limited to reliability engineering studies only. One broad example is the prediction of time to
failure e. g., the machine’s lifetime, so that optimal preventive and corrective maintenance scheduling are achieved
leading to a maximum reliability of the entire plant [19]. Weibull AFT model helps in quantifying the relationship
among variables and failure time of events of interest using the Weibull distribution [18]. Because it is adaptable
in collecting multiple types of failure time data and can reflect a variety of hazard function shapes, the exponential
decay Weibull distribution is one of the functions of survival analysis that is often used.

The shape and scale parameters keep showing the relationship at this Weibull accelerated failure time (AFT).
The shape parameter assumes the constant attribute. The AFT model is the name of a transformation of response
variable from logarithmic or monotone, the time of failure. This model is a type of real linear regression model
[20, 21].

Here, they are the Weibull probability density function with two parameter distributions where the parameters
are the scale parameter λ, and the shape parameter α defines it [22, 23]:

f(t;α, λ) =
(λ/α) (t/α)

λ
e−(t/α)λ

(t/α)
where α > 0 , λ > 0 , t ≥ 0 (3)

Note that if α = 1 we get the exponential distribution exp ∼ (λ). In this case, the cumulative distribution function
(CDF) will be [24]:

F (t;α, β) = 1− e

(−t/α

)λ

(4)

For the Weibull distribution, the survival function is provided by [25, 26]: [26]:

δ(t) = 1− F (t)

= 1−
(
1− e(−t/α)λ

)
= e(−t/α)λ (5)

The hazard function depends on the value of α, since if α = 1 then [19]:
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ℏ(t) = (t)

δ(t)
= λα−1 (t/α)

λ−1 (6)

But for different α we get different hazards for α as follows [27]:

1. 0 < α < 1 Hazard is decreasing (1/t)
2. 1 < α < 2 Hazard is increasing

√
t

3. 2 < α Hazard is increasing tp

The instantaneous failure rate or hazard function, rises with time if α > 1. This is typical of a ”bathtub” curve, in
which failure rates are modest at first, rise over time, and then level out. A decreasing failure rate is indicated by
the hazard function decreasing over time if α < 1. The distribution becomes exponential when α = 1, the hazard
function remains constant over time [28]. The scale parameter λ affects the spread or scale of the distribution.
Larger values of λ compress the distribution horizontally, leading to shorter durations. Smaller values of λ stretch
the distribution, resulting in longer durations. Now suppose that:

ln(T ) = Xβ + σε (7)

Here ε follows the standard Gumbel distribution∼G(0, 1) and let λ = e−Xβ , then Eq. (3), (4), (5) and (6), will
be respectively [18]:

f
(
t;σ−1, eX

′β
)
= (1/σ)

(
eX

′β
)−1

(
t
(
eX

′β
)−1

)(1/σ)−1

exp

(
−
(
t
(
eX

′β
)−1

)1/σ
)
(1/σ) (8)

F
(
t;σ−1, eX

′β
)
= 1− exp

[
−
(
t
(
eX

′β
)−1

) 1
σ

]
(9)

δ
(
t;σ−1, eX

′β
)
= exp

[
−
(
t
(
eX

′β
)−1

) 1
σ

]
(10)

ℏ
(
t;σ−1, eX

′β
)
=

1/σ

eX′β

(
t
(
eX

′β
)−1

)(
1/σ

)
−1

(11)

The right-hand side of the equation in the Weibull AFT model represents the linear predictor, which connects the
scale parameter λ = e−Xβto the variables. Generally, it is assumed that the shape parameter remains constant for
every observation.

The coefficients represent the effects of the variables on the log of the survival time and, in turn, on the scale
parameter of the Weibull distribution β0, β1, ..., βp. By exponentiating the coefficients, you may ascertain how each
covariate influences the scale parameter and, consequently, the survival time.

When the underlying distribution of survival times is predicted to follow a Weibull distribution and researchers
are interested in learning how factors affect the time to an event, Weibull AFT models are frequently utilized
in survival analysis. These models can show how different elements relate and how event timings accelerate or
decelerate [29].

4. Sand Cat Swarm Optimization

It is one of the six species of the genus Felis. The sand cat (Felis margarita) is one of the tiniest wild cats. Sand
cats are found in arid regions with stony and sandy surfaces, like the Arabian Peninsula, central Asia, and Africa.
Although there isn’t much of an aesthetic distinction between sand cats and domestic cats, sand cats have different
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living behavior. The sand cat has more densely packed sandy to light grey fur on its hands and soles of its feet. The
small, agile, and reticent sand cat exhibits distinct behavior in both hunting and dwelling [30].

A mature sand cat can weigh anywhere between one and three kilograms. The sand cat has a length of 45 to 57
centimeters on its body, with small legs next to the frontier claws, which are short and strongly curled. The tail
measures between 28 and 35 centimeters, which is nearly half the length of the head and body. The rear claws have
a weaker curvature and are longer. The sand cat’s ears, which are 5-7 centimeters long on the sides of the head,
play a significant role in its ability to forage. The fur covering on its feet protects the pads from the extreme heat
and cold of the desert.

Additionally, the sand cat’s fur characteristics make tracking and detection challenging. This cat is unique
because it is nocturnal, underground, and secretive [31].

They use food as a source of water to ward against thirst. Most of the time, these cats lie on their backs in their
burrows to dissipate body heat. Even though they face challenges in the desert, sand cats discover that the cold
nighttime temperatures help them locate food. Like the Felis family, the sand cat utilizes its paws for hunting. They
are skilled hunters who consume small rodents from the desert, reptiles, small birds, spiny mice, insects, and snakes
[32]. The sand cats can identify subterranean rodents and insects as their prey. Sand cats have an intriguing hunting
strategy; they employ their keen sense of hearing to detect low-frequency vibrations. In the outer ear, domestic cats
and sand cats are the same. When it comes to the middle ear, sand cats’ ear canals are longer than domestic cats’,
resulting in a lot of air space there.

Therefore, the smart cat, which looks for the prey and moves quickly to capture it, has the best acuity to smell the
hidden game subjects, and they are also sensible for frequencies below 2 kHz [33]. When the animal picks up the
speed of sound, it is used at the tackle stage of either hunting or fighting to find fish. In deer mice, each call from the
partner makes all their shocking tendrils penetrate into the nervous system just to receive another palpable. Hence,
being in a prime position allows the sand cat to keeplesant, where he can obtain the most prey types. Furthermore,
they are outstanding in tracking both prey below the ground and the ground with the help of their huge ability to
acquire food. Such a wonderful feature supports them in carrying out their tasks quickly, including detecting and
apprehending any suspects. As the authors of the suggested algorithm considered wild sand cats naturally being of
a solitary nature, the idea of herd behavior was taken into account in order to emphasize that the tagging procedure
has implemented the concept of swarm intelligence governing this process [34].

Nature-inspired optimization algorithms (NIOA) [33, 35] are employed in wrapper approaches as search
strategies to find informative features that have been applied to address a variety of optimization issues, including
technical issues [36, 37], feature selection [38, 39] and power transformer fault diagnosis [40].

Figure 1. Sand Cat Swarm in Nature

4.1. Model and Methods

Since there are Nsand cat individuals (solutions) in the population of SCSO, each of which has D dimensions, the
population vector in SCSO comprises a N ×D dimensional matrix. For every sand cat, the answer is represented
by Xi = (xi1, xi2, ..., xid). The SCSO algorithm’s hearing ability is advantageous when detecting sand cats at low
frequencies. Therefore, it is believed that the sand cat’s sensitivity range begins at 2 kHz and ends at 0 in order to
look for prey. Let’s represent the sensitivity level in SCSO as follows:

rg = δM −
(
δm × t

T

)
(12)
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Suppose that δm = 2, as it is derived from the sand cats’ auditory features, t is the current iteration, and T is the
upper limit of repetitions. The trade-off between the exploration and exploitation phases is established by the R
parameter, which is calculated as follows:

R = ((rg × 2)× rand(0, 1))− rg (13)

Using rand(0, 1) to get a random number between 0 and 1. The coordinates of the sand cat in the search space
at iteration are denoted by the position vector of that sand cat: The potential of a given solution to the customer
across the sensitivity spectral range is as defined by r value and formula:

r = rg × rand(0, 1) (14)

The value of R ∈ [1,− 1], determines where the sand cat will go next. The SCSO method is based on the
procedure of using stimulation and leading it to chase after its target when |R| is less than or equal to 1. The
mathematical expression for prey exploitation in SCSO is as follows:

Xrand = |rand(0, 1)×Xbest −X (t)| (15)

Where Xrand determines the separation in the associated iteration t between the current position X (t) and the
best position Xbest. For the associated search agent X , the location update is shown in Xt+1 as follows:

Xt+1 = Xbest − rand (0, 1)×Xrand × cos(θ) (16)

There is a fact that discernment of the sand cats cannot be done without the special micro circles. A random angle
θ selected from a roulette wheel determines (between 0 and 360◦( the direction of each movement. Consequently,
the mathematical representation of pursuing prey (exploration) is [41]:

cp = floor (N × rand (0, 1) + 1) (17)

XCandidate (t) = X (cp, :) (18)

Xt+1 = r × (XCandidate (t)− rand (0, 1)×X (t)) (19)

XCandidate (t)denotes a candidate position that is randomly selected.
The pseudo-code of SCSO Algorithm is [39]:

1. N=number of population and T=Max number of iterations
2. Establish the sand cat population Xi

3. While t ≤ Tdo
4. Determine the fitness of each sand cat by evaluating the objective function
5. Determine Xbest

6. Determine rgwhen sM = 2
7. For i = 1 to N do
8. Calculate R and r
9. For j = 1 to D do

10. Using the Roulette wheel selection method, a value 0 ≤ θ ≤ 360 is chosen randomly
11. if ((−1 <= R)&& (R <= 1)) then
12. Xrand =

∣∣rand (0, 1)×Xbest,j −X(i,j)

∣∣
13. X(i,j) = Xbest,j − rand (0, 1) ∗Xrand ∗ COS (θ) // update position using (16)
14. else
15. cp = floor (N ∗ rand (0, 1) + 1)
16. Xcandidate = X (cp, :)
17. X(i,j) = r ×

(
Xcandidate,j − rand (0, 1)×X(i,j)

)
//update position using (19)

18. End if
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19. End for
20. End for
21. t = t + 1
22. End While

Return Xbest

Figure 2. The flowchart of SCSO

Table 1. A simple example

x1 x2 x3 xp−1 xp
0 1 0 0 1

5. The Proposed approach

Because of their many useful characteristics, including ergodicity, mixing property, and sensitivity to beginning
circumstances, nonlinear chaotic maps in chaotic systems are significant in the fields of engineering, biology, and
economics. In this paper, we use SCSA to carry out the feature selection. An optimization problem with a search
on interval [0,1]. In order to enhance SCSA performance, chaotic maps are taken into consideration in this paper.
It is believed that chaotic maps allow SCSA to be freed from the trapping of local optima, which would help
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Figure 3. The arrangement of simulated opposing and reflecting points inside the search area

achieve a faster convergence of the selection of variables in the Weibull model. This paper uses ten chaotic maps,
the random parameter values of SCSA are manipulated employing these chaotic maps. Due to the potential impact
of initial values on the fluctuation pattern, we have standardized the initial point for all chaotic maps to 0.7, while
keeping the remaining parameters unchanged. Any of the features could be declared as binary decision variables
that indicate the degree to which a particular feature is relevant within the context of the model [42]. For the
purpose of the current consideration, let it be defined that we have a vector consisting of D elements, which would
be the complete set of features, DIf using the vector model, any component of a vector represents a feature, and if
selecting the feature, it equals ‘1’ whereas if non-selected, it equals ‘0’. Therefore, the SCSO approach will be more
suitable for the continuous space, which characterizes the definition of feature selection as an optimization problem
rather than the discrete space. Realizing this, we must stipulate that S is discrete. Therefore, the configuration of
our suggested method is as follows:

Step (1): The number of cats is ηc = 40, φ0 = 1 ”where φ0represents the attractiveness at 0 ”α = 0.1”, α is the
randomization parameter” and the upper limit of iterations is tmax = 200.

Step (2): The cats’ positions in the original SCSO are produced following a continuous uniform distribution on
the interval [0,1]. The proposed chaotic maps utilize the maps outlined in Table 1.

Step (3): The fitness function is formally defined as:

fitness = min

[
1/n

(
n∑

i=1

(yi − ŷi)
2

)]
(20)

Step (4): update of the position of cats Coordinates depends on Eq (16).
Step (5): Steps 3 and 4 are iterated until a tmax is reached.
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Table 2. The Description of Chaotic Maps

Name Definition Range
Chebyshev xK+1 = cos

(
1
K
cos−1 (xK)

)
(-1,1)

Circle xK+1 = mod
(
xK + 0.2− 0.5

2π
sin (2πxK) , 1

)
(0,1)

Guass/mouse xK+1 =

{
1 xK = 0
1/mod (xK, 1) otherwise

(0,1)

Iterative xK+1 = sin ((0.7)π/xK) (-1,1)
Logistic xK+1 = (1− xK) 4xK (0,1)

Piecewise xK+1 =


xK
0.4

0 ≤ xK < 0.4
xK−0.4

0.1
0.4 ≤ xK < 0.5

0.6−xK
0.1

0.5 ≤ xK < 0.6
1−xK
0.4

0.6 ≤ xK < 1

(0,1)

Sine xK+1 = sin (πxK) (0,1)

Singer xK+1 = 1.07
(
7.86xK − 23.31(xK)2

)
+

28.8(xK)3 − 13.30288(xK)4
(0,1)

Sinusoidal xK+1 = 2.3xKsin (πxK) (0,1)

Tent xK+1 =

{ xK
0.7

xK < 0.7
10
3

(1− xK) xK ≥ 0.7
(0,1)

6. Simulation Results

We used various regularization techniques in conjunction with the AFT approach to conduct the simulation studies
(SCSO, Elastic net, Lasso, L1/2, and MCP) [43] to assess their predictions’ accuracy. Bender’s work served as the
model for the AFT model simulation schemes. The following is how our simulation data were produced [44]:
Step (1): Calculate the correlation coefficientρand build an array δ0, δi1, δi2, ..., δip where i = 1, 2, ...,n are
independent following standard normal distribution, and set:

xij = δij
√

1− ρ+ δi0
√
ρ

Where j = 1, 2, ...,p.
Step (2): The independent Survival time yias follow:

yi = exp

(
p∑

j=1

βijxij

)

Step (3): Let y′i where i = 1, 2, ...,mand mis the number of the censored sample follow a random distribution. The
number of censored data is determined by the censoring rate.
Step (4): suppose that yi = min (yi, y

′
i), Therefore, the values of yi, δi (where δi is the survival function of the

Kaplan-Meier estimator), and xi are considered as the observed data and are utilized in the AFT model.
Since our simulation depends on Leukemia cancer data, we establish the size or scale of the predictor genes with

p = 1000, and there are eight non-zero of the remaining coefficients β1 = 1.5, β2 = 1.1, β3 = 0.81, β5 = 3.5,
β9 = 4.6, β10 = −1.7, β11 = 0.5and β13 = 1.3, the remaining coefficients 992 genes are equal to zeros. Note
that x1, x2x3, x5, x9, x10, x11 and x13 are important variables. The right censored (C) value is set at 10%,
20% and 40%, the training sample size is determined by three conditions n = (100, 300, 500), with correlation
coefficientρ = 0.4.As a technique to optimize fidelity, a model supported by different regularization regulations
can be tested on 50 data sets for a training set and then to obtain a prediction on a testing set consisting of 50 data.
For instance, each outcome of those operations was computed based on the 200 out-turn after opening 200 doors.

The data represents the mean performance for the Total # of features and the Correct # of features chosen by each
regularization approach. These 200 iterations indicate the performance accomplished in 200 repeated experiments.

Outcomes average, to be precise, the total of selected features and the number of correct features are shown in
Table (1) for the candidates of the beach regularization approach alongside 200 repeated tests.

When the training sample size is extremely limited (n=50), all of the techniques proved to be quite challenging
in accurately identifying the appropriate genes. As the value of n increases, the ability to identify more accurate
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non-zero features also increases. When =0, all the approaches exhibit superior performance compared to when
=0.3.

An assessment of the results achieved by the SCSO maps is made. Furthermore, the proposed system has all
its performance measures evaluated against that of the existing SCSO. In this case, the performance quality is
evaluated with mean-squared error (MSE) on both the training and testing databases, as well as the number of
chosen variables. The identified themes’ details are presented in tables 2 & 3 below.

Table 3. The performance of the used methods for the train data when n = 100

Method No. of
selected
variable

MSE No. of
selected
variable

MSE No. of
selected
variable

MSE

C=10% C=20% C=40%
SCSO 27 4.658 27 5.858 27 7.558
Chebyshev 23 4.381 23 5.611 23 7.311
Circle 20 4.124 20 5.224 20 7.124
Guass/mouse 22 4.551 22 5.821 22 7.601
Iterative 25 4.381 25 5.631 25 7.331
Logistic 26 4.711 26 6.011 26 7.812
Piecewise 19 3.864 19 4.994 19 6.694
Sine 17 3.646 17 4.946 17 6.646
Singer 13 3.442 13 4.142 13 5.842
Sinusoidal 14 3.580 14 4.625 14 6.325
Tent 11 3.124 11 4.324 11 6.024

Table 4. The performance of the used methods for the train data when n = 300

Method No. of
selected
variable

MSE No. of
selected
variable

MSE No. of selected variable MSE

C=10% C=20% C=40%
SCSO 27 3.558 27 4.548 27 6.248
Chebyshev 23 3.321 23 4.221 23 6.221
Circle 20 3.014 20 4.114 20 6.114
Guass/mouse 22 3.141 22 4.041 22 5.741
Iterative 25 3.231 25 4.131 25 5.331
Logistic 26 3.591 26 4.613 26 6.313
Piecewise 19 2.824 19 3.694 19 5.394
Sine 17 2.436 17 3.336 17 5.036
Singer 13 2.342 13 3.242 13 5.042
Sinusoidal 14 2.488 14 3.299 14 5.147
Tent 11 2.124 11 3.024 11 4.724

Furthermore, it is evident that the Tent map achieves the lowest Mean Squared Error (MSE) compared to the
other chaotic maps utilized. Compared to the SCSO, the Tent map exhibited a decrease of approximately 32.932%-
20.291%, 40.303%-24.392% and 58.34%-47.63% from tables 1,2 and 3, respectively.

7. Real application

To evaluate the efficiency of the proposed strategy, using the genes dataset of a real-world case study is
recommended. Table 6 condenses the entire content, datasets, and their justification for this study. First and
foremost, the data set used is the Diffuse large B-cell lymphoma dataset (DLBCL) [45]. There are a total of
240 samples from people with lymphoma. Each patient’s data comprises 7399 gene expression measures and their
corresponding survival time, whether censored or not. The second data collection is the Dutch breast cancer dataset
(DBC), which has 79 instances with 30 features. It is a dataset of the 295 treatments administered to breast cancer
patients. The molecular profile of every patient has 4919 gene expression readings. They also generated RNA-Seq

Stat., Optim. Inf. Comput. Vol. 13, May 2025



AHMED NAZIYAH ALKHATEEB, QUTAIBA N. NAYEF AL-QAZAZ 2115

Table 5. The performance of the used methods for the train data when n = 500

Method No. of
selected
variable

MSE No. of
selected
variable

MSE No. of
selected
variable

MSE

C=10% C=20% C=40%
SCSO 27 2.458 27 3.158 27 4.055
Chebyshev 23 2.221 23 3.121 23 3.321
Circle 20 2.014 20 2.714 20 3.114
Guass/mouse 22 2.141 22 3.241 22 3.241
Iterative 25 2.231 25 2.931 25 3.331
Logistic 26 2.511 26 3.211 26 3.711
Piecewise 19 1.724 19 2.424 19 4.114
Sine 17 1.336 17 2.036 17 2.436
Singer 13 1.242 13 2.042 13 2.342
Sinusoidal 14 1.438 14 2.138 14 2.498
Tent 11 1.024 11 1.724 11 2.124

profiles of the patient’s tumors [46]. The third class is cancer of the lung (LC). The data is a record of 86 patients
who have been diagnosed with lung cancer. The expression level data of a particular gene is 7129, and it also covers
survival time, such as alive or censored [47].

Table 6. The specifics of the three utilized authentic microarray datasets

Dataset Sample Gene Censored
DLBCL 240 7399 102
DBC 295 4919 207
LC 86 7129 62

Akaaki’s criterion (AIC) and Bayes’ criterion (BIC) [48] will be used as methods for selecting variables
according to formulas [49]:

AIC = 2k − 2log(L)

BIC = 2Log(L)− k × Log(n)

Where kequal to the number of explanatory variables.
By comparing the proposed model to AIC and BIC, we shall exhibit efficiency. The step to execute this is to

divide the expressions of genes in each dataset into a training and an unseen dataset by random and selecting 70% of
the data for the training dataset and the rest 30% for testing dataset. The evaluation of our algorithm for predicting
the results is done by using time-dependent receiver-operator characteristics curves (ROC) for the censored data
and area under the curve (AUC) A Table 6 summarizes the fact that world application is the main pillar in the
real-life results.

Table 6 contains the average scores of the three real-world datasets used and the methods used to implement
them. This evidence is enough to infer that, given that AIC selects many more genes than the BIC and the SCSO,
there already exist huge differences between the three approaches. From the 3 applications, the SCSO then chose
the fewest genes in the last subset.

This provides a reference for the model performance evaluation where the mean AUC of the two kinds of data
is provided to compare and show the relationship of both training and testing datasets. Tables 3 and 4 demonstrate
their embodiment of the objective (standpoint for interval measurements) and a subjective (perceived distance)
distance. The results demonstrated that the Sine map, with accuracy levels of 97.7% for DLBCL, 98.6% for DRBC,
and 98.9% for LC datasets, respectively, achieved the highest precision; the map Singer came in second place in
terms of its efficiency with a percentage 95.2% for DLBCL, 97.9% for DRBC and 98.2% for LC, Eventually, the
tool to quantify the performance was settled on by an AUC metric (the result optimal of the tool with a crucial
purpose). Accordingly, it could be safely concluded that the supremacy of the multilayer perceptron is derived
from the fact that the AIC and BIC were calculated in nearly the same ways across the datasets, which did not
show different performances. Then SCSO’s I-HO ”contribution” is expected to be more superb than AIC’s.
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Table 7. The outcomes of the chosen genes

DLBCL DBC LC
AIC 98 75 82
BIC 77 59 73
SCSO 31 27 21
Chebyshev 25 23 21
Circle 22 20 18
Guass 23 22 19
Iterative 26 25 19
Logistic 27 26 24
Piecewise 20 18 16
Tent 18 15 13
Singer 14 13 11
Sinusoidal 15 13 12
Sine 12 9 8

Table 8. The outcomes of the chosen genes

DLBCL DBC LC
AIC 0.874 0.879 0.881
BIC 0.881 0.895 0.961
SCSO 0.901 0.923 0.940
Logistic 0.908 0.928 0.951
Iterative 0.912 0.932 0.953
Chebyshev 0.918 0.939 0.958
Guass 0.927 0.947 0.967
Circle 0.929 0.951 0.969
Piecewise 0.934 0.956 0.971
Tent 0.937 0.962 0.973
Sinusoidal 0.944 0.967 0.978
Singer 0.952 0.979 0.982
Sine 0.977 0.986 0.989

Table 9 presents the results of the test data set to prove the superiority of the proposed method over the remaining
methods in terms of AUC. The Sine is a network with the biggest AUC at 93.2%, 96.2% and 98.9% in DLBCL,
DBC and LC datasets, respectively.

Table 9. The AUC results for the testing dataset

DLBCL DBC LC
AIC 0.736 0.785 0.791
BIC 0.759 0.801 0.871
SCSO 0.776 0.829 0.851
Logistic 0.784 0.832 0.868
Iterative 0.787 0.838 0.869
Chebyshev 0.793 0.851 0.871
Guass 0.802 0.853 0.877
Circle 0.808 0.856 0.879
Piecewise 0.819 0.867 0.881
Tent 0.826 0.878 0.885
Sinusoidal 0.879 0.882 0.910
Singer 0.897 0.885 0.942
Sine 0.932 0.962 0.989

This was proof that the Sine, Singer, Sinusoidal, Tent, Piecewise, Circle, Guass, Chebyshev, Iterative and Logistic
maps was highly accurate, respectively, in identifying the ones who were actually at risk of having cancer with a
greater than 0.95 probability.

For more comparison. Our proposed method, ”Sine”, was compared with other classic feature selection methods,
such as the Least Absolute Shrinkage and Selection Operator (LASSO) and Adaptive Least Absolute Shrinkage,
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additionally other metaheuristic algorithms such as Particle Swarm Optimization (PSO) and Genetic Algorithms
(GA); these comparisons are explained in Table 10 as follows:

Table 10. The AUC results for the testing dataset

DLBCL DBC LC
Sine 0.932 0.962 0.989
LASSO 0.605 0.697 0.735
ALASSO 0.718 0.789 0.841
PSO 0.817 0.849 0.905
GA 0.894 0.907 0.945

From Table (10) above, we note that the proposed algorithm (Sine) strongly outperformed the classical methods
and was better than the PSO algorithm and the GA algorithm, which came in second place according to the AUC
criterion, followed by the PSO algorithm.

8. Conclusion

Selection variables influence quality biases in Weibull AFT compliance models. For feature selection, this paper
employed a swarm of Sand cat optimization algorithms across ten architectural styles as a possible alternative.
Simulations and real data visually illustrated the superior performance of the proposed algorithms in terms of MSE
on training data. Furthermore, it highlighted that the importance in this scenario exceeded all other factors.
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