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Abstract In this paper, we propose a new estimator for Liu-Type regression model, called the LAD-Lasso-Liu estimator,
which addresses the issues of multicollinearity, outliers and it performs the variable selection. By combining the LAD Lasso
and Liu-Type estimators, our proposed estimator achieves double shrinkage for the parameters and at the same time it has the
robust properties. We thoroughly discuss the properties of the new estimator and conduct a simulation study to demonstrate
its superiority over the LAD, S, MM, Liu-type, Lasso, and LAD-Lasso estimators. We used the Median(MSE) as a criteria
to compare between the estimators at a different factors. The simulation results showed that the proposed estimator has
superiority over the other estimators especially when the correlation coefficient between the explanatory variables increases
and when the error variance decreases. In addition, the proposed estimator has better correct selection of the number of
zeros coefficients than other penalized estimators. To demonstrate the work of the estimator presented under real data, we
apply the proposed estimator to prostate cancer data. Our results for the empirical data indicate that the proposed estimator
outperforms the other estimators and can provide accurate results in challenging scenarios with multicollinearity and outliers.
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1. Introduction

The ordinary least squares (OLS) estimator is considered the best unbiased estimator for linear regression models,
but it is susceptible to outliers [1]. Robust estimators, such as the Least Absolute Deviation (LAD) estimator,
S-estimator, M-estimator and MM-estimator have been introduced to address this issue. The LAD estimator is a
popular robust estimator that minimizes the sum of the absolute values of the residuals and is resistant to heavy-
tailed errors that arise due to the presence of outliers. The LAD is a special case of M-estimator [2], and has
been used in various studies to deal with outliers, e.g., [3, 4, 5, 6, 7]. Since the LAD estimator minimizes the
sum of absolute residuals, large deviations do not have a disproportionately large effect (as opposed to the squared
deviations in OLS). As a result, extreme values (vertical outliers) do not unduly influence the overall estimate.
By focusing on the median rather than the mean, the LAD estimator ensures that the majority of the data drives
the regression, rather than being overly sensitive to extreme values. While the LAD estimator is robust to vertical
outliers, it is less effective at handling leverage points, which are outliers in the predictor space (i.e., extreme values
in the independent variables). [8] Leverage points can still influence the LAD estimator significantly because the
estimator depends on the positions of these points in the x-space.
However, LAD estimator cannot handle multicollinearity in the linear regression model. The shrinkage estimator
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is important methods which dependent to add more information to matrix XTX to remove the ill condition which
appears because of the presence of the multicollinearity. [9] introduced the Ridge (RE) estimator to deal with
multicollinearity, which obtained by minimizing the sum of squared errors with a penalty on the L2 norm of the
coefficients. The RE estimator is biased and depends on one biased parameter known as Ridge parameter. The
good selection for the Ridge parameter is important point in the way for overcome the problem of multicollinearity
since if we don’t select it large enough, it is leads to the persistence of the problem of multicollinearity [10].
In the same way, [11] introduce the Liu estimator which mixes between the RE estimator and Stein estimator.
[12]introduced the Liu-Type estimator, which improves the RE estimator by addressing high multicollinearity. The
Liu-Type estimator has two parameters work to gather to parlay to overcome the multicollinearity and at the same
time improve the fitting for the estimators [13].
In the regression model, the most important problem is how to select the most significant predictors, because if
we omitted the relevant predictors, it may lead to biased estimates and less accurate predictions [1]. To improve
the interpretability of the model, the Linear Absolute Shrinkage and Selection Operator (Lasso) estimator was
introduced by [14], which shrinks some coefficients and sets other coefficients equal exactly zero. The Lasso
estimator is obtained by minimizing the sum of squared errors with a penalty on the L1 norm of the coefficients,
which makes it susceptible to outliers. Many literatures illustrated new estimators by combine between two of
the LAD and Lasso and Liu-Type estimators. In this way, The LAD-Lasso estimator, introduced by [15] which
combines the LAD estimator and the Lasso estimator, providing the features of the Lasso estimator and LAD
estimator simultaneously. The LAD-Lasso estimator has been used in several studies, e.g., [16, 33, 18, 19, 20]. To
deal with the problem of multicollinearity and variable selection at the same time, [21] introduced the Liu estimator
with a penalty on the L1 norm. In this study, we propose new biased estimator called LAD-Lasso-Liu Estimator.
This estimator has the features for the three penalized estimators, LAD, Lasso and Liu-type estimators.
This study is organized as follows: section 1 provides an introduction. Section 2 reviews previous literature. Section
3 discusses the proposed estimator and its properties. We choose a tuning parameter in section 4 and present the
simulation study in section 5. The application to real data is presented in section 6. In Section 7, future applications
of the proposed estimator are suggested, and in Section 8, the limitations and assumptions are addressed. Section
9 outlines the conclusions.

2. The previous literature of the idea:

There is many literature that dealt with lasso, Liu, LAD estimators, which will be reviewed in this section.

2.1. The previous literature of the idea

Consider the following linear regression model

Y = Xβ + ε (1)

Where Y = (y1, y2, · · · , yn)T is is the responses variable, X = (X1, X2, · · · , Xn)
T is the represents design matrix

of rank P where,XT
1 = (Xi1 , Xi2 , · · · , Xip),i = 1, 2, · · · , n, β = (β1, β2, · · · , βp)

T is the represents the vector of
unknown parameters and ε represents the error vector, which has median zero and at a same time its continuous
and positive density function. The canonical form for the linear regression model is defined as

Y = Zα+ ε (2)

Where Z = XQ, α = QTβ and Λ = ZTZ = diag(λ1, λ2, · · · , λp) where λ1 ≥ λ2 ≥ · · · ≥ λp > 0 are eigenvalues
of XTX and Q represents orthogonal matrix that has eigenvectors columns.

β̂OLS = argminβ

n∑
i=1

(
yi −

p∑
j=1

xijβj

)2

=
(
XTX

)−1
XTY (3)
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2 ROBUST LASSO ESTIMATOR FOR THE LIU-TYPE REGRESSION MODEL AND ITS APPLICATIONS

This estimator is affected by multicollinearity which causes ill condition in XTX matrix. That means the elements
of
(
XTX

)−1
become large and the condition number CI =

√
λ1/λP become high [12]. The one of bad effects

of the multicollinearity is the confidence intervals for the individual parameters may become wider and may the
signs of produce parameter become wrong [22]. There are several techniques available to overcome the problem of
ill-conditioned matrices. The Ridge estimator is a one effective method to remove of ill condition by adding more
information to the matrix XTX . The ridge estimator (RE) is given by

β̂RE = argminβ

n∑
i=1

(
yi −

p∑
j=1

xijβj

)2

+ k1

p∑
j=1

β2
j =

(
XTX + k2I

)−1
XTY (4)

where k2 > 0 is ridge parameter. This estimator is biased but at the same time it has mean squared errors less
than OLS estimator. However, this estimator needs to increase the Ridge parameter k1 sufficiently to overcome
the multicollinearity. So, [12] introduced the Liu-Type estimator that has two shrinkage parameters, if one of them
decreases it is compensated by the other. The Liu-Type estimator is given by

β̂Liu−Type = argminβ

 n∑
i=1

(
yi −

p∑
j=1

xijβj

)2

+

p∑
j=1

(
k
1/2
1j

βj −
dj β̂j

k
1/2
1j

βj

) =
(
XTX + k1I

)−1 (
XTY − dβ

)
(5)

where k1 > 0, −∞ < d < ∞ and β̂ is any estimator of β. [23] augmenting the equation
(
−d/k

1/2
1

)
β̂ = k11/2β +

µT to linear regression model in Eq. (1) to get the Liu-Type regression model

Y ∗ = X∗α+ ε∗ (6)

where Y ∗
(n+p)×1 =

[
Y(

−d/k
1/2
1

)
β̂OLS

]
, X∗

(n+p)×p =

[
X

nk
1/2
1 I

]
, ε∗(n+p)×1 =

[
ε
µ

]
On the other hand, to select the most significant predictors for linear regression model, [14] introduced Lasso
estimator that has shrinkage some coefficients and variable selection simultaneously. The Lasso estimator is

β̂Lasso = argminβ

 n∑
i=1

(
yi −

p∑
j=1

xijβj

)2

+ n

p∑
j=1

k2j |βj |

 (7)

where k2 > 0 For dealt with the multicollinearity and selection variable problems simultaneously, [21] introduces
the Liu–lasso estimator by using the L1 norm for the Liu estimator as

β̂Liu−Type−Lasso = argminβ

 n∑
i=1

(
yi −

p∑
j=1

xijβj

)2

+

p∑
j=1

(
k
1/2
1j

βj −
dj β̂j

k
1/2
1j

βj

)
+ n

p∑
j=1

k2j |βj |

 (8)

2.2. LAD and LAD- lasso estimator for linear regression model

The RE, Lasso and Liu-Type estimators are shrinking the parameters to avoid the ill condition, but they are affected
by outliers. It is known that outliers have a direct effect on the nature of errors, possibly making the variance of
errors non-specific [15]. The robust estimators are the appropriate solution of the outliers, that replaces the sum
squares error by the robust function that it data in the presence of outliers. The (LAD) estimator is robust estimator
that has many features to overcome the outlier. The (LAD) estimator is given by

β̂LAD = argminβ

n∑
i=1

∣∣∣∣∣yi −
p∑

j=1

xijβj

∣∣∣∣∣ (9)
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For dealt with the outliers and selection variable problems simultaneously, [15] introduced LAD-Lasso estimator
that minimizes the sum of the absolute values of error with penalty the L1 norm. The LAD-Lasso estimator is given
by

β̂LAD−Lasso = argminβ

n∑
i=1

∣∣∣∣∣yi −
p∑

j=1

xijβj

∣∣∣∣∣+ n

p∑
j=1

k2j |βj | (10)

Define (y◦i , x
◦
i ) , i = 1, 2, · · · , n, n+ 1, · · · , n+ p

where(y◦i , x
◦
i ) =

{
(yi, xi) , i = 1, 2, · · · , n(
0, nk̂2ei

)
, j = 1, 2, · · · , p

}
, ej =

{
1 withjthterm
0 els

}
.

Then, we can rewrite Eq.(10) as

β̂LAD−Lasso = argminβ

n+p∑
i=1

∣∣∣∣∣y◦i −
p∑

j=1

x◦
ijβj

∣∣∣∣∣ (11)

3. The proposed estimator and its properties:

For the Liu-Type regression model inEq.(6), we get (LAD-Lasso) estimator for Liu-Type regression by minimizing
the sum the absolute value for error with penalty on the L1 norm. Since the LAD-Lasso estimator function includes
both LAD (robust to outliers) and Lasso (inducing sparsity), making the estimator suitable for datasets with noisy
observations and many irrelevant predictors. In addition, LAD-Lasso-Liu estimator is designed to balance the fit
of the model (minimizing absolute deviations) with regularization (shrinking the coefficients toward zero). This
balance is key to handling multicollinearity and improving prediction accuracy in high-dimensional settings. In
fact, this estimator has features of LAD-Lasso estimator and Liu-Type estimator at the same time. We illustrate the
LAD-Lasso estimator for Liu-Type regression as

β̂LAD−Lasso−Liu = argminβ

(
n+p∑
i=1

∣∣∣∣∣y∗i −
p∑

j=1

x∗
ijβj

∣∣∣∣∣+ n

p∑
j=1

k2j |βj |

)
(12)

Define (y◦◦i , x◦◦
i ) , i = 1, 2, · · · , n, n+ 1, · · · , n+ p, · · · , n+ 2p

where (y◦◦i , x◦◦
i ) =


(yi, xi) for i = 1, 2, · · · , n

−dik̂
−1/2
1i

ei−nβ̂i, k̂
1/2
1i

I for i = n+ 1, n+ 2, · · · , n+ p

o, nk̂2iei for i = n+ p+ 1, n+ p+ 2, · · · , n+ 2p


=

{
(y∗i , x

∗
i ) for i = 1, 2, · · · , n, n+ 1, · · · , n+ p

0, nk̂2iei for i = n+ p+ 1, n+ p+ 2, · · · , n+ 2p

}
, ej =

{
1 withjthterm
0 els

}
.

Then, we can rewrite Eq.(12) as

β̂LAD−Lasso−Liu = argminβ

n+2p∑
i=1

∣∣∣∣∣y◦◦i −
p∑

j=1

x◦◦
ij βj

∣∣∣∣∣ (13)

The new estimator in Eq. (12) achieved two shrinks for the parameters, the first shrink through Liu-Type estimator
and second shrink through Lasso estimator. To study the asymptotic properties for the new estimator in Eq.(12),
we need to use the assumptions (A,B) for [15] . For this assumptions the error ε∗ is a continuous and positive
defined (P.d) and has (P.d) variance. These conditions about the error are necessary for deriving consistent
estimators and ensuring that there is no perfect multicollinearity among the explanatory variables. We add the other
assumption d√

n
→ d0. This assumption ensures that the effect of regularization stabilizes as the sample size grows.

We assumption β̂ = β0. This is a standard assumption in asymptotic analysis, ensuring that the coefficients do not
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4 ROBUST LASSO ESTIMATOR FOR THE LIU-TYPE REGRESSION MODEL AND ITS APPLICATIONS

change as the sample size increases. At the end, we assumption k1i =
(
k11 , k12 , · · · , k1p

)
where max (k1i) = 0 (1)

and k2i =
(
k21 , k22 , · · · , k2p

)
where max (k2i) = 0 (1). These conditions are necessary to control the amount of

regularization imposed on the estimates. We defended β =
(
βT
a , β

T
b

)T
where βa = (β1, β2, · · · , βp0

)
T as nonzero

coefficients and βb = (βp0+1, βp0+2, · · · , βp)
T as zero coefficients. Letβ̂LAD−Lasso−Liu =

(
βT
a , β

T
b

)T
is objective

function for the LAD-Lasso-Liu estimator. Furthermore, let x̂i =
(
xT
ia, x

T
ib

)T
where xia =

(
xi1, xi2, · · · , xT

ip0

)T
and xib = (xip0+1, xip0+2, · · · , xip)

T . . In addition, let an = max (kj : 1 ≤ j ≤ p0) , bn = max (kj : p0 ≤ j ≤ p).
To facilitate access to the asymptotic properties of the new estimator we will use the following lemma.

Lemma (1) : [31] as Qa = lim
n→∞

(
xT
a xa

)
n

, this ensures that the matrix has full rank, which is necessary for

obtaining unique and consistent estimates,
√
n
(
β̂ − β0

)
∼ N

(
Q−1

a (xT
a xa)Q−1

a

2f(0)2

)
where f(t) is the density of errors

εi.
Thearem (1) : Form the model (6), suppose that (y∗i , x

∗
i ) , i = 1, 2, · · · , n are iid and identically distributed.

Under A and B for [15], d√
n
→ d0, β̂ = β0 and k1i =

(
k11 , k12 , · · · , k1p

)
where max (k1i) = 0 (1) and k2i =(

k21 , k22 , · · · , k2p
)

where max (k2i) = 0 (1) , then:
(i) If

√
nan → 0 and

√
nbn → ∞, then the LAD-Lasso-Liu estimator is

√
n− consistant and satisfy

p
(
β̂b = 0

)
→ 1.

(ii)
√
n
(

ˆβLAD−Lasso−Liu − β
)
∼ N

(
0,

Σ−1
0

4f(0)−2

)
where Σ−1

0 = Q∗−1T

d (Xa∗TXa∗)Q
∗−1
d and Q∗

d =

lim
n→∞

(
XT

a Xa +K1I
)

n

Proof :
Since, Y ∗ =

[
Y

−d/k
−1/2
1 β̂

]
, X∗ =

[
X

nk
1/2
1 I

]
, then we can deal with the LAD-Lasso estimation problem for

the Liu-Type regression model similarly with the LAD-Lasso estimation problem for the linear regression model.
Directly from Lemma (1) for [15], we Blade to prove the Theorem.

This result shows that the LAD-Lasso-Liu estimator is asymptotically normal with a variance that depends on
the design matrix and the regularization parameters.

The LAD-Lasso-Liu estimator introduces two types of shrinkage: one from the Liu-Type estimator and another
from the Lasso penalty. These two shrinkage mechanisms complement each other by stabilizing the estimates Liu
shrinkage and promoting sparsity (Lasso shrinkage) . The Liu shrinkage reduces variance by stabilizing estimates
in the presence of multicollinearity but introduces bias. The Lasso shrinkage promotes sparsity by shrinking some
coefficients to zero, reducing the model complexity, but also introduces bias. The trade-off is between bias Lasso
shrinkage (shrinkage increases bias) and variance (shrinkage decreases variance). A well-tuned regularization
parameter will strike a balance, reducing the overall error of the estimator.

4. Choose tuning parameters:

The new estimator has three tuning parameters(k1, k2andd). To choose tuning parameters(dandk1), we will
develop the tuning parameters for [12] as

k̂1 =
λ1 − 81λp

99
: CN > 9 (14)

where CN =
√

λp/λ1 is condition number of the matrix
(
XTX

)
.

We select the d tuning parameter as
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T.OMARA 5

d̂ =

∑p
j=1

((
ˆσREj

− k̂1jα
2
REj

)
/
(
λj + k̂1j

)2)
∑p

j=1

((
λj ˆσREj

− k̂1jα
2
REj

)
/λj

(
λj + k̂1j

)2) (15)

where σ̂2
REj

is the variance error for ridge estimator. Since, the Cross-Validation (CV) depended on minimizing the
production error, so it strongly candidates to choose the tuning parameter. The general cross-validation (GCV),
which introduced by [24], is the important way that is used to choose the Ridge parameter. [25] developed the
statistic (GCV), to choose the tuning parameters for Liu-Type estimator. There are many studies used S-fold cross
validation to choose tuning parameter. The S-fold cross validation divided the dataset into S subset S-fold with
indices Ej , 1 ≤ j ≤ S . Such that, if i ∈ Ej then (xi, yi) is a validation set . Then we choose the tuning parameter
by minimizing

CVθ = n

S∑
1≤j≤k

∑
i∈j

(
yi −

p∑
j=1

xijβ
(S)
j(θ)

)2

(16)

Where β
(S)
j(θ)

) is jth elements for unpenalized estimator.
In fact, the classification of the S-fold cross validation is non-robust cross-validation, so [26, 27, 28] used robust

S-fold cross-validation in many ways to choose the tuning parameter for penalty regression. We use a type of robust
S-fold cross-validation which depended on LAD function to select the tuning parameters. We defined it as

LAD − CVk2 = n

S∑
1≤j≤k

∑
i∈j

∣∣∣∣∣yi −
p∑

j=1

xijβ
(S)
jLAD(k2)

∣∣∣∣∣ (17)

where β
(S)
jLAD(k2)

is jth elements for LAD estimator. To select the tuning parameter, we set S=4 and then choose
(k2) that minimizes the LAD − CV (k2).

5. The simulation study:

In this section, we will test the performances of the new estimator in comparison with a group of other estimators.
The LAD, Lasso and LAD-Lasso estimators are candidate in this direction. We use median mean square error
MedianMSE criterion to check it out. We defined it as

MedianMSE = Median


(
β0 − β̂f

)T (
β0 − β̂f

)
300


T

(18)

where β̂f is the target estimator, and the number of iteration equal 300. The data is generated by normal distribution
with mean 2 and variance νa, where

νa = (ρij) and ρaij represent the correlation between any two explanatory variables regression coefficient xi, xi

with i = 1, 2, · · · , n and i ̸= j. The correlation coefficient ρ was chosen 0.70 and 0.95. In adding, the dependent
variable generated by the linear regression model

yi =

p∑
j=1

xijβj + σεi i = 1, 2, · · · , n (19)
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where errors ε are generated with heavy-tailed distributions ε ∼ t (3) and laplace (0, 1) and two value for
σ (10, 0.5, 1) are used. We set β0 = (1, 2, 0, 0, 0, 1, 0, 2.5, 0, 0.5) for p=10, we has five significant regression
variables. The β̂ estimator is selected as OLS estimator. The number of observation was chose as n=50 and 100.
We use(14), (15) and (16) to choose the tuning parameters. We used the MATLAB program to create a code which
allow to calculate the Median Mean Squared Error (Median MSE), and compute the ”Correct” and ”Incorrect”
values (i.e., the average number of zero and nonzero coefficients) for 300 simulated datasets as presented in Table
(1, 2). We use the following steps to estimate procedure for LAD-Lasso-Liu estimator:

Step 1: We generated the data set (yi, xi). We create the design matrix X with multicollinearity structure based
on ρ.

Step 2: We set at β0 = (1, 2, 0, 0, 0, 1, 0, 2.5, 0, 0.5) and generated the error terms.
Step 3: Use the data set to choose the tuning parameters d, k1, we used the Eq. 14,15 and 18.
Step 4: Building the augmented data set (y∗i , x

∗
i ).

Step 5:Estimate the LAD estimator by minimizing
∑n

i=1

∣∣yi − xT
i βi

∣∣and use this estimator to compute k2.
Step 6:We get the LAD-lasso estimator for the augmented data set (y◦i , x

◦
i ) , i = 1, 2, · · · , n, n+ p.

Step 7:We get the LAD-lasso-Liu estimators for the augmented data set(y◦◦i , x◦◦
i ) , i = 1, 2, · · · , n, n+ p.

For each estimator, the simulation procedure:
1. Generate 300 datasets.
2. For each dataset, estimate β using the defined estimators.
3. Compute the MSE for each simulation run.
4. Compute the median of these MSE values across the 300 runs.
5. Count the correct (zero) and incorrect (non-zero) selections of coefficients.

In the previous Table (1, 2), simulation results have been summarized in columns” Correct.” and ” Incorrect.”
which represents the average number of zero coefficients and nonzero coefficients for 300 simulated datasets.
In addition this is ”Median MSE” column which represents the median mean square error in the same way
as[14, 15, 16, 29, 30].
In table (1, 2), we aim to make comparisons between a set of robust and penalized estimators. We use the LAD
estimator, S-estimator and MM-estimator as robust un-penalized estimator and LAD-Lasso and LAD-Lasso-Liu
as robust penalized estimator and Lasso and Liu-type estimator as penalized estimator.
The results in table (1, 2) show that, when ρ increases, the LAD-Lasso and LAD-Lasso-Liu estimators works
better than other estimators. All estimators perform better when the number of observations increases and the
value of σ decreases. In addition, the LAD-Lasso-Liu is the best estimator when ρ increase and the value of σ
decreases that means the LAD-LASSO-Liu is dealing well with the problems of outliers and multicollinearity.
There is slight improvement for the estimators when ε ∼ t (3) .
From Table (1, 2), when comparing MM-estimator and S-estimator, with the LAD estimator, we observe that
the LAD estimator has an advantage over the robust unpenalized estimators under comparison. Additionally, it
is noted that the values of MediamMSE for all estimators converge at higher observation levels. The Liu-Type
estimator performs poorly in handling outliers, but it achieves good results in dealing with strong correlations
between variables.
On the other hand, the results show that LAD-Lasso-Liu and Lasso estimator have under fitting effect when
the number of observations decrease. The LAD-Lasso-Liu estimator has better ability to select the variable
than other penalized estimators like Lasso estimator, since the LAD-Lasso-Liu estimator has better correct
selection of the number of zeros coefficients. From figures (1, 2), we compare the estimated values of the LAD,
S-estimator, MM-estimator, Lasso, Liu-type, LAD-Lasso and LAD-Lasso-Liu estimators using a box plot for two
cases:ε ∼ Laplace (0, 1) and ε ∼ t (3) . The results in Figure (1, 2) were consistent with those in Table (1, 2).
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Table (1): Summarize simulation result (ρ = 0.70).
ε ∼ Laplace (0, 1) ε ∼ t (3)

σ ρ n Method Correct Incorrect. MedianMSE Correct Incorrect. MedianMSE
10 0.70 50 LAD 0.000 0.000 3.214 0.000 0.000 3.314

S-estimator 0.000 0.000 3.656 0.000 0.000 3.594
MM-estimator 0.000 0.000 3.508 0.000 0.000 3.569

Lasso 4.521 0.089 4.658 4.535 0.072 4.654
Liu-type 0.000 0.000 4.193 0.000 0.000 4.202

LAD-Lasso 4.321 0.012 3.023 4.421 0.015 3.584
LAD-Lasso-Liu 4.621 0.011 2.158 4.731 0.011 2.325

0.5 0.70 50 LAD 0.000 0.000 3.115 0.000 0.000 3.245
S-estimator 0.000 0.000 3.599 0.000 0.000 3.517

MM-estimator 0.000 0.000 3.501 0.000 0.000 3.511
Lasso 4.698 0.058 4.125 4.651 0.053 4.024

Liu-type 0.000 0.000 4.034 0.000 0.000 4.127
LAD-Lasso 4.392 0.025 2.954 4.402 0.022 3.056

LAD-Lasso-Liu 4.689 0.009 2.035 4.663 0.008 2.125
10 0.70 100 LAD 0.000 0.000 3.024 0.00 0.000 2.987

S-estimator 0.000 0.000 3.326 0.000 0.000 3.495
MM-estimator 0.000 0.000 3.297 0.000 0.000 3.447

Lasso 4.724 0.021 3.534 4.715 0.020 3.354
Liu-type 0.000 0.000 3.986 0.000 0.000 4.094

LAD-Lasso 3.608 0.013 1.962 3.599 0.012 1.985
LAD-Lasso-Liu 4.721 0.007 1.542 4.687 0.006 1.412

0.5 0.70 100 LAD 0.000 0.000 2.958 0.000 0.000 2.865
S-estimator 0.000 0.000 3.021 0.000 0.000 3.325

MM-estimator 0.000 0.000 2.998 0.000 0.000 3.302
Lasso 4.794 0.025 3.456 4.767 0.030 2.568

Liu-type 0.000 0.000 3.845 0.000 0.000 3.973
LAD-Lasso 3.861 0.032 1.895 3.991 0.028 1.962

LAD-Lasso-Liu 4.798 0.008 1.421 4.554 0.004 1.385

6. Application to real data:

In this section, we apply real data to check the performance of the proposed estimator. We use the prostate
cancer data by as [32]. This data contains 102 observations. For this data, we use prostate-specific antigen as a
dependent variable Y which effected by eight independent variables (X,s). We use the logarithm for all variables.
The independent variables are the cancer volumeX1 , capsule penetration X2, Gleason score X3, amount of benign
prostatic hyperplasia X4, seminal vesicle invasion X5, prostate weight X6, age X7 and the percentage of Gleason
score 4 or 5 X8. We test the normality for the dependent variable dependent on the Kolmogorov - Smirnov test.
The results of test indicated that the dependent variable does not follow a normal distribution. In addition, we use
the VIF to determine the level of multicollinearity. The value of VIF ranges between 4.5 and 7.8 which refers to the
presence of moderate level of multicollinearity. Moreover, we use the MedianMSE criterion to compare between
the estimators.
We summarize the results in table 3 which referred to the value of coefficients and MedianMSE. The results
show that, the lasso, LAD-Lasso and LAD-Lasso-Liu estimators excluded X3 for the model. In addition, the lasso
and LAD-Lasso estimators excluded X2 and X7 from the model. The LAD-Lasso-Liu estimator has less zero
coefficients than the other estimators which indicate of the direction of the estimator to achieve the accuracy of the
forecast.
According to the results of MedianMSE, the LAD-Lasso-Liu estimator has the best performance in comparison to
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Table (2): Summarize simulation result ρ=0.95.
ε ∼ Laplace (0, 1) ε ∼ t (3)

σ ρ n Method Correct Incorrect. MedianMSE Correct Incorrect. MedianMSE
10 0.95 50 LAD 0.000 0.000 4.321 0.000 0.000 4.389

S-estimator 0.000 0.000 4.415 0.000 0.000 4.325
MM-estimator 0.000 0.000 4.208 0.000 0.000 4.182

Lasso 4.154 0.051 2.254 4.228 0.044 2.401
Liu-type 0.000 0.000 3794 0.000 0.000 3.456

LAD-Lasso 4.362 0.013 2.153 4.388 0.011 2.307
LAD-Lasso-Liu 4.632 0.010 1.222 4.668 0.008 1.241

0.5 0.95 50 LAD 0.000 0.000 4.021 0.00 0.000 3.542
S-estimator 0.000 0.000 4.382 0.000 0.000 4.193

MM-estimator 0.000 0.000 4.125 0.000 0.000 4.002
Lasso 4.206 0.038 2.054 4.296 0.033 3.972

Liu-type 0.000 0.000 4.025 0.000 0.000 4.389
LAD-Lasso 4.389 0.021 1.857 4.407 0.018 3.021

LAD-Lasso-Liu 4.694 0.011 1.125 4.728 0.009 0.897
10 0.95 100 LAD 0.000 0.000 3.995 0.00 0.000 3.368

S-estimator 0.000 0.000 3.927 0.000 0.000 3.797
MM-estimator 0.000 0.000 3.901 0.000 0.000 3.384

Lasso 4.331 0.022 2.124 4.389 0.017 4.157
Liu-type 0.000 0.000 3.768 0.000 0.000 3.658

LAD-Lasso 3.584 0.031 1.867 3.689 0.028 1.635
LAD-Lasso-Liu 4.764 0.005 0.968 4.865 0.004 0.857

0.5 0.95 100 LAD 0.000 0.000 3.587 0.00 0.000 3.202
S-estimator 0.000 0.000 3.681 0.000 0.000 3.395

MM-estimator 0.000 0.000 3.668 0.000 0.000 3.027
Lasso 4.408 0.019 2.019 4.447 0.011 2.132

Liu-type 0.000 0.000 3.482 0.000 0.000 3.339
LAD-Lasso 3.878 0.019 1.765 3.905 0.012 1.784

LAD-Lasso-Liu 4.861 0.004 0.686 4.921 0.003 0.694

other estimators. Table 4 presents a comparison of the proposed estimator with a set of penalized and non-penalized
estimators, as well as robust estimators, at different levels of tuning parameters d, k1 and k2. These comparisons
have shown that MedianMSE increases as k1 and k2. increase and as d decreases for all estimators. Additionally,
the LAD-Lasso-Liu estimator has a relative advantage over all other estimators at the different levels of tuning
parameters d, k1 and k2.

7. Future Examples of the Proposed Estimator:

7.1. Housing Data:

The dependent variable is the average house rent, which typically exhibits the presence of outliers. The independent
variables include the number of rooms in the house, the distance to the city center, and the crime rate in the area.
Additional variables can be introduced that are interrelated to ensure the presence of linear coupling. The goal of
the estimator is to address the challenges posed by linear coupling and outliers, while simultaneously achieving an
optimal selection of non-zero variables.
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Figure 1. Comparing the estimated values of the LAD, S-estimator, MM-estimator, Lasso, Liu-type, LAD-Lasso and LAD-
Lasso-Liu estimators using a box plot ε ∼ laplace (0.1)

7.2. Fuel Efficiency in Cars:

The dependent variable is the distance a car travels per liter of gasoline, with some outlier readings present. The
independent variables include the size of the car, engine power, car weight, number of engine failures, and a set of
variables measuring the quality of the car engine. These variables contribute to linear coupling, and the goal is to
select an optimal subset of non-zero.
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Figure 2. Comparing the estimated values of the LAD, S-estimator, MM-estimator, Lasso, Liu-type, LAD-Lasso and LAD-
Lasso-Liu estimators using a box plot ε ∼ t (3)

8. limitations and assumptions of the proposed estimator:

Although the LAD (Least Absolute Deviation) component provides robustness to vertical outliers, it may lack
resilience against leverage points, which are outliers within the predictor variables. Consequently, these leverage
points can exert a significant influence on the estimation process. In addition, the Lasso penalty introduces bias
by shrinking some coefficient estimates toward zero. While this bias is advantageous for variable selection, it may
also result in biased estimates, particularly in scenarios with strong multicollinearity or when the true coefficients
are not sparse. Moreover, the performance of the LAD Lasso estimator is contingent upon the appropriate selection
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Table (3): Coefficients and MedianMSE for the estimators to the dependent on the prostate cancer data.
Estimators X1 X2 X3 X4 X5 X6 X7 X8 MedianMSE No. of zero

LAD 5.3021 -0.252 -0.321 0.4485 1.625 1.772 -3.113 0.399 0.0485 0
S-estimator 4.003 0.235 0.485 0.4983 1.997 2.364 -3.895 0.487 0.0547 0

MM-estimator 4.231 0.244 0.427 0.558 1.704 1.895 -3.365 0.303 0.0507 0
Lasso 4.0631 0.000 0.000 0.5241 1.372 1.854 0.000 0.195 0.0614 3

Liu-type 4.002 0.164 0.582 0.469 1.092 1.472 -1.053 0.258 0.0214 0
LAD-Lasso 3.994 0.000 0.000 0.415 1.194 1.666 0.000 0.117 0.0351 3

LAD-Lasso-Liu 3.254 -0.124 0.000 0.384 1.038 1.502 -0.927 0.102 0.0012 1

Table (4): Coefficients and MedianMSE for the estimators at different levels of k1, k2 and d
d=0.1 d=2

Estimators k1 = 0.001 k1 = 0.05 k1 = 0.001 k1 = 0.05

k2 = 0.01 k2 = 0.1 k2 = 0.01 k2 = 0.1 k2 = 0.01 k2 = 0.1 k2 = 0.01 k2 = 0.1

LAD 0.0921 0.0978 0.1394 0.1995 0.0881 0.0912 0.0954 0.1925
S-estimator 0.1387 0. 1645 0.1871 0.2015 0.2142 0.1215 0.1925 0.1858

MM-estimator 0.1025 0.1421 0.1672 0.1887 0.0975 0.1148 0.1486 0.1722
Lasso 0.1852 0.1965 0.2134 0.2571 0.1372 0.1785 0.2004 0.0214

Liu-type 0.0857 0.0942 0.1224 0.1895 0.0732 0.0685 0.0534 0.0501
LAD-Lasso 0.0942 0.1021 0.1125 0.1574 0.0824 0.0555 0.0596 0.0624

LAD-Lasso-Liu 0.0082 0.0091 0.0099 0.0117 0.0071 0.0084 0.0088 0.0101

of the regularization parameter. This parameter selection is typically challenging and necessitates the use of cross-
validation or alternative model selection techniques. Improper selection of regularization parameter can lead to
issues such as overfitting or underfitting the model.

Furthermore, the Liu-type regression model introduces an additional two biasing parameter which are designed
to address multicollinearity. When combined with the LAD Lasso estimator, this parameter introduces another
layer of complexity. The choice of the Liu-type parameter can significantly impact the estimates, and identifying
the optimal value is often nontrivial. The simultaneous application of the LAD and Lasso techniques can also
complicate the interpretation of the resulting model. This is especially true when considering the interplay between
the Lasso penalty, which shrinks coefficients, and the Liu-type regression biasing parameter. The inherent bias-
variance tradeoff in these methods can obscure the true relationship between the predictors and the response
variable. Although the LAD method does not require the assumption of normally distributed errors, it may
still underperform in situations where the error distribution exhibits heavy tails or when there is considerable
heteroscedasticity (non-constant variance of errors). Finally, combining LAD with Lasso for Liu-type regression
model adds complexity due to the need to balance parameter choices, which influence bias, variance, and model
interpretation.

9. Conclusion:

In this study, we introduced the LAD-Lasso estimator for Liu-Type regression defined as LAD-LASSO-Liu-Type
estimator to overcome the multicollinearity and outliers in the same time and also, it has ability to select the
variable. This estimator has the properties of the three estimators, LAD, Lasso and Liu-Type estimators, so it has
robust and penalized capabilities. The simulation study illustrated that, in many factors, the LAD-LASSO-Liu-
Type estimator has superiority over LAD, Lasso, LAD-Lasso estimator according to the median mean square error
(MedianMSE) criterion. The results of the application in real data for prostate cancer patients are identical with the
results of the simulation study.
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