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Abstract The intuitive and natural formulation of the Mean-Variance (MV) model has attracted the attention of researchers
over the years. This model is typically presented as a constrained Quadratic Problem (QP), although the practical aspects
of investment often require risk tolerance to be considered. In such cases, Parametric Quadratic Programming (PQP) is
employed to explore all optimal solutions on the efficient frontier. In this paper, we propose a novel approach for solving
the portfolio optimization problem of the mean-variance model. This problem is considered in its parametric formulation
under general linear equality constraints with bounded assets. The proposed algorithm iteratively derives the exact efficient
frontier by calculating all corner portfolios as a function of the risk aversion parameter. Finally, we test the computational
performance of our algorithm in comparison with two state-of-the-art approaches using a set of real benchmarks. The results
demonstrate the effectiveness of our approach in solving such problems and identifying the efficient frontier. Additionally,
considering large-scale randomly generated problems with dense covariance matrices, we show that our algorithm can
efficiently solve this class of problems within a reasonable computation time.
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1. Introduction

The stock markets present excellent investment opportunities. However, it is important to note that the most
profitable assets are often associated with higher risk. Therefore, an investor’s main objective is to construct an
optimal portfolio that maximizes its expected return while minimizing potential risk.

Markowitz’s Mean-Variance (MV) model [1], introduced in 1952, is the cornerstone of modern portfolio theory.
This model explores how investors can allocate their capital to achieve an optimal trade-off between risk and return,
through an asset selection process that maximizes a portfolio’s expected return and minimizes its risk. According to
Markowitz [1, 3], the term ”mean” refers to the average of the observed returns of each asset and aims to maximize
it. In contrast, ”variance” represents the risk, being the variance or standard deviation of the returns on these assets,
and aims to be minimized. Consequently, the MV model is formulated as a bi-objective problem that aims to both
maximize the investor’s expected return and minimize their risk. The optimal portfolio for an investor lies on the
Pareto front, also known in the MV framework as the Markowitz efficient frontier, which consists of all efficient
portfolios that offer the best trade-off between return and risk. This frontier has been shown to be a continuous,
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piecewise hyperbolic curve [11, 9, 24]. In other words, it is characterized by a series of semi-hyperbolic segments
connected at extreme points called corner portfolios.

In order to provide investors with a comprehensive view of their asset allocation, taking into account their
risk tolerance, it is crucial that the efficient frontier is fully determined. Achieving this requires the use of
Parametric Quadratic Programming (PQP) algorithms [20]. These involve transforming the bi-objective problem
into a parametric mono-objective problem, using the risk aversion parameter. By varying this parameter, the entire
efficient frontier can be derived. In this context, several PQP algorithms have been introduced, starting with the
so-called Critical Line Algorithm (CLA), described in Markowitz’s seminal work [2, 3] as an extension of Wolf’s
simplex method [21]. This algorithm was improved in Markowitz and Todd [4] and implemented in ”Visual-Basic
for Applications” (VBA). Furthermore, the CLA has undergone several improvements, consolidating its position as
a fundamental tool for portfolio optimization in the financial field [10, 32, 30, 31]. Best [6] developed the Parametric
Active Set Method (PASM) based on the active set method [22] to solve convex PQP problems, which was applied
to the portfolio selection problem in his subsequent works [7, 28]. Later, Stein et al. [8] adapted the PASM to
large-scale portfolio problems with a dense covariance matrix, suggesting an efficient implementation to reduce
the computation time of the efficient frontier. In addition, different algorithms were developed in the literature
to derive the parametrically efficient frontier using PQP. Notable contributions include the works of Steuer et
al. [23, 24, 25], which extend Merton’s model [13] to analytically derive the efficient frontier for multiobjective
portfolio selection, Qi [11], Pang [5] and Hirschberger et al.[9].

In this paper, we focus on the mean-variance portfolio selection model, which includes general linear equality
constraints with lower and upper bounds on the assets. This model is presented as a parametric quadratic
programming (PQP) problem using the risk aversion parameter. We then extend the Direct Support Method (DSM)
[16, 15] to solve this problem. Our algorithm iteratively identifies all corner portfolios; starting from the maximum-
return portfolio, in order to determine the entire Markowitz efficient frontier. The proposed parametric support
algorithm (PSA), which lies between the active set and interior point methods [26], is consistent with the MV
model structure and treats all its constraints in their original formulation, thereby avoiding pre-transformations of
decision variables. In contrast to other PQP algorithms, which are frequently complex and difficult to understand,
our method is straightforward to apply and easy to implement. Indeed, by redefining the support concept within
the context of the parametric formulation of the MV model, the size of the systems required to be solved at each
iteration is reduced. This leads to a more efficient solution process, which significantly reduces the computation
time needed to determine the efficient frontier.

To evaluate and analyze the performance of our method, we conducted a comparative study with the parametric
active set algorithm [7] and the Matlab package. This comparison was carried out using publicly available datasets
and randomly generated problems. The results obtained demonstrate that our approach can effectively compute the
efficient frontier and provide all corner portfolios in a relatively short time.

The main contribution of this work is the suggestion of an exact parametric support algorithm, both efficient and
easy to implement, designed to solve the mean-variance portfolio selection problem under general constraints
with bounded assets. Our definition of the support concept, which is different from the classical definition
[14, 16], allows us to introduce a new iterative approach based on the principles of the simplex and support
methods. In addition, extensive numerical experiments conducted on several randomly generated benchmark
datasets demonstrate the significant improvement of our algorithm over comparative classical approaches in solving
large-scale portfolio optimization problems.

The remainder of this paper is organized as follows: Section 2 presents the mathematical background and
theoretical elements of the classical Markowitz’s mean-variance portfolio selection problem. Section 3 presents
and formulates the proposed parametric resolution approach, along with an application example. The results of the
computational experiments and performance tests of our approach are presented in Section 4. Finally, this paper is
concluded in Section 5.
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2 PARAMETRIC SUPPORT ALGORITHM FOR THE GENERAL BOUNDED MV MODEL

2. Portfolio optimization

Portfolio optimization aims to find an optimal allocation of risky assets in order to maximize an investor’s expected
return while minimizing his risk. This subject was first addressed by Markowitz in his well-known Mean-Variance
(MV) model [1]. In the following, we will review the mathematical formulas and the main idea of Markowitz’s
theory.

2.1. Portfolio return and risk

Consider a universe of n assets, and let x = (x1, x2, · · · , xn)
′ be an n-vector representing the investment

proportions, also known as a portfolio, where each xi represents the proportion of the capital to be allocated to
an asset i. Throughout the paper, the symbol ()′ is the transposition operation.
Let R = (r1, · · · , rn) be the vector of returns on individual assets, and ri are random variables. Thus, the portfolio
return is:

Rp = x1r1 + x2r2 + · · ·+ xnrn =

n∑
i=1

rixi,

which represents the percentage return that will be realized during the holding period. The mean value (expected
return) of the portfolio is the weighted average of the expected returns of each asset, given by:

µp = E(Rp) = x1E(r1) + x2E(r2) + · · ·+ xnE(rn)

=

n∑
i=1

µixi, with µi = E(ri),

where E(.) is the expected value operator. Thus, the matrix notation of the expected return is:

µp = µ′x, with µ = (µ1, µ2, · · · , µn)
′,

where each µi is the expected return on asset i.
The concept of portfolio risk formulated by Markowitz [1, 3] using the variance of returns is given as follows:

σ2
p = V ar(Rp) =

n∑
i=1

n∑
j=1

xixjσij , where σij = E((ri − µi)(rj − µj)).

The matrix notation of the risk is given as:

σ2
p = x′Σx,

where Σ is the (n× n) variance-covariance matrix, such that:

Σ =


σ2
1 σ12 · · · σ1n

σ21 σ2
2 · · · σ2n

...
...

. . .
...

σn1 σn2 · · · σ2
n

 .

Here, each σij = σji represents the covariance between returns of assets i and j, and σii = σ2
i is the variance of

asset i’s return. Note that throughout this paper Σ is assumed to be positive semidefinite.
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2.2. Mean-Variance model formulation

Markowitz’s Mean-Variance model, as presented by Markowitz [1], consists in minimizing the risk of a portfolio
for a given level of return, which leads to the following Quadratic Programming (QP) problem :

min
1

2
x′Σx

s.t µ′x = µ̄
e′x = 1
x ≥ 0,

(1)

where µ̄ is a level of return desired by the investor, e = (1, 1, · · · , 1)′ is a unit vector. The second constraint (budget
constraint) implies that all available capital is to be invested, and the last constraint (no short sales) requires non-
negativity of the investments.

Here, the objective is to calculate the portfolio with the minimum risk for a fixed return, while the investor’s
interest is to be provided with the set of all efficient portfolios that present the best trade-off between risk and
return, which is inconvenient with this formulation. For this purpose, another equivalent formulation is widely used
[2, 3, 12, 6], based on the weighting method, employing Parametric Quadratic Programming (PQP) as follows:

min
1

2
x′Σx− λµ′x

s.t e′x = 1
x ≥ 0,

(2)

where the parameter λ, lies in the interval [0,∞), is interpreted as the investor’s risk tolerance (risk aversion),
reflecting their propensity to avoid risk. The higher the value of λ, the more risk-averse the investor. In contrast,
a lower value of λ, indicates a lower risk tolerance. Solving Problem (2) parametrically for different values of λ,
enables us to determine the set of optimal portfolios (as a function of λ), that provide the best trade-off between
risk and return. These solutions form the Markowitz efficient frontier [2, 6, 9].

This paper examines the MV model as a convex PQP problem under general linear constraints with lower and
upper bounds on assets, given as follows : 

min
1

2
x′Σx− λµ′x

s.t Ax = b
l ≤ x ≤ u,

(3)

where A is an (m× n) equality-constraint matrix †, b is an m right-hand-side vector, l and u are n-vectors
representing the lower and upper bounds of x, respectively.

2.3. Karush-Kuhn-Tucker optimality conditions

To derive the optimal solutions of Problem (3) and compute its efficient frontier, we use the Karush-Kuhn-Tucker
(KKT) conditions. Given that Problem (3) is convex (Σ is assumed to be a positive semi-definite matrix and
the constraints are convex), therefore, the first-order KKT-conditions are both necessary and sufficient for the
optimality of the point x ∈ Rn. Let L(x, y, ν1, ν2) be the Lagrangian function of Problem (3), such as:

L(x, y, ν1, ν2) =
1

2
x′Σx− λµ′x+ y′(Ax− b)− ν′1(x− l) + ν′2(x− u), (4)

where y ∈ Rm is the multiplier vector associated with general equality constraints, ν1 and ν2 are n-vectors
associated respectively with lower and upper bounds constraints. The following relations summarize the KKT

†The budget constraint e′x = 1 is included and imposed in the general constraints.
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4 PARAMETRIC SUPPORT ALGORITHM FOR THE GENERAL BOUNDED MV MODEL

optimality conditions:

∂L

∂x
= Σx− λµ+A′y − ν1 + ν2 = 0, (5a)

∂L

∂y
= Ax− b = 0, l ≤ x ≤ u, (5b)

ν′1(x− l) = 0, ν′2(x− u) = 0, (5c)
ν1 ≥ 0, ν2 ≥ 0. (5d)

3. Parametric support procedure for the general MV portfolio optimization problem

In this section, we present our parametric support approach to solve the MV model under general linear equality
constraints with limitation on portfolios. This approach extends the DSM proposed by Gabasov at al. [16, 14] to
solve Problem (3) in a PQP framework. We note that the DSM is a variant of the revised simplex method [27] for
solving general convex QP problems. Before describing the steps in the solution process, we first provide some
notations and define some fundamental concepts related to our method.

Consider a universe of n assets, and let I = {1, 2, · · · ,m} be the set of constraints indices, and J = {1, .., n} is
the set of decision variables indices, with J = JB ∪ JN and JB ∩ JN = ∅. Following the partition of the indices
set J , we decompose the vectors and matrices of our problem in the following way:

x =

(
xB

xN

)
, xB = x(JB) = (xj , j ∈ JB), xN = x(JN ) = (xj , j ∈ JN ),

µ =

(
µB

µN

)
, µB = µ(JB) = (µj , j ∈ JB), µN = µ(JN ) = (µj , j ∈ JN ),

A = (AB | AN ), AB = A(I, JB), AN = A(I, JN ),

Σ =

(
σB σBN

σNB σN

)
, σB = Σ(JB , JB), σBN = Σ(JB , JN ), σN = Σ(JN , JN ),

given that Σ is symmetric, then σNB = σ′
BN .

Definition 1
A portfolio x ∈ Rn satisfying all the constraints of the PQP (3) is called a feasible solution.

Definition 2
A feasible solution x̄ is said to be optimal for Problem (3), if

f(x̄) =
1

2
(x̄)′Σx̄− λµ′x̄ = min

x
f(x),

where x̄ is chosen within the set of feasible solutions of the problem, with respect to λ.

Following the structure of PQP (3), we redefine the Support concept of the problem as follows:

Definition 3
A nonempty subset of indices JB ⊂ J , such that | JB |≥ m, is called support of the PQP (3) if and only if
the submatrix σB = Σ(JB , JB) is nonsingular, and the columns of the submatrix AB = A(I, JB) are linearly
independent.

Definition 4
The pair {x, JB} formed by the feasible solution x and the support JB is called a support feasible solution (SFS),
and is said to be non-degenerate if:

lj < xj < uj ,∀j ∈ JB .

Stat., Optim. Inf. Comput. Vol. 12, Month 2024
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According to the KKT-optimality conditions (5), we define the reduced costs vector as follows:

E =

(
EB

EN

)
= Σx− λµ+A′y. (6)

The following theorem restates the KKT-optimality conditions for the problem (3). These optimality conditions are
expressed with respect to the support set JB , and can be proved analogously to the works [14, 16, 15].

Theorem 1
Let {x, JB} be an SFS for the PQP (3). Then, the following relations: Ej ≥ 0 if xj = lj ,

Ej ≤ 0 if xj = uj ,
Ej = 0 if lj < xj < uj ∀j ∈ JN ,

(7)

are sufficient for the optimality of x and are also necessary if the SFS {x, JB} is non-degenerate.

3.1. Initial portfolio

As with all parametric approaches to solving the MV model [6, 4, 10], our approach needs to know at least one
portfolio on the efficient frontier. In general, the easiest portfolio to identify is the portfolio with the highest
expected return or the maximum expected return portfolio (MRP), which leads to solving the following bounded
Linear Problem (LP): ‡  max µ′x,

s.t Ax = b,
l ≤ x ≤ u.

(8)

Problem (8) can be solved using any Simplex-type method for linear programming [26, 19, 17, 18], which
enabled us to obtain the maximum return portfolio x0 and the support set J0

B .
The rest of the parametric approach proposed in this work aims to compute the other efficient portfolios
{xk, Jk

B}, k = 1, 2, · · · , starting from the optimal SFS {x0, J0
B} of LP (8), by identifying the corresponding pivot

points, such as :
λ0 > λ1 > λ2 > · · · > λρ = 0, with ρ is the number of pivot points.

Each two adjacent pivot points; form an interval [λk, λk+1]; and represent a distinct segment of the efficient
frontier that is characterized by a unique support set Jk

B , where the optimal solution xk(λ) at its extremities is
called a corner portfolio. In other words, a solution xk(λ) of PQP (3) is a corner portfolio if there exists in its
neighborhood another portfolio corresponding to a different support set.

In order to construct the fully parametric efficient frontier of Problem (3), the KKT system (5) is solved for all
values of λ. Thus, the explicit expressions of the optimal solution and associated multipliers obtained as linear
functions of parameter λ, given in the following theorem:

Theorem 2
For all parameter λ between two adjacent pivot point, λk+1 ≤ λ ≤ λk; k = 0, 1, 2, · · · , the optimal solution of the
PQP (3), its multipliers vector and its reduced costs vector are linear functions depending on the parameter λ, such
that :

y(λ) = α1 + λα2, xB(λ) = γ1 + λγ2 and EN (λ) = β1 + λβ2, (9)

‡In some situations, where not all assets have upper and lower bounds, it is possible that problem (8) has no solution, so it is necessary to
start the algorithm from the minimum variance portfolio as described in [28].
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Figure 1. Parametric efficient frontier for Problem (3) and the corner portfolios that constitute its segments.

such that

α1 = (−ABσ
−1
B σBNxN +ANxN − b)δ−1, α2 = (ABσ

−1
B µB)δ

−1. (10)

γ1 = −σ−1
B (A′

Bα
k
1 + σBNxN ), γ2 = σ−1

B (µB −A′
Bα

k
2). (11)

β1 = σNBγ
k
1 +A′

Nαk
1 + σNxN , β2 = σNBγ2 +A′

Nαk
2 − µN , (12)

where δ = (ABσ
−1
B A′

B) represent the basic matrix associate to Problem (3).

Proof
Let {x, JB} be an optimal SFS of Problem (8), and according to equation (6) we define the reduced cost vector
E = (EB , EN )′ by: {

EB = σBxB + σBNxN − λµB +A′
By,

EN = σ′
BNxB + σNxN − λµN +A′

Ny,
(13)

with EB = (Ej , j ∈ JB) = 0 (by definition of an SFS), and y is the potentials vector. From the first part of system
(13), we have:

xB = σ−1
B (λµB − σBNxN −A′

By), (14)

To obtain the expression of y as a function of λ, we use the equality constraint Ax = b, and the first part of system
(13), which leads to solve the following system of equations:(

σB σBN

AB AN

)(
xB

xN

)
+ y

(
A′

B

0

)
= λ

(
µB

0

)
+

(
0
b

)
,

upon substitution of xB with its expression (14), and after simplification we obtain:

y(λ) = (−ABσ
−1
B σBNxN +ANxN − b)︸ ︷︷ ︸

α1

δ−1 + λ (ABσ
−1
B µB)︸ ︷︷ ︸
α2

δ−1,

= α1 + λα2. (15)

with δ = (ABσ
−1
B A′

B) is a square matrix of order nB
§, where nB =| JB |.

§By the definition of the support set JB , it is necessary to assume that problem (3) has no redundant constraints in order to ensure the
invertibility of δ.
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Once the potentials vector y(λ) is determined, the final expression of the optimal solution xB as a function of λ
is obtained using equation (14):

xB(λ) = σ−1
B (λµB − σBNxN −A′

B(α1 + λα2))

= −(σ−1
B A′

Bα
k
1 + σ−1

B σBNxN )︸ ︷︷ ︸
γ1

+λ (σ−1
B (µB −A′

Bα
k
2)︸ ︷︷ ︸

γ2

= γ1 + λγ2. (16)

Having known x(λ) and y(λ), the reduced costs vector EN (λ) is obtained by substitution in the second entity of
system (13) which yields:

EN (λ) = σ′
BN (γ1 + λγ2) + σNxN − λµN +A′

N (α1 + λα2)

= σ′
BNγk

1 +A′
Nαk

1 + σNxN︸ ︷︷ ︸
β1

+λσNBγ
k
2 +A′

Nαk
2 − µN︸ ︷︷ ︸

β2

= β1 + λβ2. (17)

3.2. The expected return and the risk of corner portfolios

In the risk-return space, the expected return µp = µ′x and the associated risk (variance) σ2
p for each corner portfolio

can be obtained as a function of parameter λ, using the optimal solution x(λ) of the PQP (3). The following theorem
presents the explicit expressions of the expected return and the risk of any corner portfolio as a function of λ.

Theorem 3
Let {x(λ), JB} be an optimal SFS to the PQP (3), where x(λ) = (xB(λ), xN (λ))′, such that xB(λ) is defined by
relation (16). For all λ between two adjacent pivot points, λk+1 ≤ λ ≤ λk; k = 0, 1, 2, · · · , the expected return and
the associated risk of each corner portfolio are functions depending on the parameter λ, such that:

µp(λ) = ω1 + λω2, and σ2
p(λ) = ξ1 + λξ2 + λ2ξ3, (18)

where

ω1 = µ′
Bγ1 + µ′

NxN , ω2 = µ′
Bγ2.

ξ1 = γ′
1σBγ1 + 2γ′

1σBNxN + x′
NσBNxN , ξ2 = 2γ′

1σBγ2 + 2γ′
2σBNxN ,

and ξ3 = γ′
2σBγ2.

Proof
Let {x(λ), JB} be an optimal SFS of the PQP (3), where:

x(λ) =

(
xB(λ)
xN (λ)

)
, with

{
xB(λ) = γ1 + λγ2,
xN (λ) = xj , j ∈ JN .

(19)

For each corner portfolio, the expected return is given by:

µp(λ) = µ′x(λ),

substituting x(λ) in the last formula of µp(λ) yields:

µp(λ) = (µB , µN )′
(
γ1 + λγ2

xN

)
= µ′

B(γ1 + λγ2) + µ′
NxN

= µ′
Bγ1 + µ′

NxN︸ ︷︷ ︸
ω1

+λµ′
Bγ2︸ ︷︷ ︸
ω2

= ω1 + λω2. (20)

Stat., Optim. Inf. Comput. Vol. 12, Month 2024
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The associated risk of the corner portfolios is calculated as follows:

σ2
p(λ) = x′(λ)Σx(λ),

substituting x(λ) into the variance equation yields:

σ2
p(λ) = (γ1 + λγ2, xN )′

(
σB σBN

σ′
BN σN

)(
γ1 + λγ2

xN

)
= ((γ1 + λγ2)

′σB + x′
Nσ′

BN , (γ1 + λγ2)
′σBN + x′

NσN )′
(
γ1 + λγ2

xN

)
= ((γ1 + λγ2)

′σB + x′
Nσ′

BN )(γ1 + λγ2) + ((γ1 + λγ2)
′σBN + x′

NσN )xN ,

upon simplification and using the symmetry property of Σ, the final expression of the variance becomes:

σ2
p(λ) = γ′

1σBγ1 + 2γ′
1σBNxN + x′

NσBNxN︸ ︷︷ ︸
ξ1

+λ 2γ′
1σBγ2 + 2γ′

2σBNxN︸ ︷︷ ︸
ξ2

+λ2 γ′
2σBγ2︸ ︷︷ ︸

ξ3

= ξ1 + λξ2 + λ2ξ3. (21)

From formula (18), we can see that the expected return is a linear function, while the risk is quadratic with
respect to λ. In his analytical study of the efficient frontier and its properties, Best [28] provided the relationship
between the expected return and the variance in the following expression:

(σ2
p(λ)− ξ1) =

(µp(λ)− ω1)
2

ξ3
, (22)

this relation defines the set of points belonging to the k-th interval of the efficient frontier [λk, λk+1], established
using the following important properties [29]:

ω2 = ξ3, and ξ2 = 0. (23)

Proposition 1
For all values of λ between two adjacent pivot points, λk+1 ≤ λ ≤ λk; k = 0, 1, 2, · · · , the efficient frontier curve
of PQP (3) is continuously differentiable with a positive slop given by:

∂µp(λ)/∂λ

∂σ2
p(λ)/∂λ

=
1

2λ
. (24)

Proof
This follows from substituting the properties (23) into the expressions of the expected return and the variance (18),
which results in: {

µp(λ) = ω1 + λξ3,
σ2
p(λ) = ξ1 + λ2ξ3.

(25)

Differentiating the two entities with respect to λ, we obtain:

∂µp(λ)

∂σ2
p(λ)

=
∂(ω1 + λξ3)

∂(ξ1 + λ2ξ3)
,

=
ξ3

2λξ3
, with λ > 0 and ξ3 ̸= 0,

=
1

2λ
.

Stat., Optim. Inf. Comput. Vol. 12, Month 2024
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3.3. Determination of the next pivot point

As described above, the proposed algorithm identifies all the pivot points of Problem (3), which forms the ends of
the parabolic segments of the efficient frontier. During each iteration k, the objective is to move downwards from
the current pivot point λk to the other end of the segment λk+1, ensuring that the KKT conditions remain satisfied.
The algorithm stops once the minimum variance portfolio λρ = 0 is reached. The new pivot point is determined as
follows:

λk+1 = max{λk
j0 , λ

k
j1}.

The step λk
j0

is the smallest value of λ for which xk
B(λ) remains feasible, and j0 ∈ JB is the index of the basic

variable that wants to become nonbasic:

• Case (a): xk
j0

moves to the lower bound, i.e: xk+1
j0

= lj0 :

γk
1,j + λk

j γ
k
2,j = lj ⇔ λk

j =
γk
1,j − lj

γk
2,j

, γk
2,j ̸= 0.

• Case (b): xk
j0

moves to the upper bound, i.e: xk+1
j0

= uj0 :

γk
1,j + λk

j γ
k
2,j = lj ⇔ λk

j =
γk
1,j − uj

γk
2,j

, γk
2,j ̸= 0.

Therefore, the step λk
j0

will be calculated by combining the two previous cases:

λk
j0 = max

j∈Jk
B

{λk
j };λk

j =



γk
1,j − lj

γk
2,j

, if γk
2,j < 0, and λk

j < λk,

γk
1,j − uj

γk
2,j

, if γk
2,j > 0, and λk

j < λk,

0, otherwise.

(26)

Analogously, the step λk
j1

represents the smallest value of λ for which the reduced costs vector Ek
N (λ) does not

change the sign, and j1 ∈ JN is the index of the nonbasic variable that wants to become basic:

βk
1,j + λk

jβ
k
2,j = 0⇔ λk

j =
−βk

1,j

βk
2,j

, βk
2,j ̸= 0.

Therefore, the step λk
j1

will be calculated as follows:

λk
j1 = max

j∈Jk
N

{λk
j };λk

j =


−βk

1,j

βk
2,j

, if βk
2,j ̸= 0, and λk

j < λk,

0, otherwise.
(27)

3.4. Updating the support

Once the new pivot point is determined, we change the support of the problem, invoking the previous cases.

• Case (1): If λk+1 = 0, then the minimum variance portfolio is reached, and the efficient frontier is fully
obtained. Thus, we stop the algorithm.

Otherwise, the two sets Jk
B and Jk

N will be updated as follows:

• Case (2): If λk+1 = λk
j0

, then:

Jk+1
B ← Jk

B \ j0, Jk+1
N ← Jk

N ∪ j0. (28)
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• Case (3): If λk+1 = λk
j1

, then:

Jk+1
B ← Jk

B ∪ j1, Jk+1
N ← Jk

N \ j1. (29)

After this step, the resolution process is iterated until all corner portfolios are completely determined.

Remark 1
As the algorithm processes iteratively, where the support set Jk

B is updated at each iteration k, which implies
that there can be at most (ρ− 1) distinct sets, where each one corresponds to a segment on the efficient frontier
[λk, λk+1], thus guaranteeing the termination of the solving process after ρ iterations.

3.5. The Algorithm

In the following, we provide our algorithm schematic with the various steps to solve the MV model under general
linear constraints with bounded assets.

Algorithm 1: Parametric Support Method for the general MV model
Data: Σ, µ, A, b, l, u;
Result: λk, {xk(λ), Jk

B}, k = 0, 1, · · · , ρ; with ρ is the maximum numbre of corner portfolios;
• Initialization:

▷ Set k = 0 and λk =∞;
▷ Let {x0, J0

B} be the optimal SFS of the MRP problem (8);

• Step 1:
▷ Calculate the vectors αk

1 , α
k
2 , γ

k
1 , γ

k
2 , β

k
1 , and βk

2 according to formulas (10), (11) and (12) from
Theorem 3.

▷ Compute the next pivot point λk+1 = max{λk
j0, λ

k
j1}, where λk

j0
and λk

j1
are computed using formulas

(26) and (27) respectively;
▷ Calculate the vectors:

yk(λ) = αk
1 + λk+1αk

2 ;
xk
B(λ) = γk

1 + λk+1γk
2 ;

Ek
N (λ) = βk

1 + λk+1βk
2 ;

• Step 2:
▷ Calculate the expected return and variance of the corner portfolio, using formulas given in (18);

• Step 3:

▷ Update the support of the problem according to the following cases:
if λk+1 = 0 then

The efficient frontier is fully obtained, and stop the algorithm;
else

Case (a): if λk+1 = λk
j0

then
Jk+1
B ←− Jk

B \ j0; Jk+1
N ←− Jk

N ∪ j0;
Case (b): if λk+1 = λk

j1
then

Jk+1
B ←− Jk

B ∪ j1; Jk+1
N \ Jk

N ∪ j0;

end

▷ Increment k ←− k + 1, and go to Step 1;
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3.6. Numerical example

To validate and illustrate the effectiveness of our algorithm, we present two numerical examples. The first example
provides a detailed step-by-step illustration to show the algorithm’s robustness and the precise way it works. The
second example uses a well-known data set to confirm the algorithm’s performance.

3.6.1. Example 1. To further show the steps and operation of our algorithm, we consider a portfolio composed of
3 assets, with the following data:

Σ =

0.4032 0.2174 0.3308
0.2174 0.2262 0.2926
0.3308 0.2926 0.4044

 , µ =

0.8627
0.4843
0.8449

 , A =

(
1 1 1
1 0 2

)
, b =

(
1
0.8

)
, l =

0.1
0
0.1

 , u =

0.8
1
0.9

 .

• Initialization:
▷ We set k = 0 and λ0 =∞;
▷ We solve the MRP problem using any Simplex-type method for linear programming. The optimal SFS

obtained {x0, J0
B} is x0 = (0.6, 0.3, 0.1)′, with J0

B = {1, 2}, and J0
N = {3}.

• Iteration 1.
– Step 1:

▷ We calculate the vectors α0
1, α

0
2, γ

0
1 , γ

0
2 , β

0
1 , and β0

2 , such that :

α0
1 =

(
−0.2276
−0.1127

)
, α0

2 =

(
0.4843
0.3784

)
, γ0

1 =

(
0.6000
0.3000

)
, γ0

2 =

(
0
0

)
, β0

1 = −0.1262, and β0
2 = 0.3962.

▷ We compute the next pivot point λ1 = max{λ0
j0, λ

0
j1}, where:

• λ0
j0 = max

j∈J0
B

{λj} =


γ0
1,j − lj

γ0
2,j

,

γ0
1,j − uj

γ0
2,j

,

 , for all λj ∈]λ0, 0].

Thus, λ0
j0

= max{0, 0} ⇔ λ0
j0

= 0.

• λ0
j1 = max

j∈J0
N

λj =

{ −β0
1,j

β0
2,j

,

}
, for all λj ∈]λ0, 0].

Thus, λ0
j1

= 0.3185 and j1 = 3. Therefore, the next pivot point is λ1 = max{0, 0.3185} = 0.3185.

▷ We calculate the vectors x0
B(λ) and E0

N (λ), where:

x0
B(λ) = γ0

1 + λ1γ0
2 =

(
0.6000
0.3000

)
+ 0.3185

(
0
0

)
=

(
0.6000
0.3000

)
.

E0
N (λ) = β0

1 + λ1β0
2 = −0.1262 + 0.3185(0.3962) = 0.

– Step 2:

▷ We calculate the expected return and variance of the first corner portfolio x0(λ) =

(
x0
B(λ)

x0
N (λ)

)
:

µ0
p(λ) = µ′x0(λ) = 0.7474,

σ2
p(λ) = (x0(λ))′Σx0(λ) = 0.3051.
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– Step 3:
▷ As λ1 = λ0

j0
, we update the support of the problem as follows:

J1
B ← J0

B ∪ j1 = {1, 2, 3}, J1
N ← J0

N \ j1 = ∅.

▷ We increment k ←− 1, and go to Step 1.
• Iteration 2.

– Step 1:
▷ We calculate the vectors α1

1, α
1
2, γ

1
1 , γ

1
2 , such that:

α1
1 =

(
−0.2442
−0.0447

)
, α1

2 =

(
0.5366
0.1652

)
, γ1

1 =

0.2031
0.4985
0.2985

 , γ0
2 =

 1.2463
−0.6232
−0.6232

 .

▷ We compute the next pivot point λ2 = max{λ1
j0, λ

1
j1}, where:

• λ1
j0 = max

j∈J1
B

{λj} =


γ1
1,j − lj

γ1
2,j

,

γ1
1,j − uj

γ1
2,j

,

 , for all λj ∈]λ1, 0].

Thus, λ0
j0

= max{0, 0, 0} ⇔ λ0
j0

= 0.
As J1

N = ∅, then we set λ0
j1

= 0. Therefore, the next pivot point is λ2 = 0.

▷ We calculate the vectors x1
B(λ) and E1

N (λ), where:

x1
B(λ) = γ1

1 + λ2γ1
2 =

0.2031
0.4985
0.2985

+ 0

 1.2463
−0.6232
−0.6232

 =

0.2031
0.4985
0.2985

 .

As J1
N = ∅, then E1

N (λ) = ∅.
– Step 2:

▷ We calculate the expected return and variance of the second corner portfolio x1(λ) =

(
x1
B(λ)

x1
N (λ)

)
:

µ1
p(λ) = µ′x1(λ) = 0.6688,

σ2
p(λ) = (x0(λ))′Σx0(λ) = 0.2800.

– Step 3:
As λ2 = 0, then the minimum variance portfolio is reached, and consequently the efficient frontier is
fully determined.

3.6.2. Example 2. To ensure the accuracy and reliability of our algorithm, we consider the same numerical example
used in [4] and [30]. This example considers a universe of 10 assets, whose expected returns and covariance matrix
data are given in Table 1. Moreover, to verify that the algorithm works properly, we have modified the upper and
lower bounds of the example, while preserving the budget constraint.

The first step of the algorithm is to initialize k = 0, and solve the maximum-return portfolio problem using the
DSM. The optimal SFS {x0, J0

B} obtained is x0 = (0.1, 0.5, 0.1, 0, 0, 0.1, 0, 0.1, 0.1, 0)′ with J0
B = {2}. The rest of

the execution results are summarized in Table 2, which provides a detailed view of the different iterations. For each
iteration, the algorithm outputs the pivot point λk associated with the corner portfolio xk = (x1, x2, · · · , x10)

′ and
the support set Jk

B , along with the expected return and risk µk
p and (σk

p)
2 respectively.

The efficient frontier of the example, illustrated in Figure 3, represents the set of optimal portfolios that provide
the best trade-off between return and risk, with the corner portfolios that constitute it.
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Figure 2. Parametric efficient frontier for the Example 1 with associated corner portfolios.

Table 1. Expected returns, variance-covariance matrix, and asset bounds vectors.

Stock 1 2 3 4 5 6 7 8 9 10

µ 1.175 1.19 0.396 1.12 0.346 0.679 0.089 0.73 0.481 1.08

0.4075
0.0317 0.9063
0.0518 0.0314 0.1949
0.0566 0.0269 0.0441 0.1953

Σ 0.0330 0.0192 0.0301 0.0278 0.3406
0.0083 0.0093 0.0132 0.0053 0.0078 0.1598
0.0216 0.0249 0.0352 0.0137 0.0207 0.0210 0.6806
0.0133 0.0076 0.0115 0.0078 0.0074 0.0052 0.0138 0.9553
0.0343 0.0287 0.0427 0.0291 0.0254 0.0172 0.0463 0.0106 0.3168
0.0225 0.0134 0.0206 0.0164 0.0128 0.0072 0.0193 0.0076 0.0185 0.1108

li 0.1 0.2 0.1 0 0 0.1 0 0.1 0.1 0

ui 0.8 1 0.5 0.9 1 0.8 0.8 1 1 0.8
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Figure 3. Parametric efficient frontier for the Example 1 with associated corner portfolios.

4. Computational results

In this section, we present the computational results of experiments performed on nine publicly available
benchmark sets. Five of these datasets are as described by Chang et al. [33], and are available through Beasley’s
OR library [37]. The other four are provided by Cesarane et al. [34] and are available on [36]. These benchmarks
include return vectors and covariance matrices for various stock indices, including the Hang Seng, DAX 100, FTSE
100, EuroStoxx 50, S&P 100, Nikkei 225, US S&P 100, US S&P 500, and Euro-American NASDAQ.

In the following, we present a comparative study of our Parametric Support Algorithm (PSA) with the Parametric
Active Set Method (PASM) [6] and the Matlab portfolio optimization package. The goal of this comparison is to
measure and analyze the execution time performance of these different methods. Our PSA was implemented using
Matlab R2019b. For the PASM algorithm, we used Matlab code provided by the author in [7]. The tests were
performed on the same machine running Windows 11, equipped with an Intel Core i5-8250U 1.8 GHz processor
and 8 GB of RAM.

The algorithms are evaluated in a simplified context where only the budget constraint is considered (e′x = 1),
with the lower bound set to zero and the upper bound set to one (0 ≤ x ≤ 1). Note that the algorithms provide the
exact efficient frontier, as shown in Figure 4. However, unlike the Matlab package, which only computes a fixed
number of corner portfolios, the PSA and PASM algorithms comprehensively provide all corner portfolios on the
frontier.

Table 3 lists the results of the comparison of the execution times (in seconds) between the three algorithms;
PSA, PASM and the Matlab package, on the nine benchmarks. Each dataset is characterized by the name of the
stock index and the number of assets it contains, denoted by n. The columns ”CPU-Time” and ”ρ” for the PSA
and PASM indicate the execution time for deriving the efficient frontier for each stock index, and the number of
corner portfolios ρ obtained by both approaches, respectively. In addition, the last column reports the CPU time of
the Matlab package, if available ¶

¶To ensure the efficiency and the accuracy of the analysis, the algorithms are set to automatically stop after 10 minutes of execution without
producing any concrete results.
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Table 2. Overview of the algorithm iterations and corner portfolios characteristics.
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The results presented in Table 3 demonstrate the effectiveness of our PSA algorithm in comparison with PASM
and Matlab package, particularly for datasets with large numbers of assets. For example, for the S&P 500 index,
the PSA achieved results in 0.1651 seconds, whereas the PASM algorithm required 8.5162 seconds and the Matlab
package took over 51 seconds. Moreover, for NASDAQ index with 2195 assets, neither PASM nor Matlab package
were able to obtain results in less than 10 minutes, while our algorithm required less than 0.3 seconds.
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Figure 4. The efficient frontier plotted by the three algorithms for the S&P 100 stock index (98 assets), along with the corner
portfolios provided by the PSA method.

Table 3. Comparison results in terms of CPU time (in seconds) for stock indices.

PS Algorithm PAS Method Matlab Package

Stock indices (n) CPU-Time ρ CPU-Time ρ CPU-Time

Hang Seng (31) 0.0328 17 0.0973 17 0.9539
DAX 100 (85) 0.0385 37 0.1735 37 1.2411
FTSE 100 (89) 0.0410 50 0.2093 50 1.4704
S&P 100 (98) 0.0436 65 0.2437 65 1.7592
Nikkei 500 (225) 0.0402 44 0.9901 44 1.9605

EuroStoxx50 (48) 0.0331 25 0.1103 25 0.9444
FTSE 100 (79) 0.0369 44 0.2043 44 1.3039
S&P 500 (476) 0.1651 99 8.5162 99 51.3856
NASDAQ (2196) 0.3498 396 - - -

In order to confirm these results and further evaluate the effectiveness of our PSA approach to solve large-scale
portfolio optimization problems, we generated random test problems following two procedures. The first procedure
was based on the methodology described by Niedermayer et al. in [10]. This involved generating a series of random
problems comprising 50, 100, 150, and 200 assets. Furthermore, to test the performance of our algorithm on large-
scale problems with dense covariance matrices, additional datasets comprising 500, 1000, 2000, 3000, and 5000
assets were generated, following the procedure described by Hirschberger et al. in [35].

In addition to execution time, we evaluated the temporal complexity of the three methods to better understand
their effectiveness in relation to the problem size. Table 4 summarizes the results of the comparison in terms of CPU
time for each set of generated problems, where ”Avr-Time” represents the average of 10 executions. In addition,
the last row of the table shows the estimated time complexity of the algorithms as a function of the number of
assets involved in each problem.
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Table 4. Comparison results in terms of CPU time (in seconds) for randomly generated problems.

PS Algorithm PAS Method Matlab Package

Problem size Avr-Time Avr-Time Avr-Time

50 0.0016 0.0445 0.0473
100 0.0023 0.1031 0.1662
150 0.0040 0.2619 0.2242
200 0.0106 0.6651 0.5217

500 0.2087 12.5769 89.9587
1000 0.7196 98.1911 504.5293
2000 3.0209 - -
3000 11.0567 - -
5000 30.8725 - -

Estimate O(n2.2) O(n2.7) O(n3.4)

The obtained results confirm that our PSA algorithm outperforms PASM and the Matlab package for randomly
generated problems, particularly for medium-sized problems. Once the problem size exceeds 2000 assets, the PSA
continues to show its superior performance, although the average time is slightly higher, which can be explained
by the dense covariance matrices generated by the second procedure. In contrast, PASM and Matlab package
are impractical for problems with more than 1000 assets and are unable to provide results within the 10-minute
time limit. In context, the estimated temporal complexity of PSA, O(n2.2), is significantly better than that of
PASM and Matlab. Note that this complexity can be reduced to O(n1.3) if we consider only the sets generated by
Niedermayer’s procedure.
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Figure 5. Evolution of the algorithms’ performance as a function of problem size for different algorithms.
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In conclusion, the computational results presented confirm that the approach proposed in this study is an efficient
method for deriving the Markowitz efficient frontier and providing all its corner portfolios in a reasonable time.
Furthermore, the method demonstrates its ability to solve large-scale portfolio optimization problems, including
those with dense covariance matrices, while maintaining significantly superior computational performance
compared to existing methods.

5. Conclusion

In this paper, we have presented a novel Parametric Support Algorithm (PSA) for solving the mean-variance
portfolio optimization model with general linear constraints and portfolio limitations. This model is formulated as a
convex PQP problem using the risk aversion parameter. Our approach extends the DSM algorithm [14, 16] to solve
the problem in a PQP framework. The proposed algorithm enables us to trace the entire Markowitz efficient frontier
(Pareto front) by iteratively identifying all corner portfolios. In addition, it determines the associated support sets,
providing a comprehensive and detailed analysis of efficient investment trade-offs. The parametric solving process
of our PSA algorithm is shown to be easy to understand and simple to implement, offering a practical alternative
to the classical parametric approaches in portfolio optimization.

To test the efficiency of our PSA algorithm, we compared it to Matlab’s portfolio optimization package and the
parametric active set algorithm (PASM)[6, 7]. The results show that our algorithm outperforms both in terms
of execution time. Moreover, it demonstrated exceptional computational performance for large-scale portfolio
optimization problems involving over 2000 assets, including those with dense covariance matrices.

For future perspectives, we plan to extend our approach to address portfolio optimization problems by
incorporating additional real-world constraints, such as transaction costs and the cardinality constraint, as well
as other risk measures like semivariance and Value at Risk (VaR).
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