
STATISTICS, OPTIMIZATION AND INFORMATION COMPUTING
Stat., Optim. Inf. Comput., Vol. x, Month 202x, pp 0–21.
Published online in International Academic Press (www.IAPress.org)

A Mathematical model for analysing the transmission and control of
COVID-19 infection with efficient interventions

Olawale J. Adeleke 1 ,*, Adebayo O. Adeniran 1, Michael O. Olusanya 2, Dimpho Mothibi 3

1Department of Mathematics and Statistics, Redeermer’s University, Ede, Nigeria
2Department of Computer Science and Information Technology, Sol Plaatje University, Kimberly, Republic of South Africa

3Department of Mathematical Sciences, Sol Plaatje University, Kimberly, Republic of South Africa

Abstract The COVID-19 pandemic, caused by SARS-CoV-2, continues to pose a significant global threat. Mathematical
modelling offers a valuable tool for understanding transmission dynamics and designing control strategies. The recent
emergence of new variants of the disease and the incidents of infections in people who had previously recovered from
the disease have necessitated the need to study the control of the transmission of the disease in the face of re-infection.
Thus, this study presents a novel compartmental model for the COVID-19 epidemic that incorporates the possibility of
re-infection. The model captures the transition of individuals through susceptible, quarantined, exposed, infected, treated,
and recovered compartments. Various mathematical analyses of the model were presented to provide the reading audience
with vital information on the disease dynamics. Afterwards, we employed optimal control theory to identify interventions
that minimise the infected population while considering the associated costs. By applying Pontryagin’s Maximum Principle,
we determine the optimal control strategies for these interventions. This framework allows us to evaluate the effectiveness
of various control measures, such as minimal contact, early therapeutic treatment of infected individuals, quarantine, and
vaccination, in mitigating the epidemic while accounting for the possibility of re-infection. Our findings can inform public
health decision-making as they provide insights into the most effective strategies for controlling the transmission of COVID-
19 in the presence of re-infection.

Keywords COVID-19, Re-infection, Mathematical model, Hamiltonian, Optimal control theory, Pontryagin’s maximum
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1. Introduction

The emergence of the novel coronavirus disease caused by SARS-CoV-2 had a devastating impact globally [41].
The first detected cases of SARS-CoV-2 emerged in Wuhan, China, in December 2019, which suggested the name
COVID-19 for the disease. Early cases were linked to a seafood market, suggesting a potential animal origin [41].
By January 2020, Chinese authorities had identified the novel coronavirus, and the World Health Organisation
(WHO) had declared a public health emergency of international magnitude in late January [38]. COVID-19 spread
rapidly, prompting lockdowns and border restrictions worldwide. Despite ongoing vaccination efforts, the virus
continues to evolve, with considerations of re-infection influencing control strategies [1].

Understanding the transmission dynamics and developing effective control strategies remain crucial for
mitigating the ongoing pandemic. Mathematical modelling offers a powerful tool to analyse these dynamics and
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predict disease outbreaks. This article explores the application of mathematical modelling and optimal control
theory to the COVID-19 epidemic, specifically considering the possibility of re-infection [23, 19].

A cornerstone of epidemic modelling is the SEIR (Susceptible-Exposed-Infectious-Recovered) framework,
which categorises the population into compartments based on their infection status. Numerous studies have
adapted this framework to capture the complexities of COVID-19. Studies like [12] incorporate an exposed carrier
compartment to account for pre-symptomatic transmission, while [19] differentiates between symptomatic and
asymptomatic infectious individuals for a more detailed analysis.

The ongoing COVID-19 pandemic has presented unprecedented challenges globally, necessitating robust
mathematical models to understand and control its transmission dynamics (see [11]). Recent studies highlight the
critical importance of incorporating reinfection possibilities into these models, as emerging evidence suggests
that individuals previously infected with SARS-CoV-2 are not immune to reinfection [22, 35]. This aspect is
crucial for designing effective public health interventions and vaccination strategies, as it impacts herd immunity
thresholds and long-term epidemic trajectories [32]. Furthermore, understanding the implications of reinfection
can help refine control measures, such as quarantine policies, social distancing protocols, and booster vaccination
campaigns, to mitigate the spread of the virus more effectively [36]. Thus, developing comprehensive models that
account for reinfection scenarios is imperative for informed decision-making and effective pandemic management
[24]. In particular, this study considers a special case where individuals in the quarantined compartment can
either be re-incorporated into the susceptible class or become infected and therefore transferred to the treatment
compartment.

There exist many optimization techniques for analysing and solving real-world problems (see [9, 15, 16, 28, 2, 3])
including epidemiological problems, many of which have been used to achieve great level of success in providing
solutions to problems that have defiled quality solutions for quite a long time. However, within the sphere of
epidemiological research, mathematical models constitute potent tools that can be leveraged for optimal control,
where interventions are optimized to achieve a desired outcome (see [5, 6, 7]). Studies like [17] employ optimal
control theory to identify interventions that minimize infection spread while considering costs. This framework
allows for evaluating the effectiveness of various control measures, such as social distancing, vaccination, and
isolation protocols.

As the pandemic evolves, so too do the models. Recent research focuses on incorporating factors like emergence
of new variants, waning immunity, and the impact of vaccination campaigns. Additionally, the social and
economic consequences of control strategies are increasingly being factored into the models, making them more
comprehensive tools for decision-making [23, 19, 12, 20, 34].

This article contributes to this ongoing research by proposing a mathematical model for COVID-19 that considers
re-infection and utilizes optimal control theory to identify the most effective interventions for mitigating the
epidemic.

2. The Model

Considering a homogeneous population at time (t), the total population N(t) is divided into seven(7)
epidemiological stages depending on individual health status; Susceptible Individual (S), Exposed Individual (E),
Quarantined uninfected contacts (F), Asymptomatic infected individuals (A), Symptomatic infected individuals (I),
Treated individuals (T), Recovered individuals (R). The total population (N) at any time (t) can be expressed as

N(t) = S(t) + E(t) +A(t) + I(t) +Q(t) + T (t) +R(t) (1)
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Figure 1. Model diagram showing the transmission of COVID-19

Table 1. Description of model parameters .

Parameter Descriptions value Reference
S Susceptible individual
E Exposed individuals
Q Quarantined uninfected contacts
A Asymptomatic infected individuals
I Symptomatic infected individuals
T Treated individuals
R Recovered individuals
δ contact rate 0.0510 [26]
α probability of transmission per contact 0.01 [26]
ν quarantined rate of exposed individuals 0.012 [26]
β transition rate of exposed to infected 0.25 [33]
σ transition rate from quarantined uninfected to susceptible 0.02 [8]
λ probability of having symptom among infected individuals 0.04 [39]
κ disease-induced death rate 0.06 [33]
µ natural death rate 0.1512 [8]
τ probability of exposure to asymptomatic infected individuals 0.02 Assumed
φi transfer rate from symptomatic infected to treated individuals 0.03 [39]
φv transfer rate of quarantined infected to treated individuals 0.4 [40]
ϕ transfer rate of recovered individuals to susceptible individuals 0.4 [40]
θ recruitment rate of new susceptible individuals 1000 Assumed
γi recovery rate of infected individuals 0.03 [33]
γa recovery rate of asymptomatic infected individuals 0.1 Assumed
γt recovery rate of treated infected individuals 0.8 [8]

Stat., Optim. Inf. Comput. Vol. x, Month 202x



O.J. ADELEKE, A.O. ADENIRAN, M.O. OLUSANYA, D. MOTHIBI 3

From the description of model parameters in Table 1 and the compartmental diagram in Figure 1, we have the
following system of differential equation.

dS

dt
= θ − αδS(I + τA)− δν(1− α)S(I + τA)− µS + σQ+ ϕR

dE

dt
= αδS(I + τA)− βE

dI

dt
= βλE − (γ1 − φi)I

dA

dt
= β(1− λ)E − γaA

dQ

dt
= δν(1− α)S(I + τA)− (σ + φν + µ)Q (2)

dT

dt
= φνQ+ φiI − (δt + κ+ µ)T

dR

dt
= δaA+ δiI + δtT − ϕR

S(0) = So, E(0) = Eo, I(0) = Io, A(0) = Ao, Q(0) = Qo, T (0) = To, R(0) = Ro.

3. Model analysis

Studying simplified versions of how diseases spread helps us grasp and anticipate real-life outbreaks. These models,
even if they are not perfect, give us important clues about how diseases move through a population and can be used
to design public health measures.

3.1. Dynamics of the model

With reference to equation (1), we have

dN

dt
=
dS

dt
+
dE

dt
+
dI

dt
+
dA

dt
+
dQ

dt
+
dT

dt
+
dR

dt

= θ − µ (S +Q+ T )− κT.

Assume N ≊ S +Q+ T , we have
dN

dt
= θ − µN − κT. (3)

Equation (3) describes the dynamics of the model.

3.2. Boundedness of the model

In this section, the feasibility of the model which describes the region in which the solution of model (2) is
investigated.

Lemma 3.1
Let (S,E,A, I,Q, T,R) be the solution of the system (2) with initial condition in a biologically feasible region Ω
with

Ω =
{
S,E,A, I,Q, T,R ∈ R7

}
,

then Ω is non-negative invariant.
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Proof
From equation (3), a change inN leads to change in all the variables in the population, in the absence of the disease,
there is no need for treatment (κ = 0), we have

dN

dt
≤ θ − µN. (4)

Solving the differential inequality (4), yields

N(t) ≤ N(t)e−µt +
θ

µ

(
1− e−µt

)
. (5)

As t→ ∞

N(t) ≤ θ

µ
, (6)

hence, the feasible solution region is given by

Ω =

{
(S,E,A, I,Q, T,R) ∈ R7

+;N(t) ≤ θ

µ

}
.

Thus, the feasible region defined by Ω is positively invariant.

3.3. Positivity of solutions

Lemma 3.2
Let S(0), E(0), A(0), I(0), Q(0), T (0), R(0), be the initial conditions of the system (2), then the solution of S, E,
A, I , Q, T , R are nonnegative ∀ t > 0.

Proof
Considering the first equation of system (2)

dS

dt
= θ − αδS(I + τA)− δν(1− α)S(I + τA)− µS + σQ+ ϕR, (7)

= θ − [αδ(I + τA) + δν(1− α)(I + τA)]S − µS + σQ+ ϕR.

Let P = [αδ(I + τA) + δν(1− α)(I + τA)], then,

dS

dt
= θ − PS − µS + σQ+ ϕR. (8)

Thus,
dS

dt
≥ −(P + µ)S. (9)

On integrating (9), we have
S(t) ≥ e−(P+µ)teC ,

where C is a constant of integration. Let B = eC , we have

S(t) ≥ Be−(P+µ)t. (10)

At t = 0, equation (10) is reduced to
S(0) ≥ B. (11)

Substituting equation (11) into (10), we have

S(t) ≥ S(0)e−(P+µ)t. (12)
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Hence, S(t) ≥ 0, since (P + µ) > 0. Thus,
S(t) ≥ 0 ∀ t > 0.

In a similar approach, we prove the remaining equations of equation (2).
Thus,

S(t) ≥ 0, E(t) ≥ 0, I(t) ≥ 0, A(t) ≥ 0, Q(t) ≥ 0, T (t) ≥ 0, R(t) ≥ 0.

That is, all the solutions are nonnegative ∀ t > 0.

3.4. Equilibrium of Solution

Let E = (S,E, I, A,Q, T,R) ∈ Ω be the equilibrium point of the system (2), that is,

dS

dt
=
dE

dt
=
dI

dt
=
dA

dt
=
dQ

dt
=
dT

dt
=
dR

dt
= 0

At equilibrium, equation (2) becomes

θ − αδS(I + τA)− δν(1− α)S(I + τA)− µS + σQ+ ϕR = 0

αδS(I + τA)− βE = 0

βλE − (γ1 − φi)I = 0

β(1− λ)E − γaA = 0

δν(1− α)S(I + τA)− (σ + φν + µ)Q = 0 (13)

φνQ+ φiI − (δt + κ+ µ)T = 0

δaA+ δiI + δtT − ϕR = 0.

Solving (13), we shall obtain two equilibria: the disease free equilibrium E+ = (S+, E+, I+, A+, Q+, T+, R+)
and endemic equilibrium E∗ = (S∗, E∗, I∗, A∗, Q∗, T ∗, R∗)

Disease free equilibrium of the model:

In a model that tracks how a disease spreads, a disease-free equilibrium (DFE) is a situation where nobody has the
disease, and it stays that way. This basically means the disease vanishes from the population entirely. Scientists use
these models to understand how diseases move through people over time [13].

Solving equation (13) and letting E+ = I+ = A+ = Q+ = T+ = R+ = 0, that is, in the absence of the disease,

S+ =
θ

µ
,

so that

E+ =
(
S+, E+, I+, A+, Q+, T+, R+

)
=

(
θ

µ
, 0, 0, 0, 0, 0, 0

)
(14)

Endemic Equilibrium:

Endemic equilibrium state is the state where the disease persist in the population. At endemic equilibrium, we solve
equation (13) simultaneously for S∗, E∗, I∗, A∗, Q∗, T ∗, R∗.

S∗ =
γa(γi + φi)

αδ [λγa + τ(1− λ)(γi + φi)]

E∗ =
(γi + φi)θ1

βλθ2
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I∗ =
θ1
θ2

A∗ =
θ1(1− λ)(γi + φj)θ1

θ2γaθ2

Q∗ =
ν(1− α)(γi + φi)θ1
αλ(σ + φvµ)θ2

T ∗ =
[φvν(1− α)(γi + φi) + αλφi(σ + φv + µ)] θ1

αλ(σ + φν + µ)(γt + κ+ µ)θ2

R∗ =
(1− λ)(γi + φi)θ1

λϕθ2
+
γiθ1
φθ2

+
γtθ1 [φνν(1− α)(γi + φi) + αλφi(ρ+ φν + µ)] θ1

αλϕ(σ + φν + µ)(γt + κ+ µ)θ2

where
θ1 = λH4H6 [αδθ(λφa +H2H3)− µφaH2]

θ1 = δ [λγt +H2H3] [αH4(H2H6 −H6γi −H5H6 − λφiγt) +H1H2(H6 −H2ρ− γtφν)]

H1 = ν(1− α), H2 = γi + φi

H3 = τ(1− λ), H4 = ρ+ φν + µ

H5 = φi(1− λ), H6 = φt + κ+ µ

4. Basic Reproduction Number

In the study of infectious diseases, a number called the ”basic reproduction number”, tells us how easily a disease
can spread.

The basic reproduction number, often abbreviated as Ro, is a key concept in epidemiology. it’s a measure of
how contagious a disease is, a higher Ro means that each infected pod, on average, infects more pods, leading to
a faster spread of the disease. Conversely, a lower Ro indicates that the disease is less contagious and will spread
more slowly [37]. For instance, if a disease has an Ro of 3, then one infected person can be expected to transmit
the disease to 3 other people on average.
Ro greater than 1 indicates that the infection will spread exponentially. Conversely, an Ro less than 1 means

that the infection will die out. The concept is instrumental in understanding the spread of infectious diseases and
implementing control measures. Public health interventions like vaccination aim to bring down the Ro below 1 to
stop the spread of a disease.

According to [37], factors affecting the basic reproduction number are:

• infectiousness of the disease: this refers to how easily a disease can be transmitted from one person to
another.

• duration of the infectious period: the longer an infected person remains contagious, the higher the chance
of transmission.

• rate of contact between susceptible individuals and infected individuals: this depends on various factors
like population density, social mixing patterns, and hygiene practices.

Ro is the average number of secondary infections caused by a single infected individual in a population that is
entirely susceptible to the disease [37]. Computation of Ro is carried out using the next generation matrix as laid
out in [37]. Ro is obtained using

Ro = ρ
(
FV −1

)
, (15)
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where ρ is the spectral radius of the matrix FV −1. Differential equations which is associated with E, I , A, and Q
compartments are the infective classes and will be used in the computation of Ro.

dE

dt
= αδS(I + τA)− βE,

dI

dt
= βλE − (γ1 − φi)I,

dA

dt
= β(1− λ)E − γaA,

dQ

dt
= δν(1− α)S(I + τA)− (σ + φν + µ)Q,

dT

dt
= φνQ+ φiI − (δt + κ+ µ)T. (16)

From system (16), we derive

Fi =


αδS (I + τA)

0
0

δν(1− α)S(I + τA)

 , Vi =


βE

−βλE + (γi + φi)I
−β(1− λ)E + γiA
(σ + φν + µ)Q

−φiI + (γt + κ+ µ)T

 .

Computing the partial derivative of Fi and Vi with respect to E, I , A, Q, T , we obtain

F =


0 αδS αδτS 0 0
0 0 0 0 0
0 0 0 0 0
0 δν(1− α)S δν(1− α)τS 0 0
0 0 0 0 0

 ,

V =


β 0 0 0 0

−βλ (γi + φi) 0 0 0
β(1− λ) 0 γa 0 0

0 0 0 (σ + φν + µ) 0
0 −φi 0 φν (γt + κ+ µ)

 .

With respect to equation (15), Ro, which is the dominant eigenvalue of equation is obtained as

Ro =
αδθ [λγa + τ(1− λ)(γi − φi)]

(γi + φi)γaµ
, (17)

equation (17) is the basic reproduction number for model (2)

(i) whenever Ro > 1, it indicates that each infected person, on average, will infect more than one other person,
leading to an outbreak.

(ii) WheneverRo < 1, it means that the disease will likely die out on its own, as each infected person, on average,
infects fewer than one other person.

(iii) Whenever Ro = 1, it indicates new cases remains constant, neither increasing nor decreasing, the outbreak
is not actively growing, but it’s not dying out either.

5. Stability Analysis

5.1. Local stability analysis of the disease free equilibrium

Lemma 5.1
Whenever Ro < 1, the disease free equilibrium E+ is locally asymptotically stable, otherwise it is unstable.
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Proof
The Jacobian matrix J of model (2) will be computed by differentiating each equation in system with respect to
state variables S, E, I , A, Q, T , R. The model system (2) linearized around the DFE solution (14) yields the
Jacobian matrix below:

J+ =



−µ 0 −ψ1S
+ −ψ2S

+ 0 0 ϕ
0 −β ψ4 ψ5S

+ 0 0 0
0 ψ3 −ψ6 0 0 0 0
0 ψ7 0 −γa 0 0 0
0 0 ψ8S

+ ψ9 −ψ10 0 0
0 0 φi 0 φv −ψ11 0
0 0 γi γa 0 γt −ϕ


, (18)

where ψ1 = [α+ ν(1− α)] δ ψ2 = [α+ ν(1− α)] δκ ψ3 = βλ, ψ4 = αδ, ψ5 = αδτ ,
ψ6 = γi + φi, ψ7 = β(1− λ), ψ8 = δκ(1− α), ψ9 = δκ(1− α)τ , ψ10 = σ + φν + µ, ψ11 = γt + κ+ µ.
Matrix J+ in equation (18) above is stable if its trace is negative, tr(J+) < 0 and its determinant is positive,

det(J+) > 0. Here, tr(J+) is computed as

tr(J+) = − (µ+ β + ψ6 + γa + ψ10 + ψ11)

= − (3µ+ β + γi + φi + δa + ρ+ φν + γt + κ)

Therefore, tr(J+) < 0.
Likewise, the determinant of matrix (J+) in equation (18) is given as

det(J+) =

[
ψ6ψ5

θ

µ
β + ψ4βλγa − ψ6β

(
γa + λψ5

θ

β

)
ψ10ψ11ϕµ

]
.

Therefore, det(J+) ≥ 0, if

ψ6ψ5
θ

µ
β + ψ4βλγa ≥ ψ6β

(
γa + λψ5

θ

β

)
Thus J+ will be stable and asymptotically stable if the condition above is satisfied.

5.2. Global stability analysis of the disease free equilibrium

In this subsection, the global stability of the disease free equilibrium (E+) will be discussed with the aid of
Lyapunov function (see [10] for more details).

Lemma 5.2
Disease free equilibrium of the system (2) is globally asymptotically stable if Ro ≤ 1, θ = µN and unstable when
Ro ≥ 1.

Proof
The quadratic composite is used as the Lyapunov candidate as follows.

V =
1

2

[
(S − S+) + (E − E+) + (I − I+) + (A−A+)(S − S+) + (Q−Q+) + (R−R+)

]2
(19)

Differentiating equation (19) with respect to time yields

dV

dt

[
(S − S+) + (E − E+) + (I − I+) + (A−A+)(S − S+) + (Q−Q+) + (R−R+)

](dS
dt

+
dE

dt
+

dI

dt
+
dA

dt
+
dQ

dt
+
dT

dt
+
dR

dt
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dV

dt

[
(S − S+) + (E − E+) + (I − I+) + (A−A+)(S − S+) + (Q−Q+) + (R−R+)

] dN
dt

At DFE, S+ = θ
µ , E+ = I+ = Q+ = T+ = R+ = 0 and dN

dt = θ − µN − κT

dN

dt
=

[
S + E + I +A+Q+ T +R− θ

µ

]
[θ − µN − κT ]

dN

dt
=

[
N − θ

µ

]
[θ − µN − κT ]

setting T = 0
dN

dt
≤
[
N − θ

µ

]
[θ − µN ]

dN

dt
≤ − 1

µ
[θ − µN ]

2

dN

dt
≤ 0.

Hence, dN
dt ≤ 0, if and only if θ = µN and µ > 0.

6. Sensitivity analysis

Sensitivity indices allow us to measure the relative change in a variable when a parameter changes. The normalized
forward sensitivity index of a variable to a parameter is the ratio of the relative change in the variable to the relative
change in the parameter. When the variable is a differentiable function of the parameter, the sensitivity may be
alternatively defined using partial derivatives

The normalized forward sensitivity index of a variable W that depends on a parameter M is defined as (see
[4, 14, 37] for more details.)

ZW
M =

∂W

∂M
× M

W

The sensitivity analysis of Ro corresponding to the following paramete.rs: θ, α, δ, λ, γa, τ , γi, φi and µ is
obtained in the Table 2.

The indices with positive signs increases the value of Ro when they are increased and those with negative signs
decreases the value of Ro when they are increased.

Understanding how a disease spreads is key to stopping it. This usually help to choose the best way to control
the disease.

Table 2. Sensitivity Indices of Ro

Parameter Value Sensitivity index
θ 1000 +1.0000
α 0.01 +1.0000
δ 0.0510 +1.0000
λ 0.50 +0.6667
γa 0.02 -0.3333
τ 0.02 +0.3333
γi 0.05 -0.1111
φ1 0.40 -0.8889
µ 0.1512 +1.0000
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The value with negative index is an important parameter employed in the control of the disease because the value
of Ro grows when the index with a positive indication is increased and decreases when the index with a negative
indication is increased.

7. Analysis of optimal control

Instead of just predicting how an epidemic unfolds, optimal control theory empowers us to influence its course.
It identifies the most effective interventions (control strategies) to achieve a specific goal [31]. This approach,
like steering a ship, guides outbreaks towards desirable outcomes. Pontryagin’s Maximum Principle (PMP) [29], a
well-established method in biology and optimal control, provides the mathematical framework for this strategy.

The optimal control in this paper focuses on:

(i) u1: minimum contact;
(ii) u2: early therapeutic treatment of infected individuals;

(iii) u3: early quarantine
(iv) u4: vaccination.

Incorporating the above controls into model (2), we have

dS

dt
= θ − (1− u1)αδ(I + τA)S [δν(1− α)(I + τA) + u4]S − µS + ρQ+ ϕR

dE

dt
= αδS(I + τA)− βE

dI

dt
= βλE − (γ1 − φi + u2)I

dA

dt
= (β(1− λ) + u3)E − γaA

dQ

dt
= (δν(1− α)(I + τA) + u4)S − (σ + φν + µ+ u3)Q (20)

dT

dt
= (φν + u3)Q+ φiI − (δt + κ+ µ+ u2)T

dR

dt
= γaA+ (δi + u2) I + γtT − ϕR

Our goal is to find the most effective way to control COVID-19 spread and reduce infections. We want to achieve
this by:

(i) Minimizing contact: This means encouraging people to interact less frequently and at a safer distance.
(ii) Early vaccination: Vaccinating as many people as possible as soon as they are eligible.

(iii) Therapeutic treatment: Providing effective medications to those who become infected.
(iv) Quick quarantine: Isolating infected individuals to prevent further transmission.

By focusing on these control measures, we aim to:

• Reduce the number of susceptible individuals becoming exposed to the virus.
• Lower the overall number of infected people.
• Minimize the need for lengthy quarantines.
• Increase the number of treated and recovered individuals.
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The Objective functional for the minimization problem is expressed as

J = min
∫ T

0

(
A1S(t) +A2E(t) +A3I(t) +A4Q(t) +

1

2

4∑
i=1

Biu
2
i (t)

)
dt, (21)

subject to the constraint given in equation (20), T is a representation of the anticipated completion time for the
controls implementation. where A1, A2, A3 and A4 are positive weight constants corresponding to S, E, I and
Q. While B1, B2, B3 and B4 are the coefficient for each control measures. The terms B1u

2
1, B2u

2
2, B3u

2
3, and

B4u
2
4, represent the cost associated with practice of minimizing contact, therapeutic treatment, early quarantine

and vaccination respectively. Similar to previous research [18, 21, 25, 27], the cost control functions in this study
adopt a quadratic form and the square of the control variables is taken to remove the severity of the control applied
and the side effects of the therapeutic treatment.

In order to achieve our set objectives, we seek an optimal control triple, u∗ = (u∗i ), i = 1, 2, 3, 4 such that

J(u∗) = min {J (u1, u2, u3, u4|ui ∈ U)} , (22)

where U = {ui(t) : 0 ≤ ui(t) ≤ 1,Lebesque measurable, t ∈ [0, T ]}, is a non empty control set.
The lower bounds for ui corresponds to no control measures applied, while the upper bound associated to be
maximum effort exerted to minimize the transmission of COVID and other related cost.

The Hamiltonian:

The Hamiltonian(H) for the control is defined as:

H(S,E, I,Q,A, I,R) = A1S +A2E +A3I +A4Q+
1

2

(
B1u

2
1 +B2u

2
2 +B3u

2
3 +B4u

2
4

)
+

λ1
dS

dt
+ λ2

dE

dt
+ λ3

dI

dt
+ λ4

dA

dt
+ λ5

dQ

dt
+ λ6

dT

dt
+ λ7

dR

dt
. (23)

Characterization of the optimal control solutions

Here, we characterize the optimal control u∗1 , u∗2, u∗3, u∗4, which gives the optimal value for the control measures
and the corresponding state variables (S∗, E∗, I∗, A∗, Q∗, T ∗, R∗). The necessary condition for the optimal control
are obtained using PMP [30] to the Hamiltonian in equation (23). The principle transform the system of equation
(20) and (21) into a problem minimizing pointwise Hamiltonian function and the adjoint variables λ′s with respect
to the control functions u1, u2, u3 and u4.

Lemma 7.1
Necessary Condition: Supposing that(S∗, E∗, I∗, A∗, Q∗, T ∗, R∗) are optimal state solutions and (u1, u2, u3, u4)
are associated optimal control variables for the optimal control problem (20), then there exist seven (7) adjoint
variables λi, for i = 1, 2, · · · 7 which satisfy ∂λi

∂t = − ∂H
∂xi

, that is,

dλ1
dt

= −∂H
∂S

dλ2
dt

= −∂H
∂E

dλ3
dt

= −∂H
∂I

dλ4
dt

= −∂H
∂A

(24)

dλ5
dt

= −∂H
∂Q

Stat., Optim. Inf. Comput. Vol. x, Month 202x



12 A MATHEMATICAL MODEL FOR ANALYSING THE TRANSMISSION AND CONTROL OF COVID-19 INFECTION

dλ6
dt

= −∂H
∂T

dλ7
dt

= −∂H
∂R

Proof
Using PMP, the adjoint conditions can be determined using the differential equation governing the adjoint
variables along the transversality conditions. The adjoint equations are given by equation (24) with the
transversality conditions

λ1(T ) = λ2(T ) = λ3(T ) = λ4(T ) = λ5(T ) = λ6(T ) = λ7(T ).

Recall from Equation (23)

H = A1S +A2E +A3I +A4Q+
1

2

(
B1u

2
1 +B2u

2
2 +B3u

2
3 +B4u

2
4

)
+

λ1 [θ − (1− u1)αδ(I + τA)S [δν(1− α)(I + τA) + u4]S − µS + ρQ+ ϕR] +

λ2 [αδS(I + τA)− βE] + λ3 [βλE − (γ1 − φi + u2)I] +

λ4 [(β(1− λ) + u3)E − γaA] + λ5 [(δν(1− α)(I + τA) + u4)S − (σ + φν + µ+ u3)Q] +

λ6 [(φν + u3)Q+ φiI − (δt + κ+ µ+ u2)T ] + λ7 [γaA+ (δi + u2) I + γtT − ϕR] .

Thus,

−∂H
∂S

= −A1λ1 [θ − (1− u1)αδ(I + τA) [δν(1− α)(I + τA) + u4] + µ]

−∂H
∂E

= −A2 + λ2(β + u3)− λ3βλ− λ4 [β(1− λ) + u3]

− ∂H

∂I
= −A3 + λ1 [(1− u1)αδS + δν(1− α)S]− λ2αδS(1− u1) + λ(γi + φi + u2)− λ5δν(1− α)S

− λ6φi − λ7(γi + u2)

−∂H
∂A

= λ1 [(1− u1)αδτS + δν(1− α)τS]− λ2(1− u1)1− αδτS + λ4γa − λ5δν(1− α)τAS − λ7γa (25)

−∂H
∂Q

= −A4 − λ1ρ+ λ5(ρ+ φν) + µ+ u3 − λ6(φν + u3)

−∂H
∂T

= λ(γt + κ+ µ+ u2)− λ7γt

−∂H
∂R

= −A1ϕ+ λ7ϕ.

The adjoint equation can be written as

dλ1
dt

= −A1λ1 [θ − (1− u1)αδ(I + τA) [δν(1− α)(I + τA) + u4] + µ]

dλ2
dt

= −A2 + λ2(β + u3)− λ3βλ− λ4 [β(1− λ) + u3]

dλ3
dt

= −A3 + λ1 [(1− u1)αδS + δν(1− α)S]− λ2αδS(1− u1) + λ(γi + φi + u2)

− λ5δν(1− α)S − λ6φi − λ7(γi + u2)
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dλ4
dt

= λ1 [(1− u1)αδτS + δν(1− α)τS]− λ2(1− u1)1− αδτS + λ4γa − λ5δν(1− α)τAS − λ7γa (26)

dλ5
dt

= −A4 − λ1ρ+ λ5(ρ+ φν) + µ+ u3 − λ6(φν + u3)

dλ6
dt

= λ(γt + κ+ µ+ u2)− λ7γt

dλ7
dt

= −A1ϕ+ λ7ϕ.

We next obtain the transversality condition by differentiating H partially with respect to u1, u2, u3 and u4.

∂H

∂u1
= B1u1 + αδ(I + τA)Sλ1 − λ2αδ(I + τA)S

∂H

∂u2
= B2u2 − λ3I − λ6T + λ7I

∂H

∂u3
= B3u3 − λ2E + λ4E − λ5Q+ λ6Q (27)

∂H

∂u4
= B4u4 − λ1S + λ5S

On solving equation(27) by setting ∂H
∂ui

= 0, where i = 1, 2, 3, 4 and u1 = u∗1, u2 = u∗2, u3 = u∗3, u4 = u∗4, we arrive

u∗1 =
(λ2 − λ1)αδ(I + τA)S

B1

u∗2 =
(λ3 − λ7)I + λ6T

B2

u∗3 =
(λ2 − λ4)E + (λ5 − λ6)Q

B3
(28)

u∗4 =
(λ21 − λ5)S

B4

Imposing the bounds 0 ≤ u1 ≤ u1max, 0 ≤ u2 ≤ u2max, 0 ≤ u3 ≤ u3max, 0 ≤ u4 ≤ u4max with the control, then
the optimal control are characterized as

u∗1(t) = min {max(0, G1), 1}
u∗2(t) = min {max(0, G2), 1}
u∗3(t) = min {max(0, G3), 1}
u∗4(t) = min {max(0, G4), 1}

(29)
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Thus the control arguments are given in a simpler piecewise for below

u∗1 =


G1, if 0 ≤ G1 ≤ 1

0, if G1 < 0,

1, if G1 > 1

(30)

u∗2 =


G1, if 0 ≤ G2 ≤ 1

0, if G2 < 0,

1, if G2 > 1

(31)

u∗3 =


G1, if 0 ≤ G3 ≤ 1

0, if G3 < 0,

1, if G3 > 1

(32)

u∗4 =


G1, if 0 ≤ G4 ≤ 1

0, if G4 < 0,

1, if G4 > 1

(33)

where

G1 =
(λ2 − λ1)αδ(I + τA)S

B1

G2 =
(λ3 − λ7)I + λ6T

B2

G3 =
(λ2 − λ4)E + (λ5 − λ6)Q

B3

G4 =
(λ21 − λ5)S

B4

The optimality system derived from the optimal control system (the state variable and the adjoint variables)
incorporated with the characterized controls, together with the initial and transversality conditions are used in the
numerical simulations.

8. Numerical simulations and discussion of results

To tackle this optimal control problem numerically, we leverage a powerful combination of techniques. The iterative
sweep method refines solutions through a series of calculations, while the fourth-order forward-backward Runge-
Kutta scheme (RK4), adept at handling differential equations with both starting and ending conditions, provides
highly accurate solutions at each step. A combination of these approaches ensures that we find the optimal control
strategy for the COVID-19 model.

Intuitively, the iterative sweep method provides a systematic way to solve the complex system of equations
generated by PMP. On the other hand, the RK4 method ensures accurate numerical solutions for the state and co-
state variables. Overall, these approaches help determine the optimal control strategies for mitigating COVID-19
spread by minimizing the chosen cost function within the defined model framework.

To illustrate the impact of different optimal control intervention strategies on a given population, the following
control measures are considered to curtail the transmission of COVID-19.

(i) Strategy 1: Using u1 = 0, u2 = 0, u3 = 0, u4 = 0
(ii) Strategy 2: Using u1 = 0,u2 = 0, u3 = 0, u4 ̸= 0

(iii) Strategy 3: Using u1 = 0, u2 = 0, u3 ̸= 0,, u4 = 0
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(iv) Strategy 4: Using u1 = 0, u2 ̸= 0, u3 = 0, u4 = 0
(v) Strategy 5: Using u1 ̸= 0, u2 = 0, u3 = 0, u4 = 0

(vi) Strategy 6: Using u1 ̸= 0,u2 ̸= 0, u3 = 0, u4 = 0
(vii) Strategy 7: Using u1 ̸= 0, u2 = 0, u3 ̸= 0, u4 = 0

(viii) Strategy 8: Using u1 ̸= 0, u2 = 0, u3 = 0, u4 ̸= 0
(ix) Strategy 9 : Using u1 = 0, u2 ̸= 0, u3 ̸= 0, u4 = 0
(x) Strategy 10: Using u1 = 0, u2 ̸= 0, u3 = 0, u4 ̸= 0

(xi) Strategy 11: Using u1 ̸= 0, u2 = 0, u3 = 0, u4 ̸= 0
(xii) Strategy 12: Using u1 = 0, u2 ̸= 0, u3 = 0, u4 ̸= 0

(xiii) Strategy 13: Using u1 = 0, u2 = 0, u3 ̸= 0, u4 ̸= 0
(xiv) Strategy 14: Using u1 ̸= 0, u2 = 0, u3 ̸= 0, u4 ̸= 0
(xv) Strategy 15: Using u1 = 0, u2 ̸= 0, u3 ̸= 0, u4 ̸= 0

(xiv) Strategy 16: Using u1 ̸= 0, u2 ̸= 0, u3 ̸= 0, u4 ̸= 0

The parameter values from Table 1 are used such that R0 = 12.0565 with initial conditions S(0) = 5386,
E(0) = 995, A = 0, I(0) = 0, Q(0) = 0, T (0) = 0 and R(0) = 30. The weight constants values are carefully
chosen such that B1 = 40, B2 = 50, B3 = 30, W1 = 50, W2 = 50, W3 = 50. Just like how we set starting
conditions based on what we see in nature, finding the ideal weights for this problem might involve some back-
and-forth adjustments. There is no one-size fits-all answer. The key is to select weights that give a solution that
best balances the important factors and goals of this particular optimal control problem.

To demonstrate the influence of various optimal control interventions on disease spread, we analyze the impact
of 16 different COVID-19 control measures on both asymptomatic and symptomatic infected individuals.

Figure 2. Plot of asymptomatic infected compartment with application of control strategies.

The plot of asymptomatic infected compartment against time is displayed in Figure 2. The graph reveals the
effect of all the 16 adopted strategies on the infected compartment, all the strategies have same effect till day 8,
which there arises a bit significant difference among some of the controlled strategies. The peak of the infection is
at day 10, after which the curve slopes downwards gradually, signifying the effect of the control strategies applied.
Strategy 10, strategy 13 and strategy 16 have reduced number of infected individual, thus recommended for the
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Figure 3. Plot of symptomatic infected compartment with application of control strategies.

Figure 4. Plot of susceptible individuals against time with control.

treatment of the infected class. Figure 3 displays the plot of symptomatic infected compartment against time, the
graph reveals the effect of all the 16 adopted strategies on the infected, strategy 9, strategy 12, strategy 15 and
strategy 16 have reduced number of infected individual, thus recommended for the treatment of this infected class.

Stat., Optim. Inf. Comput. Vol. x, Month 202x



O.J. ADELEKE, A.O. ADENIRAN, M.O. OLUSANYA, D. MOTHIBI 17

Figure 5. Plot of exposed individuals against time with control.

Figure 6. Plot of quarantined uninfected individuals against time.

Considering the scenarios of with and without control measures, Figures 4 and 5 illustrate the changes in the
susceptible population over time and exposed population over time, respectively. Initially, in Figure 4, for the first
20 days, both curves show an increase in susceptible individuals, with no significant difference between the two
groups. However, after day 20, the curves diverge. The scenario with control measures shows a steeper decline,
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Figure 7. Plot of asymptomatic infected individuals against time.

Figure 8. Plot of symptomatic infected individuals against time.

indicating the effectiveness of interventions in reducing the number of susceptible individuals. With respect to
Figure 5, both curves initially show a gradual decline without any significant difference until day 17. However,
after day 17, a slight divergence emerges, with the control measures scenario exhibiting a steeper decrease in
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Figure 9. Plot of treated individuals against time.

Figure 10. Plot of recovered individuals against time.

exposed individuals. This trend continues until day 104, at which point the number of exposed individuals in both
scenarios becomes statistically indistinguishable.

On its own part, Figure 6 illustrates the change in asymptomatic infections over time, modeled with and without
control measures. Both curves initially rise, reaching a peak around day 18. There is no major difference between
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the curves up to this point, suggesting that control measures have a limited effect on asymptomatic cases during
the early stages. However, after day 18, the curves begin to diverge. The scenario with control measures shows a
slightly steeper decline, indicating that interventions may lead to a modest reduction in the number of asymptomatic
individuals over time. Figure 7 shows the trend in quarantined uninfected contacts over time, considering both
scenarios with and without control measures. The curves for both scenarios rise initially, reaching a peak around
day 18. Notably, there is no substantial difference between the two curves up to this point. However, after day 18, the
curves diverge. The scenario with control measures shows a more pronounced decline, indicating the effectiveness
of interventions in reducing the number of quarantined uninfected contacts.

Figure 8 depicts the trajectory of symptomatic infections over time, modeled with and without control measures.
Interestingly, both curves rise initially and peak around day 6, suggesting that control measures have minimal
impact during this early phase. However, after day 6, the curves diverge significantly. The scenario with control
measures shows a steeper decline in infections, indicating the effectiveness of interventions in reducing the number
of symptomatic individuals. Figure 9 shows the change over time in the number of treated individuals, with and
without control measures implemented. The treated population steadily increases until day 18, followed by a
gradual decline. Finally, Figure 10 illustrates the trajectory of recovered individuals over time. The plot shows
a rise in the number of recovered individuals until day 18, followed by a gradual decline. This pattern highlights
the impact of control measures.

9. Conclusion

Mathematical models coupled with optimal control theory provide a powerful framework for analysing COVID-19
transmission dynamics and designing effective control strategies. This article explored a model that incorporates
key factors like susceptible population reduction through vaccination and early intervention with medications. By
analysing the model, we gained insights into the interplay between these interventions and their impact on disease
spread. The application of optimal control techniques allowed us to identify strategies that minimise infection rates
while considering practical constraints. The findings from this study can inform public health decision-making.
The model can be further refined as our understanding of COVID-19 evolves, allowing for continuous optimisation
of control measures. Future directions include incorporating additional factors such as viral mutations and the
emergence of new variants. In conclusion, this mathematical modelling approach offers a valuable tool for guiding
public health efforts in mitigating the spread of COVID-19 and similar infectious diseases.
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