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Abstract This systematic review examines the emerging role of Artificial Intelligence (AI) in planning and optimizing
treatment for Non-Small Cell Lung Cancer (NSCLC). Focusing on patient-tailored therapy planning and enhancing treatment
efficacy through advanced deep learning algorithms, we meticulously selected and analyzed thirteen high-quality research
studies demonstrating AI’s integration in NSCLC management. These studies show the ability of AI to process complex
clinical, radiomic, and genomic data to provide personalized therapy plans.
AI technologies, such as deep learning models and machine learning, have shown exceptional promise in predicting
immune responses to initial treatments, potentially revolutionizing the management of NSCLC. This review highlights
AI’s transformative impact on predicting treatment outcomes, optimizing therapy regimens, and improving decision-making
processes in NSCLC treatment. The collective findings from these studies reveal a significant trend towards personalized
medical approaches, showcasing AI’s remarkable capacity to handle extensive datasets and forecast individual patient
reactions. This reassures us about the efficiency of AI in managing complex information, thereby increasing treatment
efficacy and improving patient health outcomes. However, this review also underscores the pressing need for further research
and development in AI applications, highlighting the urgency and importance of this field. Integrating AI into NSCLC
treatment marks a new era of precision cancer care, paving the way for more accurate, efficient, and patient-centered care.
The challenges and limitations identified in this review serve as a call to action, urging the oncology community to continue
pushing the boundaries of AI in cancer care.
This review aims to identify the most advanced and effective technologies, enabling oncology researchers and healthcare
professionals to utilize these tools without having to search through various available sources. This approach aims to
streamline access to crucial information, allowing practitioners to focus on recent advancements. For this reason, the study
concentrates on the last two years, which have been marked by significant integration of AI into precision medicine.
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1. Introduction

Artificial intelligence is making significant inroads in healthcare, and its role in the fight against lung cancer is
particularly noteworthy. Lung cancer is a powerful argument for the incorporation of AI-driven solutions because it
is the leading cause of cancer-related deaths worldwide [1, 2]. AI can revolutionize the field, impacting diagnosis,
treatment, and patient outcomes. In this discussion, we explore the transformative impact of AI in lung cancer,
delving into key areas such as early detection, image analysis, predictive modeling, treatment planning, and
monitoring, all of which contribute to the evolving landscape of lung cancer care.
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1.1. Lung cancer statistics

Lung cancer is a significant public health issue, and its statistics can provide insight into its prevalence, risk factors,
and impact on society.
Lung cancer is one of the most frequently diagnosed cancers globally, marked by disturbingly high rates of
incidence and mortality [3]. In 2020 alone, it was estimated that there were 2.2 million new cases of lung cancer
worldwide [4], making it the most widespread type of cancer. Moreover, lung cancer accounted for approximately
12% of all cancer cases, but it represented 21% of all cancer deaths, highlighting its significance as a global health
concern [5].

The mortality rate associated with lung cancer is distressingly high, primarily due to frequent diagnosis in an
advanced stage when treatment options are limited. In 2020, lung cancer remained the leading cause of cancer-
related deaths worldwide, claiming an estimated 1.8 million lives [6]. According to the World Cancer Research
and Fund International organization, ten countries have the highest lung cancer incidence rates in 2020. There
were 2,206,771 cases globally, with an age-standardized rate (ASR) of 22.4 per 100,000 individuals. Hungary
topped the list with 10,274 cases and an ASR of 50.1, followed by Serbia with 8,048 cases at an ASR of 47.3.
France (including New Caledonia) and French Polynesia reported significantly lower absolute numbers (166 and
144 cases) but had high ASRs of 42.9 and 40.4. Turkey presented a more significant number of cases (41,264)
with an ASR of 40.0. Montenegro, Belgium, Bosnia and Herzegovina, North Korea, and Denmark also featured
on the list, with cases ranging from a few hundred to over ten thousand. However, all had high ASRs, indicating a
significant impact on lung cancer in these countries [7]. Historically, lung cancer has exhibited gender disparities,
primarily affecting men. However, changes in smoking habits have led to a narrowing of this gap. In some regions,
lung cancer incidence in women has even surpassed that in men, highlighting the changing dynamics of this disease.
Worldwide, 15,124,771 people have been affected by lung cancer, including 14,353,943 men and 770,828 women.
Figure 1 displays the incidence of lung cancer in the two countries with the highest rates, Hungary and Serbia, for
both men and women.

Figure 1. Incidence of lung cancer in Hungry and Serbia for both men and women.

The data in Table 1 depicts lung cancer incidence and mortality rates in different regions, broken down by age and
gender (female and male). Rates vary significantly from one region to another, and some regions show substantially
higher rates than others. For instance, Oceania, encompassing Australia, New Zealand, and Micronesia, exhibit
some of the highest rates, while Western Africa and Southeast Asia have lower rates. Overall, lung cancer incidence
and mortality rates tend to be higher in men than in women. However, it is essential to note that in certain regions,
female rates are significantly elevated, possibly due to smoking habits and other risk factors.
Lung cancer development is significantly influenced by age. The likelihood of contracting this disease increases
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with age; most cases are diagnosed in people 65 years or older. This age-related risk underscores the importance
of early detection and prevention, particularly among older populations. Smoking is the main risk factor for lung
cancer [8]. An estimated 85% of lung cancer cases are believed to be caused by smoking [9]. The carcinogens
and toxins present in tobacco smoke can lead to genetic mutations and cellular damage, increasing the likelihood
of cancer development. Additionally, exposure to secondhand smoke poses a significant risk, making smoking
cessation crucial for not only smokers but also those in close contact with them. Occupational exposure to
carcinogens, such as asbestos and radon, can also contribute to lung cancer. Workers in specific industries, such as
construction and mining, are at increased risk due to their exposure to these hazardous substances.

Table 1. Estimated age-standardized (per 100 000 persons) mortality rates (World) in 2020, lung cancer, both sexes, all
ages[7].

Female Male
Age 0-14 15-29 30-44 45-59 60+ 0-14 15-29 30-44 45-59 60+
Australia and New Zealand 0 0.03 1.1 17.9 98.6 0 0.03 0.86 20.6 143.9
Caribbean 0 0.18 1.4 14.5 78.8 0.06 0.19 2.1 24.0 157.0
Central America 0.02 0.13 0.82 4.7 24.3 0.02 0.26 0.69 6.1 47.6
Central and Eastern Europe 0.00 0.11 1.5 15.7 61.9 0.01 0.25 3.2 67.1 284.4
Eastern Africa 0.00 0.08 0.56 4.6 17.5 0.01 0.11 0.75 6.0 25.4
Eastern Asia 0.01 0.22 2.9 24.1 123.3 0.00 0.36 4.7 50.7 283.5
Melanesia 0 0 0.49 9.7 58.6 0 0.13 0.84 19.9 110.8
Micronesia 0 0 0 31.2 164.0 0 0 6.8 50.4 375.7
Middle Africa 0 0.03 0.46 3.3 9.8 0 0.09 0.84 4.7 20.9
Northern Africa 0.01 0.18 0.87 5.7 18.5 0.01 0.17 2.4 33.2 109.6
Northern America 0.02 0.05 0.62 22.1 122.3 0.01 0.08 1.5 23.4 167.4
Northern Europe 0 0.06 1.3 18.7 131.7 0 0.08 0.56 22.8 178.8
Polynesia 0 0 4.6 28.9 130.6 0 0 1.7 61.4 316.2
South America 0.04 0.17 1.2 14.0 60.9 0.03 0.26 1.5 16.8 113.9
South-Central Asia 0.01 0.19 1.2 6.2 17.6 0.02 0.21 1.8 17.5 52.3
South-Eastern Asia 0.01 0.11 1.7 12.9 55.4 0.01 0.22 4.1 35.5 159.6
Southern Africa 0.03 0.12 0.98 12.2 55.1 0.04 0.34 2.4 41.3 153.8
Southern Europe 0.01 0.05 1.5 24.0 72.1 0 0.16 1.8 43.2 245.2
Western Africa 0.00 0.04 0.21 2.6 10.9 0.01 0.04 0.48 4.1 17.5
Western Asia 0 0.18 1.6 12.0 50.1 0.00 0.22 1.9 44.5 283.3
Western Europe 0.01 0.02 2.0 30.9 106.1 0.01 0 1.6 52.3 217.6

Thus, workplace safety measures and regulations are essential for reducing these risks. The development of
lung cancer may be influenced by genetic factors [10]. Some individuals may have genetic predispositions that
make them more susceptible to the disease. Genetic research is ongoing to identify specific genes associated with
lung cancer, which could aid in early detection and personalized treatment strategies [11]. Small cell lung cancer
(SCLC) and non-small cell lung cancer (NSCLC) represent the two primary subtypes of lung cancer, with NSCLC
being the more common of the two, accounting for approximately 85% of all lung cancer cases [12].It encompasses
several subtypes, each with its unique characteristics and treatment options. Although less common, SCLC is often
more aggressive and has a higher likelihood of spreading to other body parts.

The provided CT scan images shown in Figure 2 display cross-sectional views of the abdomen of a patient
diagnosed with non-small cell lung cancer (NSCLC). A clear presence of ascites indicates an abnormal fluid
accumulation within the peritoneal cavity. This finding is often associated with advanced malignancies and suggests
metastatic progression of lung cancer. The images also show changes in soft tissue density, consistent with tumor
involvement, which further supports the diagnosis of advanced-stage cancer. Various abdominal organs, including
the liver and kidneys, are visible in the scans, but a detailed evaluation would be necessary to identify specific
metastatic involvement in these organs.
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Table 2 illustrates lung cancer incidence and mortality rates in various regions, revealing significant disparities.
High incidence and mortality rates are evident in several Pacific Island nations, Central and Eastern Europe, and
parts of Asia, emphasizing the substantial burden of lung cancer in these areas. In contrast, some regions, such as
Southern and Northern Europe, North America, Australia, and New Zealand, exhibit comparatively lower rates.
These variations can be attributed to a complex interplay of factors, including smoking prevalence, occupational
exposures, healthcare infrastructure, and public health interventions. These statistics underscore the need for
comprehensive strategies to control lung cancer, including prevention and early detection measures, as well as
effective anti-smoking campaigns, to mitigate the impact of this major contributor to cancer-related morbidity and
mortality.

(a) Axial CT Scan of the Abdomen Showing Ascites and
Intestinal Structures

(b) Axial CT Scan of the Abdomen Highlighting Ascites
and Abdominal Structures

Figure 2. Comprehensive CT Imaging of the Thoracic and Abdominal Regions in a Patient with NSCLC and Associated
Ascites

The stage at which lung cancer is diagnosed has a significant impact on survival rates. Early stage lung cancer
has a much higher chance of successful treatment and long-term survival. Unfortunately, most cases are diagnosed
at advanced stages, leading to lower survival rates.
For localized lung cancer (confined to the lungs), the 5-year survival rate is 56% [13]. If the cancer has spread
regionally (to nearby lymph nodes or tissues), the survival rate drops to 31%. When lung cancer has reached a
distant stage (spread to other organs), the 5-year survival rate is a stark 6%.

Table 2. Estimated age-standardized (per 100 000 persons) incidence and mortality rates (World) in 2020, lung cancer, all
ages[7].

Region Male Female
Incidence Mortality Incidence Mortality

Polynesia 53.0 44.3 21.7 19.5
Micronesia 51.3 50.1 24.6 22.7
Central and Eastern Europe 49.0 42.0 11.6 9.5
Eastern Asia 48.1 39.7 22.1 17.8
Southern Europe 43.1 33.8 16.4 11.8

Continued on next page
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Table 2 – Continued from previous page
Region Male Female

Incidence Mortality Incidence Mortality
Western Asia 41.7 38.3 8.7 7.6
Western Europe 41.7 32.1 25.0 16.7
Northern America 35.7 22.2 30.1 16.9
Northern Europe 33.3 23.2 26.8 17.5
World 31.5 25.9 14.6 11.2
Australia and New Zealand 28.1 19.1 22.7 13.7
Southern Africa 27.5 23.6 9.3 8.1
South-Eastern Asia 26.4 23.7 9.6 8.4
Caribbean 23.0 21.3 13.0 11.1
Northern Africa 19.5 17.5 3.5 3.1
South America 17.8 15.4 10.3 9.1
Melanesia 17.4 15.4 9.2 8.0
South-Central Asia 9.7 8.8 3.5 3.1
Central America 6.7 6.4 4.0 3.6
Eastern Africa 4.2 3.9 3.0 2.7
Middle Africa 3.4 3.2 1.8 1.7
Western Africa 2.8 2.6 1.8 1.6

These statistics underscore the importance of early detection and the need for improved screening and diagnostic
methods. The statistics surrounding lung cancer underscore the urgency of addressing this disease through
prevention, early detection, improved treatment options, and support for those affected.

The flowchart, illustrated in Figure 3, delves into the comprehensive treatment process tailored to address these
challenges. By mapping out each phase of treatment, from initial diagnosis to recurrence management, this flow
chart provides a systematic approach to improving patient outcomes in light of the complex statistical backdrop. It
presents a structured, sequential overview from the initial diagnosis to managing disease recurrence or progression.
Initial Diagnosis: This stage includes the imaging and biopsy procedures necessary to establish an initial diagnosis.
Staging and Assessment: Following the initial diagnosis, further detailed evaluations using techniques such as
Computed Tomography (CT), Positron Emission Tomography (PET), and Magnetic Resonance Imaging (MRI) are
performed to determine the cancer’s stage. Treatment: Depending on the stage and individual characteristics of
the cancer, treatment may include surgery, chemotherapy, radiotherapy, and AI-assisted interventions. Follow-Up:
Patients enter a follow-up phase after initial treatment to monitor side effects and treatment response. Beneath
each primary step, specific processes are detailed: Genetic and Molecular Testing: Performed post-initial diagnosis
to identify specific biomarkers and mutations. Personalized Treatment Planning: Utilizing AI and clinical trials
to tailor treatment to the patient’s characteristics. Treatment Optimization: AI-based adjustments to treatment
plans to maximize efficacy and minimize side effects. Response Evaluation: Imaging and lab tests are used
to assess treatment response. The diagram continues with second-level processes, emphasizing ongoing care:
Multidisciplinary Review: Discussion of cases within a tumor board for collegiate decision-making. Treatment
Execution: Ongoing implementation and evaluation of the treatment plan. Remission or Disease Control: Regular
scans and check-ups to monitor for remission or disease control. Recurrence or Progression: Management of
treatment options in case of disease recurrence or progression.

By mapping out each phase of the treatment, from initial diagnosis to management of recurrence, this flowchart
provides a systematic approach to improving patient outcomes in light of the complex statistical backdrop. It
presents a structured, sequential overview from the initial diagnosis to managing disease recurrence or progression.

1. Initial diagnosis: This stage includes the imaging and biopsy procedures necessary to establish an initial
diagnosis.

2. Staging and Evaluation: Following the initial diagnosis, further detailed evaluations using different
techniques to determine the cancer’s stage.
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Initial Diagnosis
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Figure 3. Comprehensive Treatment Process Flowchart for Non-Small Cell Lung Cancer.

3. Treatment: Depending on the stage and individual characteristics of the cancer, treatment can include surgery,
chemotherapy, radiation therapy, and AI-assisted interventions.

4. Follow-Up: Patients enter a follow-up phase after initial treatment to monitor side effects and treatment
response.

Below each primary step are detailed specific processes.

• Genetic and Molecular Testing: Performed post-initial diagnosis to identify specific biomarkers and
mutations.

• Personalized Treatment Planning: Using artificial intelligence and clinical trials to tailor treatment to the
patient’s characteristics.

• Optimization of Treatments: AI-based adjustments to treatment plans to maximize efficacy and minimize
side effects.

• Response Evaluation: Imaging and laboratory tests are used to assess treatment response.

The diagram continues with second-level processes, emphasizing ongoing care:

• Multidisciplinary Review: Discussion of cases within a tumor board for collegiate decision-making.
• Treatment Execution: Ongoing implementation and assessment of the treatment plan.
• Remission or Disease Control: Regular scans and checkups to monitor for remission or disease control.
• Recurrence or Progression: Management of treatment options in case of disease recurrence or progression.

1.2. Using artificial intelligence in lung cancer treatment

With the potential to completely transform disease detection, diagnosis, and treatment, the impact of artificial
intelligence on healthcare care has attracted a lot of attention recently. One of the main causes of cancer-related
death worldwide is lung cancer, which makes a strong case for the use of AI technologies [14]. This systematic
review aims to assess the influence of AI on lung cancer mortality rates by synthesizing the existing body of
literature. This review identifies and analyzes research focused on integrating AI into lung cancer care through
a comprehensive search for peer-reviewed articles and studies. Key areas of investigation include AI-driven
early detection, image analysis for tumor identification and staging, predictive modeling, treatment planning, and
assessment of treatment response. In addition, we evaluate the quality of evidence and the methodologies employed
in these studies. Preliminary findings suggest that AI has the potential to enhance lung cancer outcomes by enabling
more accurate and timely diagnosis [15], individualized treatment plans, and real-time monitoring of disease
progression. AI-driven algorithms have shown promise in improving the sensitivity and specificity of radiological
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imaging [16], thus helping to early diagnose. Additionally, AI can assist clinicians in identifying optimal treatment
regimens while facilitating therapeutic response assessment through image analysis and predictive modeling.
Nevertheless, implementing AI in clinical practice is challenging, including issues related to data privacy,
integration into healthcare workflows, and the need for robust validation in diverse patient populations. This review
addresses these barriers and discusses potential solutions and future directions in AI research for lung cancer. The
synthesis of available evidence will shed light on the evolving landscape of AI applications in lung cancer care and
its potential impact on reducing mortality rates. By examining the current state of AI-driven innovations in lung
cancer management, this systematic review seeks to inform healthcare professionals, researchers, and policymakers
about the implications of AI for improved patient outcomes. Ultimately, a thorough understanding of AI’s benefits,
limitations, and future prospects in lung cancer care is essential to guide its effective integration into clinical
practice and advance the fight against this deadly disease.

2. Materials and Methods

2.1. Study design

This systematic review focused on examining the influence of AI on the treatment of NSCLC, drawing on online
articles published in reputable journals.

2.2. Search strategy

Between October 2, 2023, and November 8, 2023, a comprehensive and extensive search of the literature was
carried out on the following electronic databases: ”PubMed”, ”Elsevier”, ”Springer”, and ”Web of Science” for
quality studies in journals indexed Q1 according to the Journal Citation Reports (JCR) classification system
between the period 2021 and 2023 using the search strategy (impact) AND (artificial Intelligence) OR (machine
learning) OR (deep learning) AND (Lung cancer). The choice of databases was guided by the accessibility of
free access, which led to the exclusion of certain databases such as Embase and CINAHL (Cumulative Index to
Nursing and Allied Health Literature). Additionally, BioRxiv and Arxiv were excluded from the search as the
articles published on these platforms are not peer-reviewed and therefore not indexed as Q1. The Directory of
Open Access Journals (DOAJ) was the only database included to complement the study due to its inclusion of
open access, peer-reviewed journals.

2.3. Inclusion and exclusion criteria

This systematic review encompasses studies focusing on the significant integration of artificial intelligence in lung
cancer treatment, particularly in the management of NSCLC. No language restrictions were applied; however, the
search results yielded articles published exclusively in English or French.
The systematic review included studies that involved outpatient clinic visits, diagnostic and prognostic tests,
treatment processes, and case referrals. However, it excluded studies that investigated other diseases in NSCLC
patients or analyzed the impact of mental health issues and the COVID-19 pandemic on the progression of the
disease.

2.4. Data extraction

Following the initial selection process, thirteen articles were ultimately selected for inclusion in this review. We
used the PRISMA 2020 Statement [17] to conduct systematic data interrogation to maintain methodological
integrity. Figure 4 shows the PRISMA flow diagram for this systematic review along with the study selection
process.
Searching only on PubMed with the exact keywords was insufficient to obtain all the articles before screening.

Although most of the articles were published on PubMed, one study was not published in this database. Each
database relies on different search algorithms, which means that using the same keywords may not yield the same
articles, even if they are published in the same databases.
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Figure 4. PRISMA flow diagram of the systematic review.
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Two of the thirteen articles selected were found in the Springer database, hence the importance of diversifying
databases.
By creating an MS Excel spreadsheet, the following information was extracted from some chosen articles: study
title, objectives, methodology, main findings, PubMed reference number, and study goals.

A summary of all the articles included in this systematic review is presented in Table 3.

Table 3. Summary of included studies.

S. No. PMID Title of the study Objective of the
study

Study design Major finding

1 37773123 Machine learning
prediction models
for different stages
of non-small cell
lung cancer based
on tongue and tumor
marker: a pilot study

Exploring the
feasibility of
developing
predictive models
for non-small
cell lung cancer
(NSCLC) at
various stages
by analyzing tongue
characteristics and
tumor markers.

Exploratory
pilot study

Tongue characteristics
and tumor markers
were significantly
more pronounced in
the advanced NSCLC
group compared to
the non-advanced
NSCLC group. Neural
Network, Random
Forest, and Naive Bayes
demonstrated superior
classification efficiency
when applied to the
tongue feature, tumor
marker, and baseline
data sets.

2 36395737 Deep learning
for predicting the
major pathological
response to
neoadjuvant
chemotherapy in
non-small cell
lung cancer: A
multi-center study

Developing a deep
learning model
using computed
tomography to
predict the main
pathological
response (MPR)
to neoadjuvant
chemoimmunother-
apy.

Multicentre
study

A high deep learning
score was linked to
the downregulation of
pathways that mediate
tumor proliferation
and the enhancement
of antitumor immune
cell infiltration in the
microenvironment.

3 35813093 A deep learning-
based system for
survival benefit
prediction of
tyrosine kinase
inhibitors and
immune checkpoint
inhibitors in stage
IV non-small
cell lung cancer:
A multicenter,
prognostic study

Using pre-
therapy computed
tomography (CT)
scans, estimate the
survival benefit of
EGFR-TKIs and
ICIs in patients with
stage IV non-small
cell lung cancer
(NSCLC).

Multicentre
study

With ESBP support,
the precision of the
physician’s diagnosis
increased from 47.
91% to 66. 32% for
those with two years
of experience and 53.
12% to 61. 41% for
those with five years of
experience.
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4 35572597 A Machine Learning
Model Based on
PET/CT Radiomics
and Clinical
Characteristics
Predicts Tumor
Immune Profiles
in Non-Small Cell
Lung Cancer:
A Retrospective
Multicohort Study

Create, test, and
use a machine
learning model
that uses clinical
characteristics and
18F-FDG PET / CT
radiomics to predict
TIME patterns in
non-small cell lung
cancer (NSCLC).

Retrospective
Multicohort
Study

The CD8-high projected
group had considerably
higher immunological
scores and more active
immune pathways than
the CD8-low predicted
group, according to
TCGA data, suggesting
that CD8 expression
might signify TIME
profiles in NSCLC.

5 37497221 Short-term
outcomes of robot-
assisted versus
video-assisted
thoracoscopic
surgery for non-
small cell lung
cancer patients
with neoadjuvant
immunochemother-
apy: a single-center
retrospective study

Evaluating the
advantages of
Robotic-Assisted
Thoracic Surgery
(RATS) over Video-
Assisted Thoracic
Surgery (VATS)
in terms of short-
term outcomes
for treating
NSCLC patients
with neoadjuvant
immunochemother-
apy.

Single-center
retrospective
study

A single-center
retrospective study
found that 30-day
mortality rates were
0% in the RATS group
and 3.23% in the VATS
group.

6 36028289 Clinical validation
of deep learning
algorithms for
radiotherapy
targeting non-small
cell lung cancer: an
observational study

Segregating primary
non-small cell lung
cancer (NSCLC)
tumors and related
lymph nodes on CT
images using deep
learning algorithms
that have been
clinically validated.

Observational
study

The tested models
generated target
volumes with radiation
dose coverage
comparable to the
experts’. In addition,
we found no discernible
variations between
expert-performed and
AI-assisted de novo
segmentations.

7 37268451 Predicting benefit
from immune
checkpoint
inhibitors in patients
with non-small cell
lung cancer by deep
learning based on
CT: a retrospective
study

Investigating the use
of deep learning in
thoracic CT scans to
identify an imaging
hallmark of the
immune checkpoint
inhibitor response
and evaluate its
additional value in a
therapeutic setting.

Retrospective
study

When the Deep-CT
model was combined
with traditional risk
indicators, testing
revealed a considerable
improvement in
prediction accuracy,
with the overall survival
C-index rising from
0-70 (clinical model)
to 0-75 (composite
model).

Stat., Optim. Inf. Comput. Vol. 12, Month 2024



10 HARNESSING AI FOR PRECISION ONCOLOGY

8 34061904 Prediction of
outcome in patients
with non-small cell
lung cancer treated
with second-line
PD-1 / PDL-1
inhibitors based on
clinical parameters:
Results from a
prospective, single
institution study

Examination of the
impact of clinical
and laboratory
factors on treatment
outcomes in patients
receiving second-
line PD-1/PD-L1
inhibitors for
metastatic non-small
cell lung cancer
(NSCLC).

Prospective
study

With an AUC = 0.806
[95% CI: 0.714-0.889],
the algorithm developed
predicted the likelihood
of stabilization of the
disease (PR or SD) in a
single person.

9 37718448 Development and
validation of a risk
model with variables
related to non-small
cell lung cancer
in patients with
pulmonary nodules:
a retrospective study

Developing a
novel predictive
nomogram utilizing
a design dataset of
515 lung nodules is
to be designed using
a secondary dataset
of 140 nodules and
a separate dataset
of 237 nodules for
external validation.

Retrospective
study

The therapeutic utility
of this predictive nomo-
gram was validated by
decision curve studies
when used at a proba-
bility threshold 18% for
NSCLC.

10 36505920 Computerized
tumor-infiltrating
lymphocytes density
score predicts
survival of patients
with resectable lung
adenocarcinoma

Development
of an artificial
intelligence-based
pathology scoring
system to evaluate
TILs on H&E-
stained whole slide
LUAD images

Retrospective
Cohort Study

The prognostic
prediction model,
combined with the
WELL score in all four
cohorts, outperformed
the clinicopathological
model in terms of
discrimination, as
indicated by a higher
AUC at most time
points (0.597 for the
validation cohort)
compared to the
reference model
(0.575).
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11 36106060 What is the optimal
input information
for deep learning-
based pre-treatment
error identification
in radiotherapy?

Development of a
deep learning model
for error identifica-
tion in pre-treatment
quality assurance

Comparative
study

The normalization of
mean and standard
deviation particularly
improved the
classification of level
2 (error magnitude).
Increasing image
resolution improved
error identification for
volumetric modulated
arc therapy (VMAT),
although for SBRT a
lower image resolution
was also sufficient.

12 35705792 Usability of deep
learning and H&E
images predict
disease outcome-
emerging tool to
optimize clinical
trials

Using a weakly
supervised survival
convolutional neural
network (WSS-
CNN) with a visual
attention mechanism

Multicentre
study

The approach used pro-
vides a better under-
standing of the tumor
microenvironment and
has important implica-
tions for using compu-
tational pathology algo-
rithms to predict prog-
nosis and improve the
efficacy of clinical trial
studies.

13 - Potential added
value of an AI
software with
prediction of
malignancy for
the management
of incidental lung
nodules

Evaluation of
the effects of an
AI program that
predicts cancer on
the treatment of
lung nodules that
are unintentionally
found

Retrospective
study

The AI software
using deep
learning algorithms
demonstrated a high
negative predictive
value (NPV) of 100%
(with a 95% confidence
interval of 82% to
100%), suggesting
its potential use in
reducing the need for
follow-up in nodules
categorized as benign.
Specifically, adding
an AI score to the
initial CT scan could
have avoided the
recommended follow-
up in 50% of benign
pulmonary nodules (6
out of 12).
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3. Results

In this systematic review that covers thirteen studies, three focus on personalized treatment, while six aim to
optimize treatment in NCSLC using AI.

AI and Classification Models in NSCLC Treatment

Four out of the thirteen studies focused on using AI to improve the classification and diagnosis of NSCLC by
integrating linguistic characteristics, tumor markers, and basic patient data (e.g., gender and age). These studies
found that models incorporating a combination of these data points significantly outperformed those relying on
single data types. For instance, Shi et al. employed logistic regression, Support Vector Machine (SVM), Random
Forest, Naive Bayes, and Neural Network classifiers. Their findings indicated that combined features improved
classification accuracy and reduced missed diagnoses. In their study, Shi et al.[18] employed five classifiers: logistic
regression, support vector machine (SVM), random forest, naive Bayes and neural network, utilizing a combination
of language characteristics, tumor markers, and basic patient data (gender, age) to develop classification and
diagnostic models for NSCLC at various stages.
The results indicated that classifiers that relied solely on language characteristics or tumor markers independently
produced inadequate classification results and a high rate of missed diagnoses. However, the performance of the
models significantly improved when language characteristics were combined with tumor markers and basic patient
data. This finding suggests that the use of a single language feature or tumor marker for NSCLC classification at
different stages may need to be revised or influenced by the sample size.

AI in Radiotherapy Planning

Radiation planning is a one-time, high-cost investment that significantly impacts the efficiency of radiation therapy
in terms of both time and money. To maximize radiation delivery to cancerous tissues while minimizing exposure to
healthy tissues, precise radiotherapy planning is essential. After acquiring medical images, the subsequent planning
steps include image registration, target and surrounding organ segmentation, and dose distribution calculation. One
of the most labor-intensive tasks performed by radiation oncologists is the manual segmentation of the target, which
includes the primary tumor and affected lymph nodes. This precise task requires voxel-by-voxel image analysis to
accurately define the target volume. Despite advancements in modern radiotherapy techniques, such as intensity-
modulated radiotherapy and image-guided radiotherapy, which allow for lower radiation doses to surrounding
organs, these methods still demand a high degree of accuracy. With the support of AI, the segmentation time, the
amount of time it takes to define or outline specific regions of interest (ROI), was reduced by 65% (5.4 minutes;
p < 0.0001) and a 32% reduction in interobserver variability (SD; p = 0.013) [19].This improvement demonstrates
AI’s potential to streamline radiotherapy planning, making it more efficient and accurate by reducing the manual
labor required and enhancing consistency across different observers [20].

Advanced Imaging and Predictive Systems for Survival Benefits

The use of a combined radiomic-clinical 18F-FDG PET/CT model accurately predicted tumor immune status in
NSCLC, outperforming traditional clinical and radiomic models. The nomogram in the study by Zufang Liao
et al. [21], integrating hypertension status and lung nodule size, reliably predicted NSCLC, with significant net
reclassification improvement (NRI) and integrated discrimination improvement (IDI). The expression of CD8,
a marker used to determine tumor immune microenvironment profiles (TIME), was examined in the study by
Haipeng Tong et al. [22]. This study revealed that a combined radiomic-clinical 18F-FDG PET/CT model can
accurately predict tumor immune status in non-small cell lung cancer (NSCLC), outperforming existing clinical
models and radiomic models alone. This combined approach exploits both imaging data and clinical information
to provide a more comprehensive assessment of the tumor’s immune environment. The study by Yunlang She et
al. [23] demonstrated that integrating radiomic features with clinical data improves the accuracy of predicting the
immune status of non-small cell lung cancer tumors. The improved predictive ability of the model is crucial for
tailoring personalized immunotherapy treatments, as it enables the identification of patients who are more likely
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to respond to immune checkpoint inhibitors (ICIs). These results suggest that advanced imaging techniques, when
combined with clinical parameters, offer oncologists a powerful tool to better understand the immune context of
the tumor. This comprehensive assessment is essential to optimize treatment strategies and improve outcomes for
patients with non-small cell lung cancer.
The Efficient Survival Benefit Prediction System (ESBP) utilizing the EfficientNetV2 model significantly enhanced
diagnostic accuracy among healthcare professionals. This system effectively predicted survival benefits of EGFR-
TKI and ICI therapies in advanced-stage NSCLC [24]. Clinicians with two years of experience saw diagnostic
accuracy improvements from 47.91% to 66.32%, while those with five years of experience improved from 53.12%
to 61.41%. The study by Michelin et al. [25] demonstrated that adding an AI score to the initial CT scan to
better manage incidentally discovered tumors could have avoided a guideline-recommended follow-up in 50% of
benign pulmonary nodules (6/12 nodules), thereby avoiding these costs and burdens for patients and healthcare
professionals.

Clinical Features and Predictive Signatures

Only 20 to 30% of NSCLC patients derive lasting benefits from immune checkpoint inhibitors, but a deep learning
model on pre-treatment CTs (Deep-CT) showed better performance than conventional risk factors. It’s crucial to
emphasize that relying on Body Mass Index (BMI) and albumin levels alone falls short in providing a complete
assessment of a patient’s nutritional health, especially in the context of cancer patients receiving immunotherapy.
To fully grasp the effects of body composition on these patients, a more in-depth and multifaceted analysis is
necessary. This approach ensures a more accurate understanding of their overall health and how it may influence
the effectiveness of their immunotherapy treatment [26]. These findings underscore the importance of considering
multiple clinical factors in predictive models to improve treatment personalization and outcomes for NSCLC
patients [27]. In the Rounis et al. study [28], patients with metastatic Non-Small Cell Lung Cancer (NSCLC)
who lacked EGFR mutations or ALK translocations and had progressed following platinum-based chemotherapy
were treated with Immune Checkpoint Inhibitors (ICIs). The study utilized JADbio, which identified four vital
clinical features to develop a predictive signature. This signature demonstrated an 81% accuracy rate in forecasting
disease stabilization post-ICI treatment, marking a significant advancement in personalized cancer care. These
characteristics are prolonged antibiotic administration, bone metastases, liver metastases, and a BMI < 25 kg/m2.

Deep Learning Models and Immunotherapy

A comparison of video-assisted and robot-assisted thoracoscopic surgery was conducted on forty-six patients with
NSCLC undergoing neoadjuvant immunochemotherapy [29]. With no discernible variations in surgical outcomes,
pathological outcomes, or postoperative complications, baseline clinical features and induction-related adverse
events were similar in both groups (RATS and VATS). RATS analyzed more N1 lymph nodes (LNs) and LN
stations than VATS, which was linked to a shorter ICU stay. The one-year recurrence-free survival rates attained
by VATS and RATS were similar. The 30-day mortality in the RATS and VATS groups was 0% and 3.23%,
respectively (p = 1.000). The clinical validation of deep learning algorithms for radiotherapy targeting of NSCLC
showed a significant reduction in segmentation time and interobserver variability, highlighting the efficiency
of AI in this field. This meticulous task of manual target segmentation, crucial in radiotherapy planning, has
benefited from advanced planning and administration techniques, demanding high segmentation precision. The
studies collectively illuminate the evolving diagnostic and treatment methods for NSCLC, marking an increasing
integration of advanced technologies in the medical field. All the studies included in this review have confirmed
that the strength of machine learning prediction models lies in considering multiple factors (baseline data, clinical
characteristics, etc.). The correlation between these factors leads to more effective treatment by considering all
parameters impacting the progression of the disease. Studying the effects of different parameters helps confirm
concerns about treatment, such as the use of > 10mg prednisone equivalent in patients receiving ICIs [30] or,
conversely, identifying effective treatments for specific categories of patients with particular diagnoses.
Based on these studies, routinely available variables may be used to distinguish between people who can control
the course of the disease and people who are likely to worsen while receiving treatment. The latter group is advised
to participate in clinical trials, try different treatment plans, or be subjected to closer observation.
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4. Discussion

Numerous global initiatives and research projects support the ongoing fight against lung cancer, which is dedicated
to understanding the disease, enhancing treatment options, and increasing survival rates. Scientists are continually
exploring new therapeutic approaches, including targeted therapies and immunotherapies, which aim to tailor
treatments to individual patients based on their genetic profiles and the specific characteristics of their cancer.
Significant advances in lung cancer treatment have been achieved through clinical trials. These trials evaluate
novel medications, therapies, and treatments, offering hope to patients who have exhausted traditional care
options. Participation in clinical trials is crucial for developing innovative therapies that could become standard
treatments in the future. This research aims to explore the effects of AI on NSCLC treatment through a systematic
review methodology guided by specific eligibility criteria. The process involved thoroughly screening relevant
literature, culminating in selecting thirteen pertinent articles aligned with the study’s objectives. The final analysis
was meticulously prepared, drawing insights from these selected studies. The findings presented in this article
underscore the significant contribution of AI in enhancing the accuracy of NSCLC detection and advancing
treatment approaches. Notably, AI has been instrumental in facilitating personalized medicine strategies, which
accommodate individual patients’ medical histories and treatment preferences, thereby improving overall treatment
efficacy in NSCLC management. The studies included in this systematic review highlight the transformative
potential of AI in reshaping the management of non-small cell lung cancer. Insights from the literature emphasize
the profound implications of AI-based approaches in facilitating earlier detection, refining predictive prognostic
models, and customizing treatments for individual patients. Moreover, optimizing treatment strategies through
AI interventions appears promising, indicating a future where technological advancements significantly enhance
therapeutic outcomes for patients battling this form of lung cancer. As indicated in all the studies, AI is a
decision-support tool that predicts outcomes, identifies cancer stages, and tailors treatment—an approach known
as personalized medicine. AI is not intended to replace oncologists but to support them by enhancing diagnostic
accuracy and treatment planning. Healthcare professionals’ involvement extends beyond treatment prescription
to emotional support and ongoing mental health follow-up, positively impacting the patient’s care trajectory. A
patient-centric approach, which includes raising awareness and engaging patients in their care, is essential. This
principle is mirrored in palliative care, which aims to enhance the quality of life for patients with severe, often
advanced illnesses by alleviating associated symptoms. Palliative care focuses on relieving physical pain while
addressing the psychological, social, and spiritual aspects of the patient [31]. Palliative care is not exclusively
for terminally ill patients; it can be provided at any stage of a severe illness alongside curative or life-prolonging
treatments. Its goal is to help patients live as comfortably and thoroughly as possible, considering their needs,
preferences, and values and those of their families. AI provides healthcare professionals with a decision-support
tool that enables faster and more accurate diagnoses, facilitating the prescription of appropriate treatments. In
chemotherapy, for instance, localizing and identifying the tumor size and adapting the injected dose help restrict
cancer progression and prevent mutations. Despite advancements in the knowledge and management of lung
cancer, significant obstacles remain. Many lung cancer patients continue to experience unfavorable outcomes due
to late-stage diagnoses, a lack of treatment options for advanced cases, and disparities in access to healthcare. To
overcome these challenges, a multifaceted approach is required. This includes boosting funding for lung cancer
research, increasing public awareness of smoking risks, improving access to early screening and diagnostic tools,
and providing comprehensive support to lung cancer patients and their families. Additionally, health organizations
must implement robust security measures to ensure patient confidentiality when using AI in lung cancer treatment.
Concerns about patient data privacy and security are paramount, highlighting the importance of high-quality data
when training AI algorithms to prevent biases and incomplete datasets and ensure inclusive and accurate outcomes
for patient care. Evolving legal frameworks and ethical standards are crucial for regulating AI applications and
prioritizing patient care. Ensuring that AI-driven advancements are affordable for all patients, regardless of their
financial situation, is a formidable challenge. With its potential for earlier detection, precise diagnosis, personalized
treatments, and improved progress monitoring, AI represents a revolutionary leap in lung cancer treatment. Its
integration significantly improves patient outcomes while also increasing healthcare efficiency.
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Limitations and Challenges of AI Applications

While the potential of AI in NSCLC treatment is significant, several limitations and challenges must be addressed.
One of the main concerns is data privacy. Figure 5 presents the main limitations for the use of AI applications in
NSCLC treatment, but these limitations are not exhaustive and extend to other socio-economic aspects, which are
detailed subsequently.

Data Privacy

Algorithm Transparency

Over-Reliance on AI

Integration into Workflows

Figure 5. Limitations of AI Applications in NSCLC Treatment.

The use of patient data in AI models raises significant privacy concerns. Ensuring that data is anonymized and
securely stored is crucial to protect patient confidentiality and comply with regulations such as GDPR(General
Data Protection Regulation) and HIPAA(Health Insurance Portability and Accountability Act)[32, 33].
Robust data governance frameworks are needed to manage the collection, storage, and sharing of sensitive health
information [34]. Another challenge is the transparency of the algorithm. Many AI algorithms function as ”black
boxes,” making it difficult to understand how decisions are made. This opacity can hinder the trust and adoption of
AI in clinical settings. Efforts to increase transparency, such as explainable AI (XAI) techniques shown in Figure
6, are essential to gain the trust of the clinician and the patient.

Explainable AI aims to make the ”black-box” nature of many AI models more transparent. This means providing
clear, understandable insights into how the AI system reaches its decisions or predictions. By making AI models
more interpretable, XAI helps build trust among users. When clinicians and patients understand how an AI model
comes to its conclusions, they are more likely to trust and adopt these technologies in clinical practice. Some
regulations and standards require transparency and accountability in many fields, including healthcare. XAI helps
ensure that AI systems comply with these regulations by providing explanations that can be audited and verified.
Explainable AI allows users to better evaluate the recommendations made by AI systems. This can lead to improved
decision-making as users can understand the strengths and limitations of the AI’s outputs. Furthermore, when AI
models are interpretable, it is easier to identify and correct errors or biases. These techniques aim to make the
decision-making process of AI models more interpretable and understandable [35].

There is also a risk of over-relying on AI-generated recommendations without sufficient clinical oversight. This
can lead to suboptimal patient care if healthcare professionals follow the AI system’s recommendations without
critical evaluation. It is essential to maintain a balance where AI serves as a decision-support tool rather than a
replacement for human judgment [36]. Integrating AI systems into existing healthcare workflows poses practical
challenges. These include training staff to use new technologies, ensuring interoperability with current systems,
and adapting existing processes to incorporate AI tools. Successful integration requires careful planning, adequate
resources, and ongoing support to address these challenges [37].
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Explainable AI (XAI)

Transparency Trust and Adoption

Regulatory ComplianceImproved Decision-Making

Error Detection and Correction

Figure 6. Concept of Explainable AI (XAI).

Ethical and Privacy Concerns

The implementation of AI in healthcare raises several ethical and privacy concerns. It is essential to ensure
that patients are fully informed and provide consent for their data to be used in AI models. This involves clear
communication about how their data will be used, the potential risks, and the benefits. Informed consent is a
cornerstone of ethical medical practice and must be defended using AI [38]. Implementing robust data security
measures to protect patient information is critical. This entails encryption, secure access controls, and regular
audits to prevent unauthorized access and data breaches. Data security measures must evolve continuously to
counter emerging threats [39]. Developing guidelines for the ethical use of AI, including addressing potential
biases in AI decision-making, is crucial. Bias in AI models can arise from biased training data, leading to unfair
treatment recommendations. Establishing ethical standards and continuously monitoring AI systems for bias can
help mitigate these issues [40].

Economic implications

The adoption of AI technologies in treating NSCLC has several economic implications. Analyzing the cost-
effectiveness of AI systems compared to traditional methods is vital to justify investing in AI technologies. AI can
potentially reduce healthcare costs by improving diagnostic accuracy and treatment efficiency, but comprehensive
cost-benefit analyses are necessary [41].
Ensuring that AI technologies are accessible to patients in different healthcare settings, including low-resource
environments, is a significant challenge. Efforts must be made to develop affordable AI solutions that can be
widely implemented, ensuring equitable access to advanced healthcare technologies [42]. AI technologies not only
promise long-term savings, but also have the potential to significantly improve patient outcomes [43]. By enabling
early detection and preventive care, AI can lead to better health for patients. However, economic barriers, such as
the high initial costs of AI implementation, must be addressed to prevent exacerbating healthcare inequalities [44].
Practical training for healthcare professionals and patient education is essential to ensure that these technologies are
effectively integrated into clinical practice, maximizing their benefits and reassuring patients about the quality of
care they can expect [45]. AI can assist in creating personalized treatment plans, increasing treatment efficacy, and
reducing the trial-and-error approach often associated with cancer treatment, potentially lowering costs. AI can
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also streamline administrative tasks and reduce the time of healthcare professionals on routine tasks, improving
efficiency and reducing operational costs. Better diagnostic and treatment processes can improve patient outcomes,
reducing long-term healthcare costs associated with extended hospital stays, complications, and palliative care.
The expenses of treating cancer in its later stages can be greatly decreased by using AI to aid in early identification
and prevention. However, ensuring that AI technologies are accessible to patients in different healthcare settings,
including low-resource environments, remains a significant challenge.
AI-powered telemedicine can provide access to expert consultations for patients in remote or underserved areas,
reducing the need to travel and making specialized care more accessible. Using AI in cancer treatment can enable
a more widespread distribution of advanced diagnostic tools and treatment plans, allowing smaller healthcare
facilities to offer high-quality care. Although AI technologies may reduce long-term costs, initial costs can be high.
Ensuring that these technologies are covered by insurance or subsidized by governments is crucial for making them
accessible to all patients. There is a risk that high initial costs could widen the gap between high-income and low-
income patients unless measures are taken to ensure equitable access.
Ensuring patients understand and trust AI technologies is essential. This involves educating patients on how
AI can benefit their treatment and addressing concerns or misconceptions. Adequate training for healthcare
professionals is necessary to integrate AI effectively into treatment protocols and ensure that they can assist patients
in understanding and accessing these technologies.

Future Research Directions

Future research should address the following areas to further enhance the application of AI in NSCLC treatment:

• Improving Data Quality: Developing methods to ensure high-quality, unbiased data for training AI models
is crucial. This includes standardizing data collection processes and curating diverse datasets to prevent bias
[46].

• Enhancing Algorithm Transparency: Creating more transparent AI algorithms that can provide
interpretable results is essential. Research in explainable AI (XAI) should be prioritized to make AI decisions
more understandable to clinicians and patients [47].

• Integrating AI with Clinical Practice: Studying the best practices for integrating AI systems into clinical
workflows without disrupting existing processes is vital. Pilot studies and implementation research can
provide insights into the most effective ways to incorporate AI into healthcare settings [48].

The limitations of this literature review include the exclusion of studies that focus on other diseases in patients
with NSCLC, as well as those that analyze the impact of mental health issues and the COVID-19 pandemic on
disease progression. Additionally, the review did not include research from paid databases, potentially limiting
access to some high-quality, peer-reviewed studies. We are working on future research to address these gaps,
with the aim of incorporating interactions between other diseases and the progression of NSCLC, as this directly
impacts treatment. Collaborating with medical institutions such as Cheikh Zaid Hospital to access paid databases
and oncology experiences will allow us to include a comprehensive range of high-quality published articles, thereby
avoiding omissions in the analysis and recommendations. This approach will enable us to later build a predictive
model for cancer treatment based on machine learning, informed by treated cases.

5. Conclusion

Lung cancer remains a global health issue with profound implications for both individuals and communities. The
high incidence and mortality rates associated with non-small cell lung cancer (NSCLC) underscore the urgent need
for comprehensive strategies encompassing preventive measures, early diagnosis, advanced treatment options, and
robust support systems for those affected. Current data on lung cancer emphasize the critical need to address this
disease through multifaceted approaches. Preventive strategies, such as smoking cessation programs and public
health campaigns, are essential to reduce the incidence of lung cancer. Early diagnostic techniques, including low-
dose computed tomography (CT) scans, can significantly improve survival rates by identifying tumors at more
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treatable stages.
The treatment landscape for NSCLC is evolving rapidly, with ongoing research and global initiatives paving
the way for better patient outcomes. Innovations in targeted therapies and immunotherapies have already shown
promise in extending survival and improving the quality of life of patients. Furthermore, comprehensive support
systems, including psychological, social, and palliative care, are essential to address the multifaceted needs of lung
cancer patients and their families. Artificial intelligence (AI) has emerged as a transformative force in the battle
against lung cancer. Its impact spans various facets of care, from early detection and accurate tumor identification
to predictive modeling, treatment planning, and real-time monitoring. AI algorithms, trained in vast datasets, can
identify subtle patterns in imaging and genomic data that human eyes might miss, thus enhancing the precision of
diagnoses. The role of AI in predictive modeling is particularly noteworthy.
By analyzing diverse data points, AI can forecast disease progression and treatment responses, enabling
personalized treatment plans tailored to individual patient profiles. This personalized approach promises more
effective treatments and a reduction in adverse effects, thereby improving overall patient outcomes. In treatment
planning, AI assists clinicians in designing optimal therapeutic strategies, integrating data from various sources to
recommend the most effective interventions. Real-time monitoring through AI-driven tools ensures that patients
receive timely adjustments to their treatment regimens, maximizing efficacy, and minimizing complications.
Despite AI’s significant promise, several challenges remain in integrating these technologies seamlessly into
healthcare systems. Issues such as data privacy, algorithm transparency, and the need for rigorous clinical validation
must be addressed to build trust among healthcare providers and patients. Additionally, training healthcare
professionals to utilize AI tools effectively is crucial for their successful implementation.
Looking ahead, the future of NSCLC care is bright, marked by continuous innovation and the potential to
significantly reduce the global burden of this disease.
AI stands at the forefront of this revolution, promising more effective treatments, personalized care, and better
patient outcomes. As we overcome the challenges associated with AI integration, we move closer to a future where
lung cancer is more manageable and potentially curable.
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Brennan, R. Chou, J. Glanville, J. M. Grimshaw, A. Hróbjartsson, M. M. Lalu, T. Li, E. W. Loder, E. Mayo-Wilson, S. McDonald,
L. A. McGuinness, L. A. Stewart, J. Thomas, A. C. Tricco, V. A. Welch, P. Whiting, and D. Moher, “The PRISMA 2020 statement:
an updated guideline for reporting systematic reviews,” BMJ, vol. 372, p. n71, Mar. 2021.

18. Y. Shi, H. Wang, X. Yao, J. Li, J. Liu, Y. Chen, L. Liu, and J. Xu, “Machine learning prediction models for different stages of
non-small cell lung cancer based on tongue and tumor marker: a pilot study,” BMC Medical Informatics and Decision Making,
vol. 23, no. 1, p. 197, Sep. 2023. [Online]. Available: https://doi.org/10.1186/s12911-023-02266-5

19. A. Hosny, D. S. Bitterman, C. V. Guthier, J. M. Qian, H. Roberts, S. Perni, A. Saraf, L. C. Peng, I. Pashtan, Z. Ye, B. H. Kann,
D. E. Kozono, D. Christiani, P. J. Catalano, H. J. W. L. Aerts, and R. H. Mak, “Clinical validation of deep learning algorithms for
radiotherapy targeting of non-small-cell lung cancer: an observational study,” Lancet Digit Health, vol. 4, no. 9, pp. e657–e666, Sep.
2022.

20. T. Qaiser, C.-Y. Lee, M. Vandenberghe, J. Yeh, M. A. Gavrielides, J. Hipp, M. Scott, and J. Reischl, “Usability of deep learning and
he images predict disease outcome-emerging tool to optimize clinical trials,” npj Precision Oncology, vol. 6, no. 1, 2022, cited by: 16;
All Open Access, Gold Open Access. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85132160474&
doi=10.1038%2fs41698-022-00275-7&partnerID=40&md5=b178ab643abc60b416606c148319e655

21. H. Tong, J. Sun, J. Fang, M. Zhang, H. Liu, R. Xia, W. Zhou, K. Liu, and X. Chen, “A Machine Learning Model Based on PET/CT
Radiomics and Clinical Characteristics Predicts Tumor Immune Profiles in Non-Small Cell Lung Cancer: A Retrospective Multicohort
Study,” Front Immunol, vol. 13, p. 859323, 2022.

22. Z. Liao, R. Zheng, N. Li, and G. Shao, “Development and validation of a risk model with variables related to non-small cell lung
cancer in patients with pulmonary nodules: a retrospective study,” BMC Cancer, vol. 23, p. 872, Sep. 2023. [Online]. Available:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10506295/

23. Y. She, B. He, F. Wang, Y. Zhong, T. Wang, Z. Liu, M. Yang, B. Yu, J. Deng, X. Sun, C. Wu, L. Hou, Y. Zhu, Y. Yang, H. Hu, D. Dong,
C. Chen, and J. Tian, “Deep learning for predicting major pathological response to neoadjuvant chemoimmunotherapy in non-small
cell lung cancer: A multicentre study,” EBioMedicine, vol. 86, p. 104364, Dec. 2022.

24. K. Deng, L. Wang, Y. Liu, X. Li, Q. Hou, M. Cao, N. N. Ng, H. Wang, H. Chen, K. W. Yeom, M. Zhao, N. Wu, P. Gao, J. Shi, Z. Liu,
W. Li, J. Tian, and J. Song, “A deep learning-based system for survival benefit prediction of tyrosine kinase inhibitors and immune
checkpoint inhibitors in stage IV non-small cell lung cancer patients: A multicenter, prognostic study,” EClinicalMedicine, vol. 51,
p. 101541, Sep. 2022.

25. B. Michelin, A. Labani, P. Bilbault, C. Roy, and M. Ohana, “Potential added value of an ai software with prediction of malignancy
for the management of incidental lung nodules,” Research in Diagnostic and Interventional Imaging, vol. 8, p. 100031, 2023.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/S2772652523000108

26. M. B. Saad, L. Hong, M. Aminu, N. I. Vokes, P. Chen, M. Salehjahromi, K. Qin, S. J. Sujit, X. Lu, E. Young, Q. Al-Tashi, R. Qureshi,
C. C. Wu, B. W. Carter, S. H. Lin, P. P. Lee, S. Gandhi, J. Y. Chang, R. Li, M. F. Gensheimer, H. A. Wakelee, J. W. Neal, H.-S. Lee,
C. Cheng, V. Velcheti, Y. Lou, M. Petranovic, W. Rinsurongkawong, X. Le, V. Rinsurongkawong, A. Spelman, Y. Y. Elamin, M. V.
Negrao, F. Skoulidis, C. M. Gay, T. Cascone, M. B. Antonoff, B. Sepesi, J. Lewis, I. I. Wistuba, J. D. Hazle, C. Chung, D. Jaffray,
D. L. Gibbons, A. Vaporciyan, J. J. Lee, J. V. Heymach, J. Zhang, and J. Wu, “Predicting benefit from immune checkpoint inhibitors
in patients with non-small-cell lung cancer by CT-based ensemble deep learning: a retrospective study,” Lancet Digit Health, vol. 5,
no. 7, pp. e404–e420, Jul. 2023.

27. C. J. Wolfs and F. Verhaegen, “What is the optimal input information for deep learning-based pre-treatment error identification in
radiotherapy?” Physics and Imaging in Radiation Oncology, vol. 24, p. 14 – 20, 2022, cited by: 4; All Open Access, Green Open
Access. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85137304627&doi=10.1016%2fj.phro.2022.08.
007&partnerID=40&md5=45cf92be4c3e621cb74ea3052fa15254

28. K. Rounis, D. Makrakis, C. Papadaki, A. Monastirioti, L. Vamvakas, K. Kalbakis, K. Gourlia, I. Xanthopoulos, I. Tsamardinos,
D. Mavroudis, and S. Agelaki, “Prediction of outcome in patients with non-small cell lung cancer treated with second line PD-
1/PDL-1 inhibitors based on clinical parameters: Results from a prospective, single institution study,” PLoS One, vol. 16, no. 6, p.
e0252537, 2021.

29. H. Pan, N. Zou, Y. Tian, H. Zhu, J. Zhang, W. Jin, Z. Gu, J. Ning, Z. Li, W. Kong, L. Jiang, J. Huang, and Q. Luo, “Short-term
outcomes of robot-assisted versus video-assisted thoracoscopic surgery for non-small cell lung cancer patients with neoadjuvant

Stat., Optim. Inf. Comput. Vol. 12, Month 2024

https://www.who.int/news-room/fact-sheets/detail/lung-cancer
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8005792/
https://doi.org/10.1007/s00432-023-05330-9
https://www.jons-online.com/lung-cancer-monthly-minutes/4466-time-to-treatment-impacts-on-early-stage-lung-cancer-surgery-outcomes
https://www.jons-online.com/lung-cancer-monthly-minutes/4466-time-to-treatment-impacts-on-early-stage-lung-cancer-surgery-outcomes
http://www.thieme-connect.de/DOI/DOI?10.1055/s-0042-1753476
https://pubmed.ncbi.nlm.nih.gov/37532473/
https://doi.org/10.1186/s12911-023-02266-5
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85132160474&doi=10.1038%2fs41698-022-00275-7&partnerID=40&md5=b178ab643abc60b416606c148319e655
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85132160474&doi=10.1038%2fs41698-022-00275-7&partnerID=40&md5=b178ab643abc60b416606c148319e655
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10506295/
https://www.sciencedirect.com/science/article/pii/S2772652523000108
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85137304627&doi=10.1016%2fj.phro.2022.08.007&partnerID=40&md5=45cf92be4c3e621cb74ea3052fa15254
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85137304627&doi=10.1016%2fj.phro.2022.08.007&partnerID=40&md5=45cf92be4c3e621cb74ea3052fa15254


20 HARNESSING AI FOR PRECISION ONCOLOGY

immunochemotherapy: a single-center retrospective study,” Front Immunol, vol. 14, p. 1228451, 2023.
30. B. Ricciuti, S. E. Dahlberg, A. Adeni, L. M. Sholl, M. Nishino, and M. M. Awad, “Immune Checkpoint Inhibitor Outcomes for Patients

With Non–Small-Cell Lung Cancer Receiving Baseline Corticosteroids for Palliative Versus Nonpalliative Indications,” JCO, vol. 37,
no. 22, pp. 1927–1934, Aug. 2019, publisher: Wolters Kluwer. [Online]. Available: https://ascopubs.org/doi/10.1200/JCO.19.00189

31. R. E. Sabrouty, A. Elouadi, and M. A. S. Karimoune, “Remote palliative care: A systematic review of effectiveness, accessibility,
and patient satisfaction,” International Journal of Advanced Computer Science and Applications, vol. 15, no. 5, p. 502 – 513,
2024, cited by: 0; All Open Access, Gold Open Access. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.
0-85195048466&doi=10.14569%2fIJACSA.2024.0150550&partnerID=40&md5=de6314402a7a1fa698056ee1d5aea15c

32. E. Union, “Regulation (eu) 2016/679 of the european parliament and of the council of 27 april 2016,” Official Journal of the European
Union, vol. L119, pp. 1–88, 2016.

33. U.S. Department of Health and Human Services, “Health insurance portability and accountability act of 1996 (hipaa),” 1996, public
Law 104-191.

34. H. Rao, J. Rees, and C. Minnick, “Data privacy and security issues in healthcare,” Journal of Medical Internet Research, vol. 22,
no. 5, p. e18991, 2020.

35. A. B. Arrieta et al., “Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges toward responsible
ai,” Information Fusion, vol. 58, pp. 82–115, 2020.

36. E. Topol, “Deep medicine: How artificial intelligence can make healthcare human again,” 2019.
37. F. Wang et al., “Healthcare ai: Applications and challenges,” IEEE Journal of Biomedical and Health Informatics, vol. 22, no. 5, pp.

1531–1537, 2018.
38. B. D. Mittelstadt et al., “The ethics of algorithms: Mapping the debate,” Big Data & Society, vol. 4, no. 2, p. 2053951717722352,

2017.
39. S. Kastner et al., “Security and privacy in healthcare computing,” IEEE Journal of Biomedical and Health Informatics, vol. 23, no. 2,

pp. 854–865, 2019.
40. I. Chen et al., “Ethical machine learning in health care,” Annual Review of Biomedical Data Science, vol. 3, pp. 123–144, 2020.
41. T. Davenport and R. Kalakota, “The potential for artificial intelligence in healthcare,” Future Healthcare Journal, vol. 6, no. 2, p. 94,

2019.
42. S. Whitelaw et al., “Applications of artificial intelligence in emergency medicine,” The Lancet Digital Health, vol. 2, no. 12, pp.

e667–e676, 2020.
43. Z. Obermeyer and E. J. Emanuel, “Predicting the future-big data, machine learning, and clinical medicine,” New

England Journal of Medicine, vol. 375, no. 13, p. 1216 – 1219, 2016, cited by: 1902; All Open Access,
Green Open Access. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84990046464&doi=10.1056%
2fNEJMp1606181&partnerID=40&md5=ac19ca8a440810873860c6ade70f0a55

44. E. J. Topol, “High-performance medicine: the convergence of human and artificial intelligence,” Nature Medicine, vol. 25, no. 1,
p. 44 – 56, 2019, cited by: 2896. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059811921&doi=10.
1038%2fs41591-018-0300-7&partnerID=40&md5=7e94ff9df8df70571e2c2a8e98d5cfba

45. F. Jiang, Y. Jiang, H. Zhi, Y. Dong, H. Li, S. Ma, Y. Wang, Q. Dong, H. Shen, and Y. Wang, “Artificial intelligence in healthcare:
Past, present and future,” Stroke and Vascular Neurology, vol. 2, no. 4, p. 230 – 243, 2017, cited by: 1958; All Open Access, Gold
Open Access, Green Open Access. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85050483912&doi=
10.1136%2fsvn-2017-000101&partnerID=40&md5=ed7e04ae9b08ac22e581ecd3c611d2fa

46. B. Norgeot et al., “Minimum information about clinical artificial intelligence modeling: the mi-claim checklist,” Nature Medicine,
vol. 26, pp. 1320–1324, 2020.

47. F. Doshi-Velez and B. Kim, “Towards a rigorous science of interpretable machine learning,” arXiv preprint arXiv:1702.08608, 2017.
48. T. M. Maddox et al., “The ethical implications of ai in clinical practice,” Journal of the American College of Cardiology, vol. 73,

no. 10, pp. 1310–1316, 2019.

Stat., Optim. Inf. Comput. Vol. 12, Month 2024

https://ascopubs.org/doi/10.1200/JCO.19.00189
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195048466&doi=10.14569%2fIJACSA.2024.0150550&partnerID=40&md5=de6314402a7a1fa698056ee1d5aea15c
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195048466&doi=10.14569%2fIJACSA.2024.0150550&partnerID=40&md5=de6314402a7a1fa698056ee1d5aea15c
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84990046464&doi=10.1056%2fNEJMp1606181&partnerID=40&md5=ac19ca8a440810873860c6ade70f0a55
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84990046464&doi=10.1056%2fNEJMp1606181&partnerID=40&md5=ac19ca8a440810873860c6ade70f0a55
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059811921&doi=10.1038%2fs41591-018-0300-7&partnerID=40&md5=7e94ff9df8df70571e2c2a8e98d5cfba
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059811921&doi=10.1038%2fs41591-018-0300-7&partnerID=40&md5=7e94ff9df8df70571e2c2a8e98d5cfba
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85050483912&doi=10.1136%2fsvn-2017-000101&partnerID=40&md5=ed7e04ae9b08ac22e581ecd3c611d2fa
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85050483912&doi=10.1136%2fsvn-2017-000101&partnerID=40&md5=ed7e04ae9b08ac22e581ecd3c611d2fa

	1 Introduction
	1.1 Lung cancer statistics
	1.2 Using artificial intelligence in lung cancer treatment

	2 Materials and Methods
	2.1 Study design
	2.2 Search strategy
	2.3 Inclusion and exclusion criteria
	2.4 Data extraction

	3 Results
	4 Discussion
	5 Conclusion

