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Abstract In recent years, numerous methods for detecting arrhythmias using a 12-lead ECG have emerged, with deep
learning approaches notably demonstrating effectiveness and gaining widespread adoption. However, the classification of
inter-patient ECG data for arrhythmia detection remains a significant challenge. Despite the increased utilization of deep
learning methodologies, a noticeable gap persists in achieving optimal performance in inter-patient ECG classification. In
this paper, we introduce a new method based on a 1D deep learning model that incorporates an attention mechanism into
convolutional neural networks for arrhythmia detection. 1D-CNN layers automatically extract morphological characteristics
from ECG data, providing an accurate technique for spatial feature extraction. Simultaneously, the attention mechanism
enables the model to focus on crucial segments of a signal. To enhance temporal context, four RR-interval features are
included, and the potential of the Higuchi Dimensional Fractal is explored as a method for extracting additional features
from ECG signals. Consequently, the classification layers benefit from the combination of both temporal and deep features,
contributing to the final arrhythmia classification. We validated the proposed method using the MIT-BIH arrhythmia dataset,
employing an inter-patient paradigm for model training and validation. Additionally, to assess its generalization ability, we
tested it on the INCART dataset. The proposed method attained an average accuracy of 98.75% for three classes and 97.96%
for four classes on the MIT-BIH arrhythmia dataset. On the INCART dataset, it achieves an average accuracy of 98.12%
for three classes. The experimental results indicate the superiority of this method in comparison to existing methods for
recognizing arrhythmias. Thus, our method demonstrates enhanced generalization and potential effectiveness in identifying
arrhythmias in real-world datasets characterized by class imbalances, showcasing its practical applicability.
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1. Introduction

Cardiac arrhythmias, also known as abnormal heart rhythms, manifest as heartbeats that are either excessively fast,
slow, or irregular. These arrhythmias pose a threat to individuals’ lives by impeding the heart’s ability to pump an
adequate volume of blood to vital organs. This has posed a significant global health challenge for numerous years,
representing approximately 32% of total deaths, as indicated by a 2019 report from the World Health Organization
(WHO) [1]. Consequently, the early detection and prompt treatment of arrhythmias are imperative for ensuring
survival.

The electrocardiogram (ECG) is an essential tool for diagnosing arrhythmias, providing insights into the heart’s
rhythm, rate, and various aspects of cardiac electrical activity. However, ECG signals are inherently nonlinear
and non-stationary, presenting challenges for manual interpretation. Manual analysis of ECG recordings can be
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laborious and susceptible to errors, especially when dealing with extended recordings necessary for identifying
sporadic arrhythmias [2]. As a result, there is a pressing need for automated methods to aid clinicians in detecting
arrhythmias from ECG data.

Categorizing heartbeats on an electrocardiogram (ECG) is essential for identifying arrhythmias. The Association
for the Advancement of Medical Instrumentation (AAMI) has delineated five primary classes for heartbeats:
Normal (N), Supraventricular Ectopics (S), Ventricular Ectopics (V), Fusions (F), and Unclassified (Q)[3].
Problematic arrhythmias are predominantly observed in supraventricular (S) and ventricular (V) beats. Ventricular
(V) beats exhibit distinct morphologies, but they are less common, underscoring the significance of accurate
identification. Conversely, normal (N) and supraventricular (S) beats often share similar morphologies, making
differentiation based solely on local features challenging.

In clinical practice, the time interval between consecutive heartbeats (RR-interval) is crucial, especially for
recognizing premature S beats with shorter RR-intervals [4]. However, variations in heart rhythm across different
patients complicate the classification task. Moreover, the sporadic occurrence of supraventricular (S) beats can
introduce bias into automated classification methods.

In developing an accurate diagnostic system for cardiac arrhythmias using ECG signals, the initial step involves
extracting relevant features from these signals. Various methods have been proposed for this feature extraction,
representing a critical stage in developing an accurate and effective diagnostic system for cardiac arrhythmias.
Statistical features [5], and higher-order statistic features [6] are commonly employed for signal analysis. Recent
research has expanded upon these by introducing additional features, including morphological features, and interval
features [4, 7], wavelet entropy [8], auto-encoder [9], entropy features [10, 11], and fractal dimensions [12].

Many studies have utilized conventional signal processing and machine learning methods for ECG arrhythmia
detection in classification tasks, such as K-Nearest Neighbor (KNN), Random Forest (RF), Support Vector
Machines (SVM), Linear Discriminants (LD), and Artificial Neural networks (ANN) [13]. Despite the numerous
classification methods proposed to enhance feature quality, certain drawbacks persist in these algorithms. The
effectiveness of classification hinges greatly on the choice of features, a process that may be susceptible to
subjective influences. Additionally, these methods frequently encounter overfitting issues [14]. Furthermore,
various factors may cause performance discrepancies, including high noise levels, variations in ECG signals among
patients, heterogeneous ECG sensor types, and disparities in arrhythmia prevalence across datasets.

In comparison to traditional methods, deep learning architectures have demonstrated significant advantages,
particularly with the recent advancements that have introduced novel neural networks capable of automatically
extracting and classifying features. Numerous ECG classification techniques based on deep learning models have
emerged in the literature [15], demonstrating impressive performance. However, these models are not without
challenges. A primary concern is overfitting, where a model becomes too closely aligned with the training data,
leading to reduced performance when encountering new, unseen data. This highlights the importance of careful
model design and the application of regularization techniques to ensure better generalization. Additionally, deep
learning models typically require substantial computational resources. Larger models with more layers demand
more processing time and memory, which can hinder their efficiency in long-term ECG monitoring on low-power
or mobile devices. Another significant challenge is the issue of class imbalance in ECG datasets, where certain
arrhythmia types are underrepresented compared to others. This imbalance can cause classification algorithms
to favor the majority classes, resulting in decreased accuracy for the minority classes. To address this, various
techniques such as oversampling, undersampling, cost-sensitive learning, ensemble methods, and specialized loss
functions are employed to manage class imbalance and improve overall classification performance.

In the pursuit of higher classification accuracy for arrhythmias in clinical settings, attention mechanisms
[16, 17] have proven valuable in effectively selecting and emphasizing relevant feature information. Despite these
advancements, there is still significant potential for further improvements in classification accuracy.

Motivated by the findings presented in the referenced studies, we proposed a novel deep learning model that
leverages the strengths of both Convolutional Neural Networks (CNN) and attention mechanisms. This model
is designed to operate on electrocardiogram (ECG) data, autonomously extracting informative dependencies and
combining them with RR-interval features and Higuchi Dimensional Fractal to enhance the precision of arrhythmia
detection. The key contributions of this work can be outlined as follows:
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1. Proposed a novel deep learning model for inter-patient paradigm classification by incorporating an attention
mechanism into a Convolutional Neural Network (CNN), facilitating enhanced focus on critical information
within ECG signals.

2. Utilized the Higuchi Dimensional Fractal (HDF) as a valuable tool, showcasing its effectiveness in capturing
the intrinsic complexity of ECG signals. Anticipated the pivotal role of specific HDF values in accurately
distinguishing between four types of arrhythmias.

3. Validated our proposed model using the publicly available MIT-BIH Arrhythmia dataset, and its
generalization capabilities were assessed on the INCART dataset, demonstrating high performance in
identifying four classes of arrhythmias compared to models reported in the state-of-the-art.

The structure of the remainder of this paper is as follows: The literature review and description of ECG signals
are provided in Section 2. The methodology for detecting ECG arrhythmias, including data preprocessing and the
proposed model, is detailed in Section 3. The results of the evaluation and experiments are discussed in Section 4,
and the conclusion is provided in Section 5.

2. Related work

2.1. ECG Signal

An electrocardiogram (ECG) visually depicts the heart’s electrical activity, providing insight into its functioning.
This recording is taken from the body’s surface and is a valuable tool for diagnosing cardiac ailments. Cardiologists
analyze the ECG graph to detect irregular heart rhythms, changes in the structure of the heart’s chambers, including
the atria and ventricles, and conditions like ischemia, myocardial infarction, and other heart disorders involving
changes in electrical conduction.

The ECG waveform comprises five waves: P, Q, R, S, and T [18]. Each of these waves corresponds to a
distinct stage in the heart’s cycle of polarization and depolarization. The P-wave signifies the depolarization of
the atria, indicating an atrial event. The PR interval measures the duration between the onset of the P-wave and the
commencement of the Q-wave, reflecting the time taken for electrical impulses to traverse between the atria and
ventricles. The QRS complex designates the depolarization of the ventricles, indicating a ventricular event, while
atrial repolarization also transpires during this phase. The T-wave signifies the repolarization of the ventricles.
Finally, the RR interval signifies the temporal gap between two successive QRS complexes.

2.2. Literature review

Over the decades, substantial progress has been made globally in the field of ECG signal classification, utilizing
a variety of methodologies ranging from traditional approaches to advanced machine learning and deep learning
techniques.

Early methods for ECG signal classification relied on a sequential process involving three steps: signal
preprocessing, feature extraction, and classifier design. The primary aim of preprocessing was to remove
various forms of noise, such as motion artifacts and power line interference, from ECG recordings. Numerous
denoising techniques have been explored, including low-pass filters, adaptive filters [19], and filter banks [20].
After preprocessing, important fiducial points were correctly identified and extracted, which provided useful
morphological information about the heartbeats, such as the P wave, R peak, T wave, and QRS complex. Several
algorithms and techniques were developed to precisely locate these fiducial points within the ECG signal [21, 22].
The next step involved extracting features from ECG segments. Many algorithms for classifying ECG beats relied
on manually engineered feature extraction techniques. The advent of machine learning, particularly supervised
classification techniques [23, 24, 25], transformed ECG signal classification. Algorithms such as Decision Trees
(DT), K-nearest Neighbors (KNN), Support Vector machines (SVM), and Artificial Neural Networks (ANN
[26, 27, 28, 29] have demonstrated considerable success in classifying ECG signals. Elhaj et al. [30] combined
Principal Component Analysis (PCA) with Discrete Wavelet Transform (DWT) coefficients to classify ECG
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signals, achieving an impressive intra-patient classification accuracy of 98.91%. Ye et al. [26] employed a
combination of Independent Component Analysis (ICA) and Discrete Wavelet Transform (DWT) to extract
morphological features from ECG signals. These features were then integrated with dynamic RR-interval features
and classified using a Support Vector Machine (SVM). This approach yielded an overall sensitivity of 53.46% and
a precision of 62.79%. Zhang et al. [2] proposed a novel methodology for selecting disease-specific features to
investigate their significance in distinguishing different types of heartbeats. Their study reveals that the RR interval
emerges as the most effective feature in discerning between diseased and normal heartbeats. Additionally, they
find that morphological distance, quantified by Dynamic Time Warping (DTW) distance between a given beat
and the median beat in a recording, is particularly valuable for distinguishing between different types of diseased
heartbeats. In this research, they employ features selected from both ECG leads and input them into a combined
Support Vector Machine for the classification of heartbeats. Their model attains an inter-patient classification
overall accuracy of 86%. Shi et al. [31] proposed a hierarchical classification approach employing weighted extreme
gradient boosting (XGBoost) and recursive feature reduction, resulting in an inter-patient classification accuracy
of 92.1%. Chen et al. [32] integrated weighted RR-interval features with projected ECG features, demonstrating
high classification performance in the intra-patient evaluation paradigm but encountering reduced sensitivity and
precision in the inter-patient evaluation paradigm.

Although these methods achieved high classification rates, they heavily relied on the quality of features extracted
from ECG signals. Many frameworks treated ECG signals as sequences of stochastic patterns, necessitating
complex feature extraction processes, and high sampling rates. However, the robustness of these techniques was
limited due to significant intra-class variation observed in ECG signals. The emergence of deep learning marked
a significant turning point in ECG signal classification. Convolutional Neural Networks (CNNs) and Recurrent
Neural Networks (RNNs) demonstrated their ability to autonomously extract discriminative features. CNNs, in
particular, gained widespread adoption in ECG classification due to their capability to automatically capture crucial
patterns and features.

Within the intra-patient paradigm of ECG beat classification, various approaches were proposed. For instance,
Acharya et al. [15] introduced a nine-layer Convolutional Neural Network (CNN) to classify five categories of
ECG beats using the MIT-BIH arrhythmia dataset. They addressed the class imbalance challenge among these
categories using a data augmentation technique, resulting in an impressive overall classification accuracy of
94.03%. Other approaches for heartbeat classification, including CNN-based models, were proposed in references
[33, 34]. Ubeyli [35] introduced a classifier based on Recurrent Neural Networks (RNN) with an eigenvector
method, achieving an average accuracy of 98.06% in detecting four distinct arrhythmia classes. Shaker et al.
[36] introduced a data augmentation technique utilizing GANs to address the class imbalance issue in the MIT-
BIH arrhythmia dataset. They employed two distinct deep learning approaches, both relying on deep CNNs.
The first approach achieved an impressive overall accuracy rate of 98.30% and a precision of 90.00%, while the
second approach attained an overall accuracy of 98.00% and a notably higher precision of 93.95%. Moreover,
Long Short-Term Memory Networks (LSTMs) have emerged as a powerful tool for discerning between various
beat classes. Studies cited in [37, 38] developed arrhythmia detection models based on LSTMs, showcasing
robust recognition performance across five different beat categories while mitigating computational overhead. This
highlights the efficacy of LSTMs in capturing temporal dependencies in ECG data. Additionally, a hybrid model
that merges Convolutional Neural Networks (CNNs) and LSTMs was introduced in [39] for arrhythmia detection.
This hybrid approach harnesses both temporal and spatial information in ECG signals. Particularly noteworthy is
its utilization of variable-length ECG segments, enhancing its adaptability in the context of arrhythmia detection.
Within the context of inter-patient beat classification, various approaches were developed to classify heartbeats
from different patients. For example, Sellami et al. [40] devised a robust deep Convolutional Neural Network for
arrhythmia classification without denoising the ECG signals. Subsequently, Zhang et al [41] proposed a CNN-
based adversarial deep learning model for the inter-patient evaluation paradigm, comprising an encoder, classifier,
and adversary networks. The classifier integrates input features such as ECG segments and normalized local and
global RR intervals, treated as distinct channels. While the model exhibited promising results, its complexity may
limit its applicability, particularly in edge-computing scenarios. Alternatively, T.Wang et al. [42] presented an
inter-patient ECG model employing CNNs and Continuous Wavelet Transform (CWT). A 2D CNN was then
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employed alongside CWT-generated time-frequency scalograms of ECG segments and RR intervals for beat
classification. Nevertheless, the CWT preprocessing step introduced additional computational overhead to the
classifier, potentially restricting its suitability for edge inference scenarios. Shi et al. [43] presented a multi-input
neural network architecture that leveraged RR interval features and divided the heartbeat into three segments as
input. Their model achieved an impressive accuracy of 94.2% for four classes in the inter-patient paradigm. Niu et
al. [44] proposed an innovative deep learning approach for the inter-patient paradigm, incorporating symbolization
techniques and a multi-perspective Convolutional Neural Network. Their method achieved a high accuracy of
96.4%. Li et al. [45] introduced a 3-D input format and employed a multi-field CNN to attain notable accuracy on
public datasets. Additionally, Guo et al. [46] combined Dense CNN and Recurrent Neural Network architectures
to process long-term ECG segments, resulting in impressive performance in arrhythmia detection.

Despite these notable research efforts, several challenges persist in arrhythmia detection. These challenges
primarily revolve around two key issues. Firstly, the implementation of deep learning techniques often necessitates
high-performance computing resources, posing difficulties in resource-constrained environments. Secondly, these
techniques may exhibit bias stemming from the characteristics of the training data, resulting in reduced accuracy
when confronted with new or diverse datasets. The proposed study introduces a novel ECG classification model
employing an Attention-based Convolutional Neural Network to address these limitations. Evaluated within
the inter-patient paradigm, this model demonstrates superior performance compared to existing literature. By
leveraging the advantages of deep learning, this approach enhances the accuracy and effectiveness of ECG signal
classification.

3. Materials and Methods

The proposed method comprises three essential components: preprocessing, feature extraction, and classification,
as visually depicted in Figure 1. The preprocessing phase incorporates two key steps: baseline wander removal and
heartbeat segmentation. The second phase is dedicated to feature extraction, where the objective is to represent the
changes in the original signal precisely. Finally, the third phase involves the classification of arrhythmias. Below,
we provide an overview of each of these components.

3.1. Description of datasets

In this study, two distinct ECG datasets are used: the MIT-BIH-arrhythmia dataset and the INCART dataset, both
of which are publicly accessible through PhysioBank [47]. While most research on heartbeat classification has
historically utilized the MIT-BIH arrhythmia dataset for training and evaluation [48], our model undergoes training
and evaluation exclusively on this dataset to ensure fair comparisons. Additionally, we utilize the INCART dataset
to evaluate the generalization ability of the proposed model.

All ECG recordings within these datasets share a uniform duration of 30 minutes. However, they differ in
sampling frequency. Before utilization, it is necessary to resample the recordings to a uniform 360 Hz frequency.
The recordings come equipped with comprehensive heartbeat-level annotations. These annotations initially consist
of 15 distinct classes, which are later grouped into 5 superclasses based on the AAMI [3]. Among them, class Q
was excluded from the analysis due to the limited number of samples available. Further details regarding these
datasets are provided below.

• MIT-BIH arrhythmia dataset

The dataset comprises 48 ambulatory ECG recordings with two leads from 47 patients, each identified by
a 3-digit number. The recordings were sampled at 360 Hz per channel with 11-bit resolution over a 10 mV
range. Typically, the first lead used is the modified limb lead II (MLII), except for recording 114, where a
different lead is utilized. However, for this study, only the MLII lead is utilized. The recordings containing
paced beats (i.e., 102, 104, 107, and 217) were excluded per the (AAMI).

As previously indicated, the primary goal of this paper is to evaluate the efficacy of the proposed method
within the inter-patient paradigm. To enable a comparison with prior studies, we adopted a widely used
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Figure 1. Proposed work-flow diagram for Arrhythmia classification.

data partitioning approach introduced by de Chazal et al. [4] for the MIT-BIH arrhythmia dataset. Each
dataset, DS1 and DS2, comprises 22 records meticulously selected to maintain a similar distribution of
different beat types. DS1 is designated for training purposes, while DS2 is reserved for evaluating the
method’s performance. Importantly, no patient overlaps between the two datasets. The division details and
corresponding distribution of heartbeat classes are presented in Table 1.

• INCART 12-Leads arrhythmia dataset

This dataset contains 75 ECG recordings, with a sampling frequency of 257 Hz, each comprising the standard
set of 12 leads. In alignment with this study’s methodology, only the modified limb lead II is utilized. The
annotations for these recordings were initially generated using an automated algorithm and subsequently
refined manually, adhering to the established PhysioBank beat annotation definitions. Notably, none of
the recordings include pacemakers; however, most feature ventricular ectopic beats. The distribution of
heartbeats within the INCART dataset is presented in Table 2.

3.2. Preprocessing

Preprocessing the original data is crucial as an initial phase to achieve optimal performance of the proposed model.
This phase primarily consists of the following two steps.

3.2.1. Removing baseline wander The interference caused by noise artifacts in the ECG signal, referred to as
Baseline Wander, typically falls within the frequency range of 0.15 to 0.3 Hz and often originates from factors
such as breathing apparatus. Eliminating Baseline Wander is essential for enhancing the accuracy of ECG analysis,
particularly in reducing irregularities associated with heartbeats. Various methods can be employed to eliminate or
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Table 1. The inter-patient paradigm distribution in MIT-BIH arrhythmia dataset.

Datasets N S V F Records
DS1 45866 944 3788 415 101, 106, 108, 109, 112, 114

115, 116, 118, 119, 122, 124
201, 203, 205, 207, 208, 209
215, 220, 223, 230

DS2 44258 1837 3221 388 100, 103, 105, 111, 113, 117
121, 123, 200, 202, 210, 212
213, 214, 219, 221, 222, 228
231, 232, 233, 234

Table 2. Heartbeat distributions in the INCART dataset.

Dataset N S V F
INCART 153491 1958 19993 219

mitigate Baseline Wander from the ECG signal. In this study, two consecutive filters are utilized [49]: a median
filter with a width of 200 ms followed by a median filter with a width of 600 ms. Subsequently, the resulting
baseline is obtained by subtracting it from the raw ECG signal. (see Figure 2).

3.2.2. Data segmentation Before undertaking ECG classification, a critical preliminary step involves the extraction
of individual heartbeats from the ECG signal. This process typically involves accurately detecting QRS waves and
identifying fiducial points within each heartbeat. In our specific study, we achieved this task by segmenting the
ECG signal into distinct heartbeats. This segmentation was accomplished by utilizing the positional information
of R-peaks labeled in the MIT-BIH arrhythmia dataset. Each extracted heartbeat consisted of 200 sample points,
meticulously centered around the position of the R-peak, as illustrated in Figure 3.

3.3. Features extraction

3.3.1. RR-Interval The RR interval, which represents the time duration between consecutive R-peaks on the ECG
waveform, plays a crucial role in heartbeat classification. Empirical evidence, as detailed in [2], underscores the
significance of RR intervals in differentiating between various heartbeat conditions, particularly in distinguishing
normal beats from abnormal conditions like supraventricular premature beats and ectopic beats. This study
introduces the extraction of four specific types of RR intervals from ECG signals, as described in [50], the previous
RR-interval, post-RR-interval, local RR-interval, and the ratio RR-interval.

The computational complexity of extracting four specific types of RR intervals depends on the algorithms and
techniques used for extraction. This complexity is influenced by the computation of interval durations. Each type of
RR interval extraction typically involves linear complexity, as it requires basic arithmetic operations or averaging
over detected R-peaks.

3.3.2. Higuchi Dimensional Fractal (HDF) Fractals can be comprehended through either statistical or
morphological interpretations of self-similarity within an object. Self-similarity entails the object reproducing
its patterns across multiple scales, preserving its scale invariance. This self-replicating property holds significant
importance as it establishes enduring connections between measurements conducted at diverse scales and
resolutions. This distinctive trait is indispensable for gaining insights into an object’s behavior across a broad
spectrum of scales. The Fractal Dimension (FD) is introduced as a metric to gauge the extent of self-similarity and
the scaling characteristics of an object or dataset. It provides a means to depict the intricacy and level of detail an
object possesses as you zoom in or out. Diverse methods are available for calculating the FD, each rooted in various
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Figure 2. The ECG signal before and after applying the median filter.

Figure 3. Segmentation of ECG Signal.
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polyscalar relationships, such as variance, length, correlation, entropy, and spectral properties. In the context of this
work, our primary focus will be on the Higuchi Dimensional Fractal (HDF).

The Higuchi Dimensional Fractal (HDF) serves as a nonlinear measure of waveform complexity when
applied in the time domain [51]. For a discretized signal represented as a sequence of data points
X = {X(1), X(2), . . . , X(N)}, where N is the total number of samples, the Fractal Dimension is computed as
follows:

First, a set of k new self-similar time series Xk
m is constructed as:

Xk
m =

{
X(m), X(m+ k), X(m+ 2k), X

(
m+

[
N − k

k

]
k

)}
(1)

for m = 1, 2, ..., k where m represents the initial time, k denotes the discrete time interval between points
(k = 1, 2, . . . , kmax) with kmax being a free parameter and [.] denoting the floor function.

The length, Lm(k), of each curve Xk
m is then determined as follows :

Lm(k) =
N − 1[

N −m

k

]
k2

[
N −m

k

]
∑
i=1

|X(m+ ik)−X(m+ (i− 1)k)| (2)

where
N − 1[

N −m

k

]
k

is a normalization factor.

Next, the mean value of the curve length L(k) for each k = 1, 2, . . . , kmax is obtained by averaging Lm(k) for
all m, expressed as:

L(k) =
1

k

k∑
m=1

Lm(k) (3)

The relationship between L(k) and k follows a power law, represented as L(k) ∝ k−HDF. To estimate the
Higuchi Dimensional Fractal (HDF) for an ECG signal, the slope of the linear least-squares fit to the plotted points
{ln(L(k)), ln(1/k)} is calculated. This slope provides the fractal dimension HDF, determined using the formula
for each k = 1, 2, . . . , kmax:

HDF =
ln(L(k))

ln(1/k)
(4)

The values of the Higuchi Dimensional Fractal (HDF) were obtained by varying the time interval parameter, k,
within a specific range in the study. Using different values of k within this range generated a corresponding series
of HDF values, which were utilized as a feature in the analysis.

Selecting the parameter kmax is crucial for obtaining an accurate estimation of the Higuchi Dimensional Fractal
(HDF). This parameter defines the maximum number of new self-similar time series generated from the original
signal. A kmax that is too low may not capture the full complexity of the signal, while a kmax that is too high can
introduce noise and make the estimation unstable. To determine the optimal kmax, it is common to plot the HDF
as a function of different kmax values and identify local maxima or plateaus, where the HDF estimation becomes
relatively stable. The optimal kmax is typically the one that corresponds to these points, as it represents a good
balance between accuracy and noise sensitivity. In practice, it is recommended to choose the smallest kmax that
provides a reliable estimate, in order to minimize computational complexity while maintaining the precision of the
analysis. In the computations detailed in the results section, a maximum value of kmax, was set to 30, chosen for
its effectiveness in achieving the desired analytical results and accuracy.

The computational complexity of calculating the HDF is dominated by the construction of self-similar time
series and the calculation of curve lengths, which have a linear complexity for the number of samples in the signal.
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Therefore, the total computational complexity of the HDF calculation is O(kmax ×N), where N is the length of
the input signal.

3.4. Description of the proposed model

3.4.1. Overview and motivation Detecting irregular ECG signals relies on two key aspects: identifying
abnormalities in the shape of the ECG waveform and spotting deviations in the timing of irregular ECG fluctuations.
A model designed for this purpose must excel in feature extraction to precisely identify various ECG patterns.
Convolutional Neural Networks have gained traction for their exceptional performance in various tasks, particularly
in domains such as image and speech recognition, thanks to their ability to extract local features from input data
autonomously.

However, it’s crucial to acknowledge that a standalone CNN, originally intended for data classification, might not
inherently capture the crucial temporal aspects required for ECG analysis. To address this limitation, combining
CNNs with RR intervals presents itself as a logical approach. This combination effectively manages temporal
information while leveraging the CNN’s feature extraction capabilities. Moreover, incorporating fractal dimensions
enhances the model’s ability to characterize the intricacies within the ECG signal. Additionally, the introduction
of an attention mechanism is expected to bring benefits in two aspects. Firstly, it could assist the model in
directing its attention towards critical information within ECG signals, enhancing classification accuracy. Secondly,
it could assist in identifying abnormal signal patterns and their specific locations, thereby enhancing the model’s
interpretability.

3.4.2. Structure of the proposed model This study proposes a new method, depicted by the model structure in
Figure 4. In this model, the ECG signal undergoes initial processing through the segmentation module, yielding
several segmented beats. These beats are then directed to the feature extraction module, which extracts features for
each beat using convolutional blocks. Subsequently, these features enter the inter-beat feature fusion module, where
an attention block is employed. This attention block assigns varying weights to accentuate valuable beats while
attenuating less informative ones. The resultant fused features are then concatenated with manually extracted RR-
interval values and HDF features. Finally, two fully connected layers act as a classifier, producing the classification
probability.

• Convolutional block (BlockConv)

The proposed model comprises three convolution blocks, each consisting of a convolution layer, an
instance normalization (IN) layer, and the Mish activation function. The model’s input is preprocessed
electrocardiogram data in one-dimensional form.

In the first block, a single convolution layer with a kernel size of 8 and 16 filters is utilized. Subsequently,
in the following two blocks, the convolution kernel size is reduced to 6, with filter numbers of 32 and 48,
respectively.

An adaptive max pooling layer is applied to reduce the dimensionality of the feature map. Additionally, a
flatten layer is used to convert the output from the previous layer into a single vector.

• Attention block

The attention block, as illustrated in Figure 4, is pivotal in our model for effectively incorporating
the self-attention mechanism to combine features extracted from different heartbeats. In the context of
electrocardiogram (ECG) signal analysis, where capturing intricate patterns and dependencies is crucial, the
self-attention mechanism plays a vital role. ECG signals often exhibit dynamic variations and irregularities,
and the self-attention mechanism enables our model to selectively prioritize certain segments or patterns
within the signal, allowing for a more nuanced understanding of the underlying cardiac activity. This
adaptability is particularly significant in ECG analysis, as it empowers the model to discern subtle anomalies
or variations that might be indicative of cardiac abnormalities. Therefore, the integration of the self-
attention mechanism within the attention block enhances the model’s ability to discern and leverage crucial
information from diverse beats within the ECG signal.
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The attention mechanism as defined in reference [52] operates through the following steps: starting with a set
of n feature vectors denoted as F = [f1, f2, . . . , fn]. Each vector fi is first transformed using the non-linear
activation function tanh(.), producing a set of activated vectors U = [u1, u2, . . . , un]. Each activated vector
ui is then processed through a series of k parallel linear layers, resulting in k different representations for
each vector ui. These representations are mathematically expressed as:

ui = tanh(Wifi + bi), (5)

vi,j = Wi,jui + bi,j , for j = 1, 2, . . . , k (6)

where Wi,j and bi,j are the weight matrices and biases for the j-th linear layer applied to ui.

After obtaining the k representations for each ui, the softmax function is applied to these representations
to calculate attention weights. The softmax function normalizes these values to a range between 0 and 1,
providing the relative importance of each representation:

ai,j =
exp(vi,j)∑k
l=1 exp(vi,l)

, (7)

where ai,j represents the attention weight for the j-th layer of the vector ui.

Finally, a weighted sum of the k representations is computed using the attention weights to produce the
attention output vector fatt,i for each input feature vector fi:

fatt,i =

k∑
j=1

ai,jvi,j (8)

This attention block enhances the ability of the model to focus on the most informative features by leveraging
multiple parallel linear layers, enabling it to capture complex relationships between input features and
improve performance on tasks such as classification and signal analysis.

4. Experiments and Results

4.1. Evaluation metrics

In this paper, we assessed the performance of our model using three metrics, including overall accuracy (Acc),
sensitivity (Sen), and precision (Ppr) for each class. These metrics are calculated as follows:

Acc =
Tp + Tn

Tp + Fp + Fn + Tn
(9)

Sen =
Tp

Tp + Fn
(10)

Ppr =
Tp

Tp + Fp
(11)

where Tp represents true positives, Tn indicates true negatives, Fn stands for false negatives, and Fp signifies
false positives.
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Figure 4. Architecture of the proposed model.

4.2. Training process

The raw dataset is split into a training dataset and a testing dataset. The training process consisted of 50 epochs,
with a batch size of 512 for the model. We utilized the Rectified Adam algorithm with a weight decay of 0.0034
for model optimization. Additionally, a learning rate decay strategy is used, reducing the learning rate every 7
epochs with a decay factor gamma of 0.65. Initially, the learning rate is set to 0.0275. This gradual reduction in
the learning rate helps stabilize the model in later epochs. We employed the cross-entropy algorithm as the loss
function, incorporating weighted loss due to the class imbalance present in the dataset. Our model is trained on a
system equipped with a single NVIDIA V100 GPU boasting 32 GB of RAM.

4.3. Results and Comparison

The proposed heartbeat detection model’s performance is assessed through the inter-patient evaluation method
using an experimental dataset sourced from MIT-BIH. This dataset is widely employed in ECG research due to its
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comprehensive expert annotations, as described in Section 3. Our experimentation is structured into two distinct
parts, each designed to assess the effectiveness and generalization capability of our model. In the first part, we
adhere to a common research practice by training the model on the DS1 subset of the MIT-BIH arrhythmia dataset
and then evaluating its performance on the DS2 subset. In the second part of our experiments, we focus on cross-
dataset evaluations. For this purpose, we utilize both DS1 and DS2 subsets from the MIT-BIH arrhythmia dataset
to train and validate our model. Once trained, the resulting model is tested using the INCART dataset.

Table 3. Comparison results of our proposed method with existing works for the inter-patient paradigm.

Model Class Acc (%) N S V F

Ppr(%) Sen(%) Ppr(%) Sen(%) Ppr(%) Sen(%) Ppr(%) Sen(%)

Sellami et al. [40] 3 95.08 - - - - - - - -
Zhang et al. [41] 3 94.70 98.00 96.20 90.80 78.80 94.30 92.50 - -
Garcia et al. [53] 3 92.4 98.00 94.00 53.00 62.00 59.40 87.30 - -
Lin and Yang [7] 3 93 99.30 91.60 31.60 81.40 73.70 86.20 - -
T.Wang et al. [42] 3 97.75 98.65 99.25 80.37 65.58 93.46 95.46 - -
Zahid et al. [54] 3 98.19 98.85 99.30 83.51 83.37 97.38 91.39 - -
Farag [55] 3 98.18 99.00 99.10 82.68 81.60 95.63 95.00 - -
Xu et al. [56] 3 98.50 98.64 98.87 82.48 83.06 90.04 93.46 - -
Berrahou et al. [57] 3 98.73 99.05 99.73 95.02 79.02 96.79 96.33 - -
HS+RR 3 98.32 98.84 99.57 90.96 75.69 94.65 94.00 - -
HS+RR+HDF 3 98.75 99.01 99.73 94.58 78.91 97.22 96.68 - -

Shi et al. [31] 4 92.1 99.5 92.1 46.2 91.7 88.1 95.1 15.12 61.6
Shi et al. [43] 4 94.2 98.92 95.26 47.85 90.74 84.49 92.92 - -
Niu et al. [44] 4 96.4 97.4 98.9 76.6 76.5 94.1 85.7 1.79 0.25
Li et al. [45] 4 91.44 98.92 91.81 35.41 89.05 90.11 95.15 20.36 32.22
G.Wang et al. [58] 4 94.62 98.13 96.06 82.89 71.92 80.16 92.01 23.32 62.64
Xia et al. [59] 4 94.69 97.41 97.44 56.73 68.41 88.70 82.91 - -
Zhou et al. [60] 4 95.6 98.8 96.9 53.8 89.3 92.3 93.3 - -
Chen et al. [61] 4 96.77 97.81 99.15 76.10 63.90 96.78 88.84 54.25 47.68
HS+RR 4 97.76 98.23 99.55 91.00 78.75 95.10 95.78 00.00 00.00
HS+RR+HDF 4 97.96 98.46 99.54 90.28 82.51 95.89 97.05 3.57 0.26

4.3.1. Inter-Patient Classification This section focuses on validating our method using the inter-patient paradigm
for heartbeat classifiers. Table 3 displays the results of inter-patient classification involving three and four classes
using precision and sensitivity metrics for each class, along with the average accuracy computed for the entire
dataset. The models compared in Table 3 include the HS+RR model and its extension with HDF features, denoted
as HS+RR+HDF.

Among the models evaluated for classifying arrhythmias into three classes, HS+RR exhibits notable accuracy
at 98.32%, with corresponding sensitivity rates for classes N, S, and V standing at 99.57%, 75.69%, and 94.00%
respectively. Our model, HS+RR+HDF, achieves an outstanding average accuracy of 98.75% for three classes. It
also demonstrates sensitivity scores of 78.91% and 96.68% for S and V, respectively.

On the other hand, the HS+RR model achieves an accuracy of 97.76%, with respective sensitivities of 99.55%
for class N, 78.75% for class S, and 95.78% for class V. However, its sensitivity for the minority class F is 0.00%,
indicating potential challenges in classifying this class. Incorporating HDF features in HS+RR+HDF leads to a
significant improvement in sensitivity for class F, resulting in an increased accuracy of 97.96% for four classes. It
shows lower average scores due to challenges in F class detection due to the limited number of class F heartbeats
and their resemblance to class N. However, our models maintain satisfactory sensitivity in the N, S, and V classes.

These results lead to several observations. Our models presented in Table 3 demonstrate high performance when
faced with the challenge of inter-patient ECG classification. Notably, in the overall classification performance,
class V demonstrates superior performance compared to class S. This variance might be influenced, in part, by the
smaller sample size of class S but its greater number of subclasses compared to class V.
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The HS+RR+HDF model consistently surpasses HS+RR across all metrics for N, S, and V in the three-class
classification, as well as sensitivity for S and V in the four-class classification. This indicates that integrating HDF
as a feature significantly enhances the model’s performance. As a result, it enhances precision and sensitivity in
distinguishing between different cardiac arrhythmias, thereby facilitating more accurate diagnoses.

Figure 5 and Figure 6 present a comparison of accuracy and loss between two models, HS+RR+HDF
and HS+RR, during the training process using the test set for the inter-patient paradigm with three and four
classes respectively. The HS+RR model exhibits oscillation during training, whereas the HS+RR+HDF model
demonstrates superior stability. As training progresses, accuracy gradually improves and eventually stabilizes.
Additionally, during epochs 20 to 50, the model consistently attains reduced and stabilized loss values across the
training and validation datasets. The proposed model, integrating RR intervals and HDF features, shows notable
stability and accuracy. Moreover, it achieves faster convergence and avoids overfitting compared to the HS+RR
model.

Figure 5. Training/test accuracy and loss curves for the inter-patient paradigm (3 classes).

Our proposed model is compared with existing models using the identical test set for three and four classes.
Table 3 illustrates the summarized comparative results. The adversarial CNN model described by [41] achieved
sensitivities of 78.8% for S and 90.8% for V, with corresponding precisions of 92.5% and 94.3%, respectively.
Zahid et al. [54] introduced a 1D Self-Organizing Neural Network (ONN) for ECG arrhythmia classification,
achieving sensitivities of 83.37% for S and 91.39% for V. Xu et al. [56] proposed an model for arrhythmia
classification by incorporating residual and attention mechanisms in the U-Net. achieved an accuracy of 98.5%
and sensitivities for the classes S and V of 83.06% and 93.46%, respectively. Berrahou et al. [57] proposed a new
method for arrhythmia detection in inter patient by using RR intervals and entropy rate with CNN architecture,
achieving sensitivities of 79.02% for S and 96.33% for V. While methods presented in [41, 54, 56, 57] exhibit
some advantages, particularly for the S class, our proposed method surpasses these methods in terms of average
accuracy and excels in all metrics for other classes. Farag [55] presented a CNN operating on the first derivative of
the ECG signal, leveraging matched filters to reproduce different arrhythmia classes within convolutional layers.
Additionally, the model processed RR intervals through a stack of fully connected layers, achieving an accuracy of
98.18%. Lin and Yang [7] introduced a method based on normalized and non-normalized RR intervals, extracting
ECG morphology through wavelet analysis and a linear prediction model. However, this method exhibits a lower
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Figure 6. Training/test accuracy and loss curves for the inter-patient paradigm (4 classes).

prediction accuracy than our proposed method. Ultimately, our method surpasses those proposed by [40, 42, 53] in
all aspects, as shown in Table 3.

Regarding four class classifications, our method demonstrates superior performance compared to all techniques
with four classes listed in table 3 in terms of accuracy. Niu et al. [44] introduced an innovative approach for
inter-patient heartbeat classification, utilizing a symbolization method and a multi-perspective convolutional neural
network. While achieving a high classification accuracy of 96.4%, their model exhibited a low sensitivity score for
class F (0.25%). Shi et al. [31] developed a pair of hierarchical weighted XGBoost classifiers, achieving impressive
sensitivity values for N, S, and V of 92.1%, 91.7%, and 95.1%, respectively. Li et al. [45] proposed a DNN-
based automatic heartbeat classifier involving a complex process for beat-to-beat correlation calculation. Although
methods presented in [31, 45] demonstrated some advantages over our approach, particularly for the S class, the
overall performance fell short of expectations. Shi et al. [43] introduced a deep neural network with multiple
inputs for classifying heartbeats, achieving the best sensitivity result for S beats at 91.7%, yet the precision for
the S class was only 47.85%, with an overall accuracy of 94.2%. Meanwhile, Xia et al. [59] suggested a novel
generative adversarial network to enhance minority class features, yielding sensitivity values of 97.44%, 68.41%,
and 82.91% for N, S, and V, respectively. Despite these advancements, the overall classification performance was
inferior to our proposed method, primarily attributed to inherent limitations in generative models. Additionally,
G.Wang et al. [58] utilized CNN to construct an ECG classification model in an unsupervised manner, achieving
a sensitivity of 92.01% for the V class, however, the sensitivity for the S class was only 71.92%. Compared to
Chen et al. [61], which demonstrates the best performance reported, our method shows an increase in accuracy by
1.19%, as well as an improvement in the sensitivity for the S and V classes by 18.61% and 6.21% respectively.
However, it does lead to a decrease in the sensitivity for the F class by 47.42%. The clear trend in Table 3 is that
most of the listed studies faced challenges detecting S and F heartbeats. In summary, this comparative analysis
stands out ECG heartbeat classification results with the proposed method within the inter-patient paradigm. These
results collectively underscore the effectiveness of our approach in accurately identifying S and V arrhythmia cases.
Nevertheless, there is still potential for enhancing the performance of the F class.

4.3.2. Generalization of the proposed model The model is trained and validated during this experiment using DS1
and DS2 datasets, as detailed in Table 1. Following this, the trained model underwent testing on the INCART
dataset. The summarized outcomes of the cross-dataset inter-patient validation experiment, focusing on three
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classes, are detailed in Table 4. Although the model’s accuracy slightly decreased by 0.63% in this testing dataset,
its performance in classifying N (normal) and V (ventricular ectopic beat) instances remained consistent. However,
there was a noticeable decline in the classification of S (supraventricular ectopic beat) instances, with precision and
sensitivity values of 69.40% and 59.65%, respectively. This drop in performance is attributed to variations in the
training and testing datasets, acquired under different conditions and using distinct equipment. Nonetheless, the
overall performance of our proposed classifier remains acceptable. Figure 7 shows the accuracy and loss curves for
the HS+RR+HDF model trained on the DS1 dataset and tested on the Incart dataset in an inter-patient paradigm
across three classes over 50 epochs. The curves indicate better convergence and no signs of overfitting. The
proposed model, which integrates RR intervals and HDF features, demonstrates notable stability and accuracy.
Importantly, our model is comparable to or better than other models listed in Table 4 concerning the overall
accuracy classification and demonstrates comparable results for N, V, and S classes. This highlights the model’s
ability to generalize well to unseen data.

Table 4. Generalization performances (%) on INCART dataset.

Model Test Acc (%) N S V

Ppr(%) Sen(%) Ppr(%) Sen(%) Ppr(%) Sen(%)

M Llamedo [62] 91.00 99.00 92.00 11.0 85.00 88.00 82.00
He et al. [63] 91.60 99.60 92.00 14.40 81.00 81.90 91.00
G.Wang et al. [58] 95.36 - - 37.38 44.07 92.08 77.02
T.Wang et al. [42] 92.70 93.35 99.70 40.57 59.65 98.34 41.19
Farag [55] 97.23 - - - - - -
Berrahou et al. [57] 98.20 98.74 99.57 65.41 69.25 97.39 90.38
HS+RR+HDF 98.12 98.47 99.68 69.40 59.65 97.79 89.74

Figure 7. Accuracy and loss curves of HS+RR+HDF model using DS1 as training set and Incart dataset as the test set for the
inter-patient paradigm (3 classes).

4.4. Computational Complexity Analysis

The computational complexity of our method is influenced by the individual complexities of its preprocessing,
handcrafted feature extraction, automated feature extraction, and classification using the Attention-based CNN
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model. While many of these components demonstrate linear or near-linear complexity, the automated features
extraction and classification phases, governed by the CNN model, may introduce significant complexities
depending on the architecture and training process of the model. Understanding the computational complexity
of each component is crucial for assessing the efficiency and scalability of our method, particularly when dealing
with large datasets or real-time applications. However, as highlighted in section 3.3, it is important to note that
the complexities of the other components are negligible compared to the complexity of the Attention-based CNN
model.

Regarding computational complexity analysis, we have computed and presented fundamental metrics for our
model configuration in Table 5, which includes the total count of layers and trainable parameters.

When assessing complexity, our model exhibits significantly lower complexity in contrast to the adversarial-
based CNN model mentioned in [41]. The latter comprises seven convolutional layers and three attention modules.
This simplification makes our model a favorable option for deployment on edge devices, especially when compared
to the model mentioned in the referenced study.

In comparison to the model specified in [40], the total parameter count reported for this model is 1,395,648,
significantly higher than the parameter count of our proposed model. Both the classification results and the model’s
size strongly advocate for the superiority of our proposed classifier over this referenced model. Compared to the
models specified in [54, 55], these models have total parameters substantially less than our proposed model.

When comparing our proposed model with statistical classifier models such as Linear Discriminant Analysis
[7], Support Vector Machine ensembles [53, 63], XGBoost classifier [31], as well as CNN-based approaches
[42, 44, 45, 57, 58], hybrid CNN-LSTM deep learning models [43, 59], and attention mechanisms with
Convolutional Neural Networks and LSTM [56, 60, 61], it’s apparent that the computational complexity of our
model is higher than traditional machine learning-based approaches but comparable to CNN-based methods.

Table 5. Computational complexity of existing models.

Model No. of layers No. of trainable parameters
Sellami et al. [40] 9 1,395,648
T. Wang et al. [42] 5 26.533
Zahid et al. [54] 4 23.619
Farag [55] 2 1245
Berrahou et al. [57] 5 16.693
Our proposed model 9 24.288

4.5. Model Explainability

The concept of explainability revolves around elucidating the diverse patterns within the signal that contribute to
the classification of various types of arrhythmias. The aim is to offer a validation tool designed specifically for
healthcare professionals. Model explainability is achieved through GradCAM, introduced in [64], which involves
three steps: computing the gradient score of the final layer, determining neuron importance weights, and generating
the saliency map. This map visually illustrates the significance of different spatial regions in predicting the class. In
1D Grad-CAM visualizations, ECG segments are depicted as colormaps transitioning from blue to red, indicating
low to high importance. These visualizations provide insights into the relevance of specific points or areas within the
ECG signal for predicting arrhythmia classes. For better model explainability, we deployed a 1-D variant of Grad-
CAM++ [65], an improved iteration of Grad-CAM. Figure 8 illustrates some local Grad-CAM++ visualizations
for normal (N), supraventricular ectopic (S), and ventricular ectopic (V) beat signals. The results suggest that the
QRS complex exhibits the highest gradient value among normal signals, thereby emerging as the most crucial
distinguishing feature for classifying normal beats. Conversely, the PQ interval and ST segment appear less
significant. For supraventricular ectopic rhythms (S), attention shifts to the lower part of the RS segment. Regarding
ventricular ectopic rhythms (V), the saliency maps primarily highlight the QRS complex and the latter part of the
ST segment, emphasizing their critical role in classification, with importance percentages ranging from 80% to
100%.
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Figure 8. 1D-Grad-CAM++ visualization of ECG segment.

5. Discussion and Conclusions

In this paper, we have introduced a new method for inter-patient ECG classification encompassing four types
of cardiac arrhythmias. Our approach combines the Higuchi Dimensional Fractal (HDF) and four RR intervals
extracted from preprocessed ECG data, employing a 1D Convolutional Neural Network (CNN) and an attention
block that encourages the model to focus on the most informative ECG signals. By computing HDF with optimal
kmax, we utilized it as a feature set to improve accuracy. We validate the effectiveness of our proposed method
using the MIT-BIH arrhythmia dataset and evaluate its generalization capability using the INCART dataset.
The experimental results reveal remarkable performance, when tested on the MIT-BIH arrhythmia dataset, the
method attained accuracy rates of 98.75% for three classes and 97.96% for four classes under the inter-patient
paradigm. Furthermore, it exhibited precision levels of 94.58% for supraventricular ectopic beats(S) and 97.22% for
ventricular ectopic beats (V) in the three-class classification. Additionally, when assessing its generalization ability
on the INCART dataset, trained and validated using the MIT-BIH DS1 and DS2 datasets, our method achieved an
average accuracy of 98.12% for three classes. These results highlight our method’s efficacy in detecting S and V
arrhythmia cases, surpassing existing methods in inter-patient analysis.

While our method demonstrates impressive performance compared to existing approaches, it encounters
challenges in accurately identifying the F arrhythmia class within the inter-patient paradigm. This issue stems
from the limited data representation for these minority arrhythmia types in the MIT-BIH dataset. To address
this limitation and enhance the overall effectiveness of our method, we intend to leverage data augmentation
techniques and integrate novel shape descriptors in a future version of our approach. Our future objectives also
include analyzing large and multi-label datasets to evaluate and improve the model’s generalization capabilities.
We intend to increase the model’s complexity and adaptability in future projects, aiming to optimize neural
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network performance, enhance clinical benefits, and reduce the model’s time complexity through the use of various
optimizers, normalization techniques, and regularization methods.

The method proposed in this paper holds considerable promise for use in medical research and clinical practice.
Originally devised for arrhythmia detection, its adaptability extends to a range of areas, such as early detection
of cardiac ischemia, assessment of cardiac function, prediction of cardiovascular events, and analysis of heart
rate variability. Moreover, it holds promise for identifying congenital heart anomalies and sleep disorders like
obstructive sleep apnea. Furthermore, there is potential to extend the model’s functionality to monitor fetal heart
rate. These perspectives highlight this approach’s substantial potential to enhance individuals’ health and overall
well-being.
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