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Abstract In this research, we studied forecasting based on time series data for red onion prices in Nineveh Governorate
using model ARFIMA Autoregressive fractionally integrated moving average. A ARFIMA-FUZZY (FTS) hybrid model
was proposed This model has the advantage and strength of the ARFIMA partial autoregressive integral in addition to
the FUZZY-ARFIMA model and compared them with each other using evaluation criteria (BIC). For prediction, which is
calculated using the statistical program R. The results showed that the ARFIMA-FUZZY (FTS) hybrid model is the best
because it has the lowest (BIC) values. It is also the highest in forecast efficiency because it has the lowest values of forecast
accuracy metrics (MSE, RMSE, MAE) and was chosen as the best forecast model.
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1. Introduction

The time series forecasting process is considered one of the most important methods of statistical analysis that
plays a major role in making decisions under uncertainty. A time series is defined as a group of related historical
measurements and observations of a phenomenon for certain periods of time and are usually equal in length. In
recent decades, researchers have been interested in building time series models due to their importance and their
ability to explain phenomena and data in many fields, including (economic, social, medical, etc.) and even at the
individual level. The most important of these models are the long-memory time series model and the FTS model.
The FTS model is characterized by a flexible mechanism that simulates... Sometimes basic time series models are
used because they do not require the basic assumptions to build the model in the forecasting process. This model
is characterized by high prediction accuracy, In practice, most time series are characterized by two components,
linear and nonlinear, and when making predictions, individual models are not sufficient to model these series.
Recently, several linear, nonlinear, and hybrid models have been proposed for forecasting, in this regard In the
research, a new hybrid model was proposed based on combining the linear regression partial integral moving
average (ARFIMA) model with the nonlinear fuzzy-time model. String model (FTS). The proposed hybrid model
analyzes the linear component of fixed time Using the ARFIMA model, you calculate the estimated values, and
then calculate the residual values For this model by subtracting the estimated values from the original time series.
Non-linear The component is analyzed using the calculated residual (FTS) model, which is inherently contained
Nonlinear patterns of time series. Final values for prediction through hybrid application The ARFIMA-FTS model
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is obtained by combining the predictions of the ARFIMA model The original series with FTS model predictions
of the remaining series. New hybrid.

Many studies have addressed this type of model and its application in many different fields, including study [6]
”The hybrid model of autoregressive fractionally integrated moving average and fuzzy time series Markov chain on
long-memory data” The research aims to determine the long pattern of crude oil price movement through a partial
time series model where the accuracy can still be improved by constructing a hybrid residual model using a fuzzy
time series approach. Long memory data indicate a high level of volatility and autosequence value between lags that
Decrease slowly. However, a more accurate model is proposed as a hybrid time series model with fuzzy time series
Markov chain (FTSMCA) time series model of crude oil price is obtained as a new target model for the hybrid
model of ARIMA and ARFIMA with FTSMC, known as ARIMA-FTSMC and ARFIMA-FTSMC, respectively.
The exact model measured by MAE, RMSE and MAPE shows that the hybrid model of ARIMA -FTSMC has
better performance than ARIMA and ARFIMA, but the hybrid model of ARFIMA-FTSMC provides the best
accuracy compared to all models. The superiority of the hybrid temporal model of ARFIMA-FTSMC on long-
memory data provides an opportunity for the hybrid model as the best and most accurate prediction method. Also
study [15], ”New hybrid fuzzy time series model: Forecasting the foreign exchange market” this work compares the
forecasting of volatility for traditional time series models (ARIMA, EGARCH, and PARCH) against two proposed
new models based on fuzzy theory (FTS Fuzzy ARIMA Tseng’s and FTS-Fuzzy ARIMA Tanaka’s). The aim of
the study is that models based on fuzzy theory generate better estimates of volatility. Fuzzy models show lower
prediction errors compared to traditional time series in both in-sample and out-of-sample. The models demonstrate
higher efficiency and better reflect market information.

2. Search goal

It aims to compare between ARFIMA models, FUZZY ARFIMA and ARFIMA FUZZY, choose the best model,
thrrough predict the prices of red onions in the city of Mosul.

3. Long memory process

The basic models that allow determining long memory are the Autoregressive fractionally Integrated Moving
Average (ARFIMA) [9, 8] and are considered an extension of the (ARFIMA) models that take the fractional
differential coefficient d as real values for the period (-0.5,0.5). The mathematical formula of the ARFIMA model
can be expressed using the (Wold) relationship as follows:

γt =

∞∑
j=0

ψj εtj (1)

γt: Time series.
ψj: Moving average weights ψjϵR, ψ 0 = 1.
εt: It is the process of white noise, as follows: White Noise, where:
Var(εt)= σ2

ε , E(εt) = 0, εt i.i.d (0, σ2
ε)

A time series is considered to have a long and static memory if:

∞∑
j=0

∣∣ψ2 j
∣∣ = ∞ (2)

Therefore, it can be said that any time series is an ARFIMA model (p, d, q) if the following condition is met:

ΦP (L) (1− L)dyt = Θq (L) (3)

Stat., Optim. Inf. Comput. Vol. x, Month 202x



2 COMPARISON BETWEEN THE FUZZY-ARFIMA MODELAND THE HYBRID ARFIMA-FUZZY MODEL

ΦP (L) = 1−
P∑
i=1

ΦiL
i = 1− Φ1L− · · ·ΦPL

P

Θq(L) = 1−
q∑

j=1

ΘjL
j = 1−Θ1L− · · ·ΘqL

q

(4)

(Θ L) and (Φ L) respectively represent polynomials in the two parts MA(q) and AR(P) of the model p, q
respectively. (1− L)d the back displacement factor, d the fractional differential coefficient. Also, the properties
of ARFIMA models can be clarified according to the different values of the fractional differential coefficient
(d) when d < 1/2 and the roots of the polynomial Θq(L) lie outside the unit roots, in this case the series yt is
invertible. When d < −1/2, all the roots of the characteristic polynomial Θq(L) lie outside the unit root, in this
case the series is sTable, and when −1/2 < d < 0 the series yt is reversible and has an incomplete short memory.
While 0 < d < 1/2, the series yt is a static series with long memory (long-term stability), and it is also continuous,
as the positive autocorrelation function slowly decreases towards zero “in the form of a hyperbola” as the number
of gaps k increases.

3.1. Testing of long memory

In our research, many statistical tests were used to verify long memory, including the Geweke Porter Hudak
estimator, GPH, the Smoothed priodogram estimator, (dsprio), the Fracdiff method, the Rescaled Range, R/S,
and the Whittle estimator. The model was also built by verifying the presence of long memory in the time series
through several tests and then moving on to estimating the fractional difference parameters. We will explain the
(Rescaled Range, R/S) method [3].

[11] used a statistic to examine whether a time series has a long memory (long-term correlations), as the goal
of the R/S statistic is to calculate the Hurst coefficient, and the R/S statistic is defined as the range R of the partial
sums of deviations for a series. time from the mean divided by its standard deviation ST.

R/S = Qn =
1

σy

[
max

1≤k≤n

k∑
j=1

(yj − ȳn)− min
1≤k≤n

k∑
j=1

(yj − ȳn)

]
(5)

k: The number of partial sums between the items of the series yt and its arithmetic mean ȳt. R/S analysis allows
calculating what is called the Horst coefficient 1H << 0, which is defined as the ratio between the logarithm of
R/S and the logarithm of the number of observations T :

H ≈ logQt

log T
(6)

[9] and [13] showed that there is a strong relationship between the fractional differential coefficient (d) of ARFIMA
[12] models and the Horst coefficient (H), as:

d = H − 1

2
(7)

Through the previous relationship, it is possible to determine the fractional differential parameter d and determine
whether the string has a long memory, and this depends on the variable values of the factor H, as follows:

1. WhenH = 1/2, d = 0. In this case, there is no connection between the phenomena of past and present events,
that is, it is an ARMA model.

2. When 1/2 < H < 1 is 0 < d < 1/2, then the ARFIMA model is considered long-memory stable as the
correlations are stronger the closer H is to one.

3. When 0 < H < 1/2 is (−1/2) < d < 0, in this case the chain has a long memory and at the same time does
not behave like ARMA models.

Stat., Optim. Inf. Comput. Vol. x, Month 202x



R.T. AHMED AND O.S. IBRAHIM 3

3.2. Estimation of ARFIMA model

There are two methods for estimating ARFIMA models. These methods are divided into two-stage methods,
where the fractional differential parameter (d) is estimated and then the ARMA parameters are estimated. These
methods include (Geweke Porter Hudak estimator, (Smoothed priodogram estimation ”dsprio”, Fracdiff), and the
method One-stage estimation, where the fractional differential parameter is estimated simultaneously with the
estimation of the ARMA parameters. Single-stage estimation methods are considered the most effective methods.
This method requires that the series be stable or converted to stable. Among these methods is (EML) Exact
Maximum Likelihood, which is considered one of the most effective methods for estimating a parameter. The
fractional difference (d) in parallel with the AR, MA parameters of the ARFIMA model. The condition of this
model is that the series be stable or be converted to stable. This method allows the use of all long-term and short-
term information associated with the time series.

3.3. Diagnostic

This stage is considered one of the most important stages followed in developing the model to provide the
possibility of applying model information for prediction by matching its parameters with statistical hypotheses,
so that diagnosing the model in general depends on conducting many tests including testing and analyzing its
stability by examining estimates of correlation coefficients. Subjectivity obtained from the estimation stage.

3.4. Forecasting

Forecasting is the last stage of time series analysis and can only be reached after tests to diagnose the model. After
obtaining a suiTable model to represent the data, the model becomes ready to be used to predict future values [19].
Criteria or (evaluation metrics) are used in this stage. We achieved the accuracy of the model and its ability to
produce efficient data. Below are some of these criteria(AIC,BIC,MSE,RMSE,MAE).

4. Fuzzy time series concepts and models

Fuzzy logic serves as the foundation for the FTS approach as it primarily relies on fuzzy sets used by the algorithms
of these models to operate. Below is a summary of the definitions of FTS as in [18].

1. Fuzzy Time Series
Let X(t)(t = 0, 1, 2, . . . .) be one of the subgroups of real numbers, with fuzzy sets Ai(t)(t = 0, 1, 2, . . . .)
subsequently defined on them. The fuzzy time series X(t) is then defined as F (t), which is a collection of
Ai(t).

2. Fuzzy Relationship
Let F (t) be a fuzzy time series if F (t) is the result of F (t− 1), then F (t− 1) → F (t) represents this fuzzy
logical relationship and is known as a first-order fuzzy time series model.

3. Fuzzy Relationship by Order N
Let F (t) be a fuzzy time series, and if F (t) is the result of F (t− 1), F (t− 2), . . . , F (t−N), then this fuzzy
logical relationship is expressed as follows:
F (t−N), . . . , F (t− 2), F (t− 1) → F (t)

4.1. Fuzzy logic sets

In fuzzy logic, sets can be of two types:

4.1.1. Actual crisp set According to [12], this is a set of elements with distinct characteristics that may or may not
be defined, may or may not belong. To distinguish them from fuzzy sets in terms of definition, these elements are
called actual or traditional sets and have two values: (1) when they belong to the set or (0) when they do not.
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4.1.2. Fuzzy set Defined as a set consisting of multiple types (categories) of members with a membership function
ranging between 0 and 1 [20]. The value zero indicates that the element is not part of the set or that the degrees
range between 0 and 1.

4.1.3. Membership function Fuzzy logic uses membership functions that distinguish one from another by
describing whether it is continuous or discrete [16]. The range of values is between (0,1), where 0 means the
value does not belong to the set, 1 means the value belongs to the set, and among the membership functions we
mention the following:

1. Triangular membership function
The mathematical function can be expressed through the following formula:

µA(x) =

{
1− |x−a|

c , a− c ≤ x ≤ a+ c
0, otherwise

}
(8)

2. Sigmf (sigmoidal membership function)
This function is open from the right to represent the largest wave value and from the left to represent the
largest negative value.

3. Bell membership function
The mathematical formula for this function is as follows:

µA(x) = e−
(x−a)2

2b2 (9)

4. Trapezoidal membership function
The mathematical formula for this function is as follows:

µA(x) =


(a−x)
(a−b) , a ≤ x ≤ b

1, b ≤ x ≤ c
(d−x)
(d−c) , c ≤ x ≤ d

0, otherwise

 (10)

4.2. Fuzzy time series model

The initial stage of creating an FTS model involves dividing the universe of study (U), described by the symbol
(X) into a series of fuzzy sets (periods), where U = [min(x),max(x)] Additionally create the linguistic variable
A, composed of the fuzzy sets Aj, j = 1, 2, .., k, [4].

In the world of study U , a fuzzy set can be expressed as:

A = fA(u1)/u1 + fA(u2)/u2 + . . .+ fA(un)/un(4)

Where fA denotes the membership function of the fuzzy set A, fA : U → [0, 1] and fA(ui), (1 ≤ i ≤ n) denotes
the degree to which ui is a member of fA(ui)ϵ[0, 1].

The traditional way that has been presented in many studies to end this stage is to use fuzzy organic functions,
as it has appeared in many studies [7], U is divided into equal fuzzy sets, and the three most important membership
functions in this process are Gaussian, trapezoidal, and trigonometric membership functions.

4.3. Predictive steps using FTS model

The key steps identified in the stages of the prediction process, according to the FTS model, are as follows [18]:

1. Description and division of the study domain.
2. Fuzzification process.
3. Identification of fuzzy relationships.
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4. Defuzzification method.

Below is a diagram illustrating the system for inputs (Xt) being fuzzified, i.e., converted into membership grades
(MF) in the fuzzy input set. It then moves to the fuzzy inference engine using IF, THEN rules stored in the rule
base, the fuzzy inference engine produces fuzzified values, resulting in a usable outcome.

Figure 1. Fuzzy logic diagram.

4.4. Main FTS models

The goal of this section is to provide a brief overview of common fuzzy time series models. Models introduced by
[18, 4, 10], and [1], the model [5] and the model [17].

5. Hybrid (ARFIMA-FTS) model

It is known that time series are of two types: linear and non-linear time series. Linear time series assume a linear
data generation process such as ARIMA and ARFIMA. Despite the flexibility of these models, they cannot deal
with non-linear data. Assuming linearity in practical reality is something that cannot be accepted. In all cases
[14], and quite the opposite, building non-linear time series models is very suiTable for practical reality. Given
the difficulty of modeling these patterns, a method was proposed by combining linear and non-linear components,
which was called hybrid forecasting models, which can be It is effective for improving predictions, and since time
series often combine several problems, this prompted researchers to combine and merge models together in order
to solve all problems simultaneously using one comprehensive model, as the hybrid model maintains the accuracy
of predictions in addition to preserving the trend of the data [2].

A hybrid method was used and a model for a long memory time series was proposed by (G.P. Zhang) through
the ARFIMA FTS approach, which considered the time series as consisting of two patterns, the linear pattern and
the non-linear pattern, and the formula for this model is as follows:

Yt = Lt +Nt (11)

whereas: Yt: represents the time series.
Lt: Autoregressive linear composite of the time series.
Nt: The nonlinear random error component of the time series.

The prediction steps of the Mahdist model can be summarized as follows:

• Estimating the best linear model ARFIMA for the time series
• Calculating the residuals for the ARFIMA model is calculated according to the following formula:

et = yt − L̂t (12)

Where et represents the residuals of the ARFIMA model at time t.

et=f (et−1, et−2, . . . , et−n) + εt (13)
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Where f is a non-linear function estimated using the FTS model and εt is the random error. By neglecting it, we
obtain predictions and they are calculated according to the following formula:

N̂t=f (et−1, et−2, . . . . . . ., et−n) (14)

The predictive values of the time series are calculated according to Equation (4) The hybrid model has the advantage
of combining the linear-style ARFIMA model with the FTS model. The results of the hybrid model are often more
satisfactory, especially in the long run, than using the ARFIMA and FTS models alone. Despite these advantages,
it cannot be said with certainty that this model is better than the ARFIMA model, especially in Short-term.

6. The applied aspect

6.1. Applying ARFIMA model

In this study, the prices of the red onion crop in Iraqi dinars will be predicted in Nineveh Governorate using original
data for the years from January 2018 to December 2023, on a weekly basis, which were obtained from the Nineveh
Agriculture Department, The R language was used to write the program for the model building phase used in
this thesis to reach the final results, Using packages (tseries, pracma, fracdiff, longmemo, AnalyzeTs, fuzzy.ts1,
fuzzy.ts2), Table 1 shows the most important descriptive statistics for the time series.

Table 1. Descriptive statistics for the time series

statistics Sample size mean Median Variance Minimum value highest value

Valuable 288 480 492 53415.17 200 1500

6.2. Stages of the ARFIMA methodology

6.2.1. Chain stability check We will draw the time series of imported Red onions crop price data and draw the
autocorrelation function and the partial autocorrelation function. This step aims to examine the stability of the time
series.

Figure 2. Time series of Red onions price.

Figure 3. Autocorrelation and partial autocorrelation for Red onions price.
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We notice by drawing both ACF and PACF that the series is unstable, and it is known that there are tests to
examine the stability of the time series, and this will be done through the expanded Dickey-Fuller (ADF) test, and
the Philip-Byrne (PP) test. The Table shows these tests. The statistical significance of the P-value for the ADF test

Table 2. Is a stability test for time series

Statistical test value P-value Status of the series

ADF -2.8911 0.2127 Un Stable
PP -26.269 0.1047 Un Stable

reached (0.2127), which is greater than 0.05, and also for the Philip Bern test reached (0.1047), meaning that the
P-value is > 0.05, and this means that the time series is unstable.

6.2.2. Long-term memory tests It was noted from the Table that if the value of 1/2 < H < 1, the time series has a
long memory and that the correlations are strong the closer H is to one.

Table 3. Long-term memory test

Test R/S Empirical Hurst exponent Theoretical Hurst exponent Whittle

H 0.7002161 0.6948797 0.5179464 0.9494125

6.2.3. Methods for estimating the fractional difference factor (d) The following is the estimation of the fractional
differential coefficient by direct and indirect methods, which depend on the Horst coefficient H, and the value of d
is calculated in the R/S, Whittle test according to the formula d = H − 1/2, and in direct methods, d is calculated
directly such as the dSperio, Gph, Fracdiff test.

Table 4. Methods for estimating (d)

Test R/S Empirical
Hurst exponent

Theoretical
Hurst exponent Gph dSperio Fracdiff Whittle

value (d) 0.2002161 0.1948797 0.0179464 0.5077225 0.4663449 0.472136 0.4494125

From the table above it is clear that all test results fall within the interval limits (0, 0.5), meaning that the time
series is characterized by long memory.

6.2.4. Recognition stage This step is important and is the first stage of time series analysis, through which we
learn about the model, that is, choosing the ranks of the model (p, d, q). Since the series is unstable, we will use the
fractional differential coefficient d that we obtained from the previously mentioned methods. We test the stability
of the series after taking the five fractional differences that passed the long memory test using the PP test because
it is better and more accurate than the ADF test.

Table 5. Results of PP test for the series after taking the fractional differences of the previous methods

Estimation methods value P-value The situation

R/S -37.334 0.01 stable
Empirical Hurst exponent -36.998 0.01 stable

Theoretical Hurst exponent -27.371 0.01 stable
Fracdiff -58.593 0.01 stable
Whittle -56.141 0.01 stable
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The results of the pp tests shown in Table 5 prove that the time series is stable and can be used in building
ARFIMA models, as the moral value of the five methods test was smaller than 0.05.

6.2.5. Diagnosis and assessment The goal of this step is to identify one or more ARFIMA models by knowing the
rank of AR(P) and rank of MA(q), where we will use the (BIC) criterion to compare the models and to estimate
the methods used for fractional differences.

In our study, we will use the estimation of ARFIMA models using the two-stage and one-stage estimation method
and compare the models to obtain the best prediction model that has the lowest value of the BIC criterion and the
prediction accuracy criteria MSE, RMSE, MAE, as shown in the Table below.

Table 6. Comparison of ARFIMA models with two-stage and one-stage method

Model BIC Φ1 Φ2 Θ1 Θ2 MSE RMSE MAE

(1, 0.2002161, 0) 645.1705 0.8699 0 0 0 6227.978 78.91754 58.22019
(1, 0.1948797, 0 ) 645.1625 0.8760 0 0 0 6226.117 78.90574 58.22019
(1, 0.0179464, 0) 643.311 0.885336 0 0 0 6137.466 78.30578 58.15908
(1, 0.5077225, 0) 644.7165 0.81587 0 0 0 6295.565 79.3446 59.4843
(1, 0.4663449, 0) 644.7074 0.8159 0 0 0 6287.602 79.2944 59.48312
(1, 0.472136, 0) 644.827 0.82371 0 0 0 6288.66 79.30107 59.48709
(1, 0.4494125, 0) 644.8385 0.8246 0 0 0 6284.577 79.27533 59.4645
(1, 0.0000458, 0) 645.3388 0.885333 0 0 0 6148.706 78.34989 58.16395

By comparing the two-stage long memory estimation models with the one-stage long memory estimation model,
it turns out that the best model is (1, 0.0179464, 0) with the two-stage estimation method, as it has the lowest BIC
standard, as well as the lowest value for MSE, RMSE, MAB.

Table 7. Estimate Model Parameters (1, 0.0179464, 0)

model Parameters Appreciation p.value

AR(1) Φ1 0.885336 0.0000

The mathematical formula for the model (1, 0.0179464, 0) ARFIMA is as follows:

1. Residual Analysis ARFIMA (1,0.0179464,0)
Residual analysis is considered the most important stage to determine the suitability of the model (1,
0.0179464, 0) ARFIMA for use in forecasting.

Figure 4. Residual curve for the data of the studied series.
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Figure 5. The autocorrelation function of the residuals and the partial autocorrelation function of the residuals.

2. Ljung box test
Below is a Table showing the test results for the residuals of the model (1,0.0179464,0):

Table 8. Ljung box test

Model Q* p-value

(1,0.0179464,0) 12.729 0.548

We note that the significant value is ¿ 0.05 p-value, which means that the residuals are independent and that
the model has passed the diagnosis.

6.2.6. Prediction: Prediction for the ARFIMA(1, 0.0179464, 0 ) model After choosing ARFIMA (1, 0.0179464,
0) as the best model in diagnosis and the best representative model for the data, we used it for prediction. The
prediction will be for 12 values and then compare them with the real values, as shown in the table below.

Table 9. Ljung box test

Sequence 1 2 3 4 5 6 7 8 9 10 11 12

True value 350 450 400 500 400 500 500 400 400 400 500 500
Predicted value 578 554 536 522 512 504 498 494 490 488 486 578

6.3. Applying FTS or FUZZY- ARFIMA model

After verifying the stability of the time series for the price of red onions and conducting long memory tests, it
was confirmed that the series has a long memory, and the best model was determined by conducting a comparison
between the models using the comparison standard BIC and MSE, RMSE, MAE, where the results showed that the
model ARFIMA (1, 0.0179464,0) has the lowest Criteria values, we will now fuzzify the string data using fuzzy
analysis. singh’s time series fuzzing algorithm was used to address the fuzziness of the local red onion price in the
city of Mosul and predict it for the coming period. This was done through a series of the following steps:

1. Determine the lower and upper limit of the red onion price data series, where the lower limit was (200)
and the upper limit was (1500), and by applying the equation, U = Dmin −D1, Dmax +D2, where Dmin =
200 andDmax = 1500, D1 = 0, D2 = 0 then u = [200, 1500].

2. Partitioning the red onion price data into equal length periods (u1, u2, . . . , u13) followed by the labeling of
fuzzy sets denoted by (A1, A2, . . . , A13) as shown in the Table below.
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Table 10. The periods and the fuzzy sets

Periods Periods values Fuzzy set

U1 [200,300] A1

U2 [300,400] A2

U3 [400,500] A3

U4 [500,600] A4

U5 [600,700] A5

U6 [700,800] A6

U7 [800,900] A7

U8 [900,1000] A8

U9 [1000,1100] A9

U10 [1100,1200] A10

U11 [1200,1300] A11

U12 [1300,1400] A12

U13 [1400,1500] A13

3. Fuzzing the data, as each value will be fuzzy in the fuzzy group that belongs to it.
4. Calculating the sums of fuzzy relationships when a set of several fuzzy sets are connected with each other

by a certain set, the right side of them is merged to form the Fuzzy Relationship Groups, the Table below
illustrates the fuzzy relationships:

5. Processing the expected output fuzziness is done in two steps, the first step is calculating the midpoints of the
time periods U, and in the second step, processing the fuzziness using the averaging method and by applying
the defuzzification rules to the time series and extracting the prediction values for the red onion price series.
The values were obtained using the R program.
After obtaining the fuzzy values, the FUZZY-ARFIMA methodology is applied:

Table 11. Fuzzy relationship sets

Groups The fuzzy relationship is second-order

G1 A1→A1,A2,A3,A4
G2 A2→A1,A2,A3,A4
G3 A3→A1,A2,A3,A4,A5,A6
G4 A4→A1,A2,A3,A4,A5,A6
G5 A5→A3,A4,A5,A6,A10
G6 A6→A3,A4,A5,A6,A7,A8
G7 A7→A4
G8 A8→A6,A8,A10,A12,A13
G9 A9→NA
G10 A10→A5,A8,A11
G11 A11→A8,A10,A13
G12 A12→A10,A11
G13 A13→A8,A11,A13

6. Processing the expected output fuzziness is done in two steps, the first step is calculating the midpoints of the
time periods U, and in the second step, processing the fuzziness using the averaging method and by applying
the defuzzification rules to the time series and extracting the prediction values for the red onion price series.
The values were obtained using the R program.

After obtaining the fuzzy values, the FUZZY-ARFIMA methodology is applied:
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6.3.1. Stability test The figure below shows a plot of the time series:

Figure 6. Fuzzy time series.

Figure 7. Autocorrelation and partial autocorrelation of the fuzzy series.

To ensure we check stability by conducting tests:

Table 12. Is a stability test for fuzzy series

Statistical test value P-value Status of the series

ADF .test -2.5684 0.01 stable
stable

PP .test -28.645 0.01 stable

It is clear from the data of the Table above that the statistical significance of the P-value for the ADF. test reached
(0.01) which is less than 0.05, and P-value for the pp .test is (0.01).

6.3.2. Long-term memory tests It was noted from the Table that the value of H= 0.7552436 in the R/S test, and
since it is known that if 1 < H< 1/2, the time series is characterized by a long memory and that the correlations are
strong the closer H is to one, as well as in the Theoretical Hurst exponent, Empirical Hurst test. exponent, Whittle
Therefore, the string has a long memory feature.

Table 13. Long-term memory tests for fuzzy time series of red onion price by Singh method

Test R/S Empirical Hurs texponent Theoretical Hurst exponent Whittle

H 0.7552436 1.073825 0.5538539 0.9899553

It was noted from the Table that the value of H= 0.7552436 in the R/S test, and since it is known that if 1 < H <
1/2, the time series is characterized by a long memory and that the correlations are strong the closer H is to one, as
well as in the Theoretical Hurst exponent, Empirical Hurst test. exponent, Whittle Therefore, the string has a long
memory feature.
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6.3.3. Methods for estimating the fractional difference factor (d) The following is an estimation of the fractional
differential coefficient using direct and indirect methods that depend on a coefficient Hurst H and the value of d is
calculated in the R/S, Whittle test according to the formula d = H − 1/2, and in Direct methods d are calculated
directly such as dSperio, Gph, Fracdiff test.

Table 14. Methods for estimating (d)

Test R/S Empirical
Hurst exponent

Theoretical
Hurst exponent Gph dSperio Fracdiff Whittle

value (d) 0.2552436 0.573825 0.0538539 0.6918797 0.8308542 0.4972547 0.49

The Gph, and dSperio method, are excluded because the value of d falls outside the range (0, 0.5), while the
remaining methods fall within the range (0, 0.5), indicating long-range memory in the time series.

6.3.4. Stage of recognition We will conduct a(PP) test to examine the stability after taking the fractional
differences:

Table 15. Results of PP test for the series after taking the fractional differences of the previous methods

Estimation methods value P-value The situation

R/S -92.861 0.01 Stable
Empirical Hurst exponent -212.34 0.01 Stable

Theoretical Hurst exponent -37.125 0.01 Stable
Fracdiff -187.32 0.01 Stable
Whittle -184.71 0.01 Stable

The results of the pp. tests shown in Table 15 prove that the time series is sTable in PP and can be used in building
ARFIMA models for fuzzy values, as the significance value of the PP. test for the above methods was smaller than
0.05.

6.3.5. Diagnosis and assessment The goal of this step is to identify one or more ARFIMA models by knowing
the AR(P) rank and MA(q) rank, where we will use the (BIC) criterion to compare the models and to estimate the
methods used for fractional differences. compare the models to obtain the best prediction model that has the lowest
value of the BIC criterion and the prediction accuracy criteria MSE, RMSE, MAE, as shown in the Table below

Table 16. Results of PP test for the series after taking the fractional differences of the previous methods

model BIC Φ1 Φ2 Θ1 Θ2 MSE RMSE MAE

(2, 0.2552436, 0) 2489.26 0.932697 0.008876 0 0 8628.054 92.88732 48.27036
(1, 0.573825, 0) 2498.91 0.158571 0 0 0 9495.135 97.44298 49.21313
(1, 0.0538539, 0) 2475.3 0.947205 0 0 0 8355.203 91.4068 48.19055
(1, 0.4972547, 0) 2497.4 0.16100 0 0 0 9501.976 97.47808 49.58315
(1, 0.49, 0) 2497.23 0.16099 0 0 0 9502.709 97.48184 49.61861
(1, -0.1118070, 0) 2470.63 0.9487734 0 0 0 8053.339 89.7404 46.63232

Comparing the two-stage long memory estimation models with the one-stage long memory estimation model, it
turns out that the best model is (1, -0.1118070, 0) with the one-stage estimation method, as it has the lowest BIC
criterion as well as the lowest value for MSE, RMSE, MAB.
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Table 17. Estimate Model Parameters (1, -0.1118070 , 0)

model Parameters Appreciation p.value

AR(1) Φ1 0.9487734 0.0000

The mathematical formula for the model (1, -01118070, 0) ARFIMA is as follows:

εt = X−0.1118070
t (1−B) (1− 0.9487734) (15)

6.4. Residual Analysis (1, -0.1118070 , 0) FUZZY ARFIMA

Residual analysis is considered the most important stage in determining the suitability of the ARFIMA (1, -
0.1118070, 0) model for use in forecasting.

Figure 8. Residual curve for fuzzy series data.

Figure 9. The autocorrelation function of the residuals and the partial autocorrelation function of the residuals.

From the previous figure, we find that all the autocorrelation and partial autocorrelation coefficients for the
residuals fall within the confidence limits interval, and this means that the residuals of this model are not related to
each other (the resulting errors are random), which indicates that the residuals are stationary.

6.4.1. Ljung box test Below is a Table showing the test results for the residuals of the model (1, 0.2581199, 1):
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Table 18. Ljung box test

Model Q* p-value

(0, 0.1118070- , 1) 10.524 0.3958

We note that the significant value is p-value > 0.05, which means that the residuals are independent and that the
model has passed the diagnosis.

7. Prediction: ARFIMA (1, -0.1118070 , 0) model prediction

After choosing (FUZZY ARFIMA) as the best model in diagnosis and the best representative model for the data,
we used it for prediction. The prediction will be for 12 values and then compare them with the fuzzy values, as
shown in the Table below.

Table 19. Predicted values for 12 values

Sequence Fuzzy-value Predicted value

1 300 324
2 476 346
3 300 364
4 476 380
5 300 394
6 476 408
7 476 420
8 300 430
9 300 438

10 300 446
11 476 454
12 476 460

8. Steps to build the hybrid model OR ARFIMA- FUZZY

After obtaining the predictive values using the ARFIMA model which represents the linear component L̂t, we must
find the predictive values for the residuals using the FTS model, which represents the nonlinear part N̂t to obtain
the final predictions of the hybrid model, by performing the following steps:

1. We test the residuals for the ARFIMA model with the BDS test to test the nonlinearity of the residuals, as
shown in Table 20:

Table 20. BDS test results for ARFIMA model residuals

Dimensions BDS Std. Error P.value

2 56.0610 3.2494 0.0012
3 112.1221 5.6751 0.0000
4 168.1831 7.3235 0.0000
5 224.2441 7.9897 0.0000
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We note that the P.value is less than 0.05 for all dimensional levels, which means that the null hypothesis
which states that the model residuals are non-linear is not rejected and therefore these patterns must be
analyzed to benefit from them in the prediction process.

2. We take the remainders of the ARFIMA model and run the fuzzy-singh algorithm on them by taking the
minimum and maximum limits of the residuals, where Dmin = −474, Dmax = 580, D1= -74, D2=20, since
the residuals for the ARFIMA model fall within the interval [-400,600], we divide The remainders are divided
into periods of equal length, where the number of periods was (10), as shown in the Table below:

Table 21. Intervals and fuzzy sums for the hybrid model

Periods Interval values the group

U1 [-400,-300] A1

U2 [-300,-200] A2

U3 [-200,-100] A3

U4 [-100,0] A4

U5 [0,100] A5

U6 [100,200] A6

U7 [200,300] A7

U8 [300,400] A8

U9 [400,500] A9

U10 [500,600] A10

3. Below are the sums of fuzzy relationships for the residuals of the ARFIMA model:

Table 22. Intervals and fuzzy sums for the hybrid model

groups fuzzy second-degree relationship

G1 A1→A8
G2 A2→A2, A3, A4, A5
G3 A3→A1, A4, A5, A6, A8
G4 A4→A2, A3, A4, A5, A6, A9
G5 A5→A2, A3, A4, A5, A6, A7, A8, A10
G6 A6→A2, A3, A4, A5,A6
G7 A7→A3, A4, A5, A7,A8
G8 A8→A4
G9 A9→A7

G10 A10→A6

4. We will fuzzify the values of the residuals for the fuzzy sets to which they belong.
5. After combining the linear component with the non-linear component to obtain the final predictions for the

hybrid model according to Equation (4) mentioned previously, the following figure shows the real-time series
with predictive values using the hybrid model.
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Figure 10. Forecasting actual and predictive time series shapes using ARFIMA-FTS model.

6. By comparing the forecast accuracy standards between the ARFIMA model (1, 0.0179464, 0) and the
FTS for the rest of the ARFIMA model, it was found through the research that the hybrid series model
ARFIMA FUZZY(FTS) for the time series under study contains linear and non-linear patterns, and the
forecast results for the ARFIMA model were (1, 0.0179464, 0) is more accurate than the hybrid model, and
the following Table shows the forecast accuracy standards.

Table 23. Prediction accuracy criteria

Model MSE RMSE MAE

ARFIMA (1, 0.0179464 ,0) 6147.466 78.40578 58.15908
FUZZY ARFIMA (1, -0.1118070, 0) 8053.339 89.7404 46.63732

ARFIMA-FUZZY (FTS) 1690.287 41.113 28.397

From the Table above, we notice that the ARFIMA-FUZZY(FTS) model is superior to the ARFIMA (1,
0.0179464, 0) model and the FUZZY-ARFIMA model because it is characterized by the lowest value for the
forecast accuracy criteria.

9. Conclusions and recommendations

In this research, a new hybrid model was proposed to predict red onion prices in Nineveh Governorate by integrating
the linear component of the time series analyzed using the ARFIMA model (1, 0.0179464,0) with nonlinear
component analysis using the FTS model for the ARFIMA residuals model (1, 0.0179464). ,0). It has been
found through research that ARFIMA hybrid fuzzy time series (FTS) model is effective for predicting the weekly
frequency of red onion crop prices. The time series under study are not stationary and contain both linear and
nonlinear patterns. Reliability was analyzed by taking the fractional difference d estimated by the EMLE estimator
and the Geweke Porter Hudak (GPH), Smoothed priodogram estimator (dsprio), Fracdiff method, Scaled Range
(R/S), and Whittle estimator methods. The prediction results using the hybrid model were more accurate than the
predictions obtained from the ARFIMA model (1, 0.0179464, 0), and FUZZY ARFIMA (1, -0.1118070, 0), and
the ARFIMA-FTS hybrid model had lower values for these parameters than the ARFIMA model ( 1, 0.0179464,
0) and FUZZY ARFIMA (1, -0.1118070,0) so the hybrid model can be used to forecast the future series of red
onion prices. It can also be used to forecast time series that contain linear and nonlinear components.
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