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Abstract Most often when we use the term ‘bounded’, we mean a response variable that retains inherent upper and lower
boundaries; for instance, it is a proportion or a strictly positive for example incomes. This constraint has implications for
the type of model to be used since most traditional linear models may not respect these boundaries. Parametric quantile
regression with bounded data thus comes with a framework for analysis and interpretation of how the predictor of interest
influences the response variable over different quantiles while constrained by the bounds of the theoretically assumed
distribution. In this paper, several parametric quantile regression models are explored and their performance is investigated
under several conditions. Our Monte Carlo simulation results suggest that some of these parametric quantile regression
models can bring significant improvement relative to other existing models under certain conditions.
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1. Introduction

Regression analysis is the fit of a model with the aim of expressing it as a numerical vector, that is, it works to
predict the value of a numerical variable using a single estimate, the mean, and sometimes the need to predict
the full range or distribution of the target variable, however, statisticians have developed increasingly advanced
methods of regression, and for this reason Quantitative regression techniques have been developed.

This interest is due to several natural and anthropogenic phenomena are measured as indexes, percentages,
proportions, rates and ratios, which are bounded on a certain interval, usually the unit interval. In many real-
world applications, data is limited to a specific period of time, often within the range [0,1], and the limited nature
of this data presents unique modeling challenges, prompting researchers to focus on addressing these issues, as
The need to develop unit interval distributions is rapidly increasing because of their applications in engineering,
economics, psychology, and biology. The unit interval or distribution bounded by the interval [0,1] is important for
modeling data contained in the intervals between zero and one, such as ratios, rates, and percentages. For example,
in psychology percentages and proportions are useful for judgment probabilities, which are the percentage of the
mind section captured by a given region. In economics, the variable or data under study is generally limited to unit
intervals, for example, market share, capital structure, and percentage of income spent on non-permanent uses. It
is also noted that unit distributions have attractive bathtub-like hazard rate shapes.

Quantitative regression is one of the methods that has taken wide application in the past two decades, presented
by [1], and has become attractive to researchers as it provides a framework for modeling the relationship between
the response variable and the covariates using the quantitative function. The ordinary least squares regression is
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that the quantitative regression estimates are more robust against the extreme values in the response measurements,
that is, it is considered one of the robust methods as it gives more details of the effect of the explanatory variables
on the response variable , It also has a methodology for understanding the conditional distribution of the response
variable by looking at the values of some common variables at different levels (quantities), thus providing users
with a more complete picture [2] The simplest definition of quantitative regression is the value that divides a set
of data into groups of equal size; Thus, the quantitative values define the boundaries between groups. Statistically
speaking, quantities are values taken at regular intervals from the inverse of the cumulative distribution function
(CDF) of a random variable. It is important to note that the usual quantitative regression is able to approximate the
conditional quantities of a response variable in the unit period, by the methods of the equivalence principle.

A series of distributions with unit interval support has been studied in the trend literature on cumulative
distribution function (CDF) transformations. From the component, we mention the log-Bilai [18], inverse Gaussian
unit [21],Modeling Bounded Data under a Unit Birnbaum–Saunders Distribution with Applications in Medicine
and Politics [24], Lindley unit [22], In order to evaluate the effect of one or more joint searches on the average
coordination distribute on bounded by the unit interval, the following distributions can be used: beta rectangular
[20], and log-Lindley [22]

In applied statistics, it is very common to deal with the uncertainty of a finite phenomenon. In many fields of
knowledge, we often encounter variables such as the proportions of a particular property, the scores of some ability
tests, and various indicators and rates, which are located on the period (0,1), as the distributions of units specified in
the interval of units are applied to model the behavior of a random variable limited by commas Temporal (0,1) has
found applications in areas such as health, biology, meteorology, hydrology, financial modeling and other sciences.
The beta distribution is the well-known statistical distribution for modeling data sets on the interval (0,1) and is a
suitable and useful model in many areas of statistics, but in some cases its ability to model data is not sufficient to
explain it.

The beta distribution has been widely used in statistical theory and practice for more than a hundred years,
and the beta distribution is the most widely used for modeling unit outcomes, i.e. the time period is between
(0, 1), and beta regression is useful for understanding the effect of covariates on the average response, as it
can data as rates or ratios. On the other hand, Kumaraswamy argues that the beta distribution is not faithfully
proportional to hydrological random variables like daily precipitation, daily stream flow, etc. also but it is much
simpler to use especially in simulation studies where probability density function, cumulative distribution function
and quantitative functions can be expressed In closed form [3]. Accordingly, there are alternative distributions to
the beta distribution that have been defined and applied in the literature, such as:
The Johnson SB distribution, Kumaraswamy distribution , The Log-extended exponential-geometric distribution,
Unit Generalized Half Normal distribution, The unit-Birnbaum-Saunders distribution, The unit-Burr-XII
distribution, The unit-Chen distribution, The unit-Half-Normal -X distribution, The unit-Gompertz distribution,
The unit-Weibull distribution, and The unit-Logistic distribution.

2. Methodology

2.1. The Johnson SB distribution(johnsonsb)

Havley and Schroeder (1977) first introduced a new class of distributions called Johnson SB in the forestry
literature. It is widely used in forestry to represent the empirical distributions of forest tree variables to represent
the empirical distributions of forest tree variables such as diameter, height, and volume, and has since been widely
used. Wide in forest diameter and height distribution [4].
Density function (fSB), Distribution function FSB , Quantile function QSB for the The Johnson SB distribution
reparametrized in terms of the τ -th quantile, τ ∈ (0; 1).

fSB (y;α, β) =
β√

2π y (1− y)
exp

{
−1

2

[
α+ β log

(
y

1− y

)]2}
. . . (1)
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The probability density function (p.d.f.) corresponding to (??) is :

FSB (y;α, β) = ∅
[
α+ β log∅−1 (τ)

]
, y ∈ (0, 1) . . . (2)

QSB (τ ;α, β) =
exp

[
∅−1(τ)−α

β

]
1 + exp

[
∅−1(τ)−α

β

] . . . (3)

where α> 0 and β> 0 are shape parameters and y ∈ (0, 1)

2.2. leeg The Log-extended exponential-geometric distribution

It is a probability distribution derived from a two-factor expanded exponential geometric (EEG) distribution with
finite support [7].

fL (y;α, β) =
αyα−1 (1 + β)

β−1

(1 + βyα)
2 , y ∈ (0, 1) , α > 0 , β > −1 . . . (7)

FL (y;α, β) =
yα (1 + β)

1 + β yα
. . . (8)

where and are the model parameters. In particular, the case > 0 and ∈ (-1, 0) corresponds to the exponential-
geometric distribution .
In the sequel, the random variable defined by will be referred to as theLog-extended exponential-geometric (Log-
extended exponential-geometric distribution). The leeg distribution presentsan advantage with respect to the beta
distribution since it does not include special functions in its formulation.

QL (τ ;α, β) =

[
τ

1 + α (1− τ)

] 1
β

. . . (9)

2.3. Unit Generalized Half Normal distribution (ughn)

Let the r.v. Y follow a ughn distribution with probability density function (pdf) and cumulative distribution function
(cdf) [9] :

fughn (y;α, β) =

√
2

π

β

y(−log (y) )

(
log(y)

α

)β

exp

[
−1

2
(
log(y)

α
)

]2β
. . . (10)

The new pdf can be obtained with transformation of the Y = e −y rv, where Y has GHN r.v. On the other word, a
rv Y is distributed unit GHN distribution on the interval (0,1) if its log transformation, −logy, is distributed GHN(,
). We denote it with ughne(, ). For = 1, unit half normal distribution is obtained. The corresponding CDF is given
by :

Fughn (y;α, β) = 2∅

[
−
(
− log(y)

α

)β
]

, y ∈ (0, 1) . . . (11)

respectively, where α, β > 0, ∅ [·] is the pdf of standard normal distribution and ∅ [·] is the cdf of standard normal
distribution

Qughn (τ ;α) = exp

{
−α

[
−∅−1

(τ
2

)] 1
β

}
. . . (12)
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2.4. The unit-Birnbaum-Saunders distribution (ubs)

Density function, distribution function, quantile function and random number generation function for the (ubs)
distribution reparametrized in terms of the τ -th quantile, τ ∈ (0; 1) [10].

fubs (y;α, β) =
1

2yαβ
√
2π

[(
− α

log(y)

) 1
2

+

(
− α

log(y)

) 3
2

]
exp

[
1

2β2

(
2 +

log(y)

α

)
+

α

log(y)

]
. . . (17)

Fubs (y;α, β) =
yα (1 + β)

1 + β yα
, 0 < x < 1 . . . (13)

where , α > 0 is the shape parameter
Quantile function

Qubs (τ ;α, β) = 1− ∅

{
1

β

[
−
(
log(y)

α

) 1
2

−
(
− α

log(y)

) 1
2

]}
. . . (14)

2.5. The unit-Burr-XII distribution (uburrxii)

Let Y be a unit random variable having the UBXII distribution. The probability density function, cumulative
distribution function, quantile function and random number generation function for the of Y are [11]

fuburrxii (y;α, β) =
αβ

y
[−log(y)]

α−1
[1 + (−log(y))

α
]
−β−1

. . . (15)

Fuburrxii (y;α, β) = [1 + (−log(y))
α
]
−β

. . . (16)

respectively, where α > 0 and β > 0 are shape parameters. The quantile function of y Y follows by inverting
(??) , namely

Quburrxii (y;α, β) = exp
[
−
(
τ−

1
β − 1

)] 1
α

. . . (17)

Henceforth, if y is a random variable with pdf (??), we write Y ∼ uburrxii (α, β). For α = 1, the
uburrxii distribution reduces to the unit Lomax distribution [21]. By taking β = 1, it is a special case of the unit
log-logistic distribution [22].

2.6. The unit-Chen distribution (uchen)

This interest is due to the many natural and human phenomena being measured as indicators, percentages,
proportions, rates and proportions, which are constrained to a certain period of time, usually a unit period. The need
for modeling and analyzing limited data occurs in many real-life fields such as medicine, politics and psychology
hence, to describe this type of data statistically, distributions with limited support are needed [12].

fuchen (y;α, β) =
αβ

y
(−log(y))

β−1
exp

{
[−log(y)]

β
exp

{
α
{
1− exp[−log(y)]

β
}}}

. . . (18)

Fuchen (y;α, β) = exp
{
α
{
1− exp[−log(y)]

β
}}

, y ∈ (0, 1) , α > 0 , β > −1 . . . (19)

where , >0 is the shape parameter and Φ is the CDF of the standard normal distribution. It is noteworthy
that γ = exp(−β) is a scale parameter and is also the median of the distribution of X, since F(;,)=0.5. In addition,
the r-th moment of X is given by

Quchen (τ ;α, β) = exp

{
−
[
log

(
1− log(τ)

α

)] 1
β

}
. . . (20)
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2.7. The unit-Half-Normal-X distribution (ughnx)

Let the r.v. Y follow a ughnx distribution with probability density function (pdf) and cumulative distribution
function (cdf) :

fughnx (y;α, β) =

√
2

π

β

y(1− y)

(
y

α(1− y)

)β

exp

[
−1

2
(

y

α(1− y)
)

]2β
. . . (21)

The new pdf can be obtained with transformation of the Y = e −y rv, where Y has GHN r.v. On the other word, a
rv Y is distributed unit GHN distribution on the interval (0,1) if its log transformation, −logy, is distributed GHN(,
). We denote it with ughne(, ). For = 1, unit half normal distribution is obtained. The corresponding CDF is given
by :

Fughnx (y;α, β) = 2∅
[

y

α(1− y)

]β
− 1 , y ∈ (0, 1) . . . (22)

Qughnx (τ ;α) =
α
[
∅−1

(
τ+1
2

)] 1
α

1 + α
[
∅−1

(
τ+1
2

)] 1
α

. . . (23)

2.8. The unit-Gompertz distribution (ugompertz)

The Gompertz unit (UG) distribution shows a right-skewed (unimodal) density and an inverted J-shaped intensity
while the hazard rate is constant and increasing and an inverted bathtub then the bathtub hazard rate. Benjamin
Gompertz in 1825 introduced the Gompertz distribution in relation to human mortality and actuarial tables. Since
then, it has received much attention from demographers and actuaries. This distribution is a generalization of the
exponential distribution and has many real-world applications, especially in medical and actuarial studies. It has
some good relationships with some well-known distributions such as the exponential, double exponential, Weibull,
maximum value (Gumbel distribution) or the generalized logistic distribution.
we describe the new bounded distribution, which arises from a logarithmic transformation in the Gompertz
distribution. This transformation is also considered in Grassia (1977) for the unit-Gamma distribution and Gómez-
Déniz et al. (2014) for the log-Lindley distribution.
Let Y be a non negative random variable with Gompertz distribution, then its probability density function is given
by [13]:

fugompertz (y;α, β) =
αβ

y
exp {α− βlog (y) − α exp [−βlog(y)]} . . . (24)

where y ∈ (0, 1) , > 0 and > 0 are scale and shape parameters, respectivel . for x ∈ (0, 1). The corresponding
cumulative distribution function are given by :

Fugompertz (y;α, β) = exp
[
α
(
1− yβ

)]
. . . (25)

The quantile function y = Q (τ) = F−1 (τ) , for 0 < τ < 1 of the ugompertz distribution is obtained by
inverting Equation (F) is given by

Qugompertz (τ ;α, β) =
[α− log(τ)]

− 1
β

α
. . . (26)

2.9. The unit-Weibull distribution (uweibull)

we obtain the Unit-Weibull (uweibull) distribution with p.d.f :

fuweibull (y;α, β) =
αβ

y
[−log(y)]

β−1
exp

{
−α[−log(y)]

β
}

. . . (27)

and cumulative distribution function (c.d.f.) given by :

Fuweibull (y;α, β) = exp
[
α
(
1− yβ

)]
, 0 < y < 1 . . . (28)
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where α > 0 and β > 0 are shape parameters. Special cases of the uweibull distributions include. the standard
uniform distribution over the interval (0, 1) (α = β = 1), the power function distribution (β = 1) and the unit-
Rayleigh distribution (=2). Therefore, the new distribution has connection with some well-known distributions, and
hence, it can be very useful in many practical situations.
Since it is not possible to obtain a simple analytic expressions for E(y), it is difficult to model the mean of Y in the
absence/presence of covariates. On the other hand, the quantile function of the uweibull distribution has a simple
analytic expression given by [15] :

Quweibull (τ ;α, β) = exp

{
−
[
− log (τ)

α

] 1
β

}
. . . (29)

2.10. The unit-Logistic distribution (ulogistic)

There are continuous distributions that still have limited support that needs further study, such as the L-Logistic
distribution originally proposed by Tadikamala and Johnson (1982). By transforming the logistic criterion, this
construction is similar to the SB system proposed by Johnson (1949).
We say that the random variable (r.v.) y follows a ulogistic distribution, denoted by y ∼ ulogistic(α, β), if its
probability density function (pdf) is given by [17] :

fulogistic (y;α, β) =
βexp (α)

(
y

1−y

)β−1

[
1 + exp(α)

(
y

1−y

)β
]2 , 0 < y < 1 . . . (30)

Where , 0 < β < 1 and α > 0 , Depending on the parameters α and β, the ulogistic distribution takes on a variety
of shapes .
The cumulative distribution function (cdf) of the ulogistic distribution is given by :

Fulogistic (y;α, β) ==
exp (α)

(
y

1−y

)β

1 + exp (α)
(

y
1−y

)β
, 0 < y < 1 . . . (31)

function The quantile function of the ulogistic distribution has a simple analytic expression given by :

Qulogistic (τ ;α, β) = F−1
ulogistic (y;α, β) =

exp
(
−α

β

) (
τ

1−τ

) 1
β

1 + exp
(
−α

β

) (
τ

1−τ

) 1
β

0 < τ < 1 . . . (32)

This would readily enable a quantile-based analysis of this model. Note that if β = 1 − β = 0.5,
thenQulogistic (τ ;α, β) = α, which means that the parameter α is indeed the 50th percentile or the median of
the ulogistic distribution.

3. Bayesian Information Criterion (BIC)

We obtain this formula from the formula of the AIC standard by multiplying the degree of freedom df by the
amount Ln(n) instead of the value 2, and the general formula of the (BIC) standard is as follows [14] :

BIC = −2Ln (Lik) + Ln (n) df . . . (33)
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6 DISCRIMINATION BETWEEN QUANTILE REGRESSION MODELS FOR BOUNDED DATA

Table 1. The best fitting model when n=30 for 70% >0.5 and 30% >0.5

Tau P Case: 70% >0.5 +30% <0.5 Case: 30% >0.5 +70% <0.5
0.2 5 Ughnx Uchen

Johnsonsb Ulogistic
Uweibull Johnsonsb
Ulogistic Ugompertz
Uburrxii Leeg

10 Ughnx Uchen
Ulogistic Ugompertz
Leeg Leeg
Johnsonsb Johnsonsb
Ugompertz Uweibull

0.5 5 Ughnx Uchen
Johnsonsb Ulogistic
Uweibull Johnsonsb
Ubs Ugompertz
Ulogistic Leeg

10 Ubs Uchen
Ulogistic Ugompertz
Johnsonsb Johnsonsb
Leeg Uweibull
Ugompertz Ughne

0.7 5 Ughnx Uchen
Johnsonsb Ulogistic
Uweibull Johnsonsb
Ubs Ugompertz
Ulogistic Leeg

10 Ughne Uchen
Ugompertz Ugompertz
Ulogistic Johnsonsb
Johnsonsb Uweibull
Leeg Ughne

0.9 5 Johnsonsb Uchen
Uweibull Ulogistic
Ubs Johnsonsb
Uburrxii Ugompertz
Ugompertz Leeg

10 Ughne Uchen
Ugompertz Ugompertz
Ulogistic Johnsonsb
Johnsonsb Uweibull
Uweibull Ughne

4. Simulation and Results

In this section, we explain how to apply the ideas and concepts mentioned in theoretical consideration and what
are the results obtained. In order to achieve the goal of this research, we relied on Monte Carlo simulation in
the R programming language to examine the performance of distributions and compare them using the Bayesian
Information Criterion (BIC).
Many scenarios were applied for the simulation experiments. Different samples (n=30,50,200) were taken with
parameters ( =0.2, 0.5, 0.7, 0.9) and concentrations (70%, 80%, 90%) for each group.
Explanatory variables (X = 5, 10, 15) were generated, and the response variable Y was deduced through the model
used in the simulation experiments, using regression functions in terms of the explanatory variables generated
above, plus random error.
Depending on the BIC criterion , the best model are highlited . Tables (1-9) summarize the best selected model .
Several observations can be concluded .
1- For (n=30) , regardless the value of , the Ughnx regression model came in the first rank for fitting the data in
most cases when (p = 5) and when 70% of the data > 0.5 , the the other hand , when 30% of the data > 0.5 , the
best model is Uchen regression model . Regarding the (p = 10), Uchen regression model be the best .

Stat., Optim. Inf. Comput. Vol. x, Month 2024
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Table 2. The best fitting model when n=30 for 80% >0.5 and 20% >0.5

Tau P Case: 80% >0.5 +20% <0.5 Case: 20% >0.5 +80% <0.5
0.2 5 Ughnx Uchen

Johnsonsb Ulogistic
Uweibull Johnsonsb
Ulogistic Ugompertz
Uburrxii Leeg

10 Ughnx Uchen
Ulogistic Ugompertz
Leeg Leeg
Johnsonsb Johnsonsb
Ugompertz Uweibull

0.5 5 Ughnx Uchen
Johnsonsb Ulogistic
Uweibull Johnsonsb
Ubs Ugompertz
Ulogistic Leeg

10 Ubs Uchen
Ulogistic Ugompertz
Johnsonsb Johnsonsb
Leeg Uweibull
Ugompertz Ughne

0.7 5 Ughnx Uchen
Johnsonsb Ulogistic
Uweibull Johnsonsb
Ubs Ugompertz
Ulogistic Leeg

10 Ughne Uchen
Ugompertz Ugompertz
Ulogistic Johnsonsb
Johnsonsb Uweibull
Leeg Ughne

0.9 5 Johnsonsb Uchen
Uweibull Ulogistic
Ubs Johnsonsb
Uburrxii Ugompertz
Ugompertz Leeg

10 Ughne Uchen
Ugompertz Ugompertz
Ulogistic Johnsonsb
Johnsonsb Uweibull
Uweibull Ughne

2- When the percentage of the data values > 0.5 is 80% , fixing (n=30) regardless of values, the best model is
Uburrxii regression model when (p = 5) . In addition , when (p = 10) the Uweibull regression model is the best in
all cases . On the other hand , when 20% of the data values > 0.5 , the Johnsonsb regression model is the best for
both (p = 5) and (p = 10)
3- When 90% of data values > 0.5 and (n=30) , the best models is Ughnx for the most when (p = 5) and (p = 10)
, while when 10% of the data values > 0.5 , the Kum and Johnsonsb regression model is the best .
4- When n is varying , the best model is Varies regardless the percentage value of the data > 0.5 .
5- When is varying , in most cases , there is no effect in changing the best model .

5. Real Application

This application is based on an empirical dataset that comes from a longitudinal study on the quality of life in
patients with epilepsy in Iran from March 2014 to December 2015. The Bayesian Information Criterion (BIC) are
presented in Table 10. We note that the BIC value for the Ugompertz model is smaller than the BIC value for
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8 DISCRIMINATION BETWEEN QUANTILE REGRESSION MODELS FOR BOUNDED DATA

Table 3. The best fitting model when n=30 for 10% >0.5 and 90% >0.5

Tau P Case: 90% >0.5 +10% <0.5 Case: 10% >0.5 +90% <0.5
0.2 5 Ughnx Ughnx

Johnsonsb Johnsonsb
Ulogistic Leeg
Uchen Ubs
Ughnx Uweibull

10 Ughnx Kum
Leeg Johnsonsb
Ubs Leeg
Johnsonsb Uchen
Uburrxii Ubs

0.5 5 Ughnx Johnsonsb
Johnsonsb Leeg
Leeg Ubs
Ubs Ulogistic
Uweibull Uweibull

10 Ughnx Kum
Ubs Johnsonsb
Leeg Leeg
Uburrxii Uchen
Johnsonsb Ubs

0.7 5 Uchen Johnsonsb
Ughnx Leeg
Johnsonsb Ubs
Ulogistic Ulogistic
Ubs Uweibull

10 Ughnx Kum
Ubs Johnsonsb
Leeg Leeg
Uburrxii Uchen
Johnsonsb Ubs

0.9 5 Ughnx Johnsonsb
Johnsonsb Leeg
Leeg Ubs
Ubs Ulogistic
Uweibull Uweibull

10 Ughnx Kum
Ubs Johnsonsb
Leeg Leeg
Uburrxii Uchen
Johnsonsb Ubs

others. So, based on the BIC criterion, the Ugompertz distribution is preferable in fitting these data than the Beta
distribution for the bounded data.

6. Conclusion

This methodology of using quantile regression is thus a way of expressing the dependence of a response variable
on the explanatory variable and covariates in terms of conditional quantiles. This methodology not only provides
a stronger procedure to substitute the measure of the center of location of the response but also enables a better
understanding of the variation of the distribution of the response as a function of the predictor values especially
at different quantiles. In this paper, the author carried out a comparative analysis of the various parametric
models of quantile regression under several conditions. Consequently, it was shown with the help of the Monte
Carlo simulation that some of the above outlined parametric quantile regression models can provide a distinct
improvement in comparison to other existing models under certain circumstance.
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Table 4. The best fitting model when n=50 for 70% >0.5 and 30% >0.5

Tau P Case: 70% >0.5 +30% <0.5 Case: 30% >0.5 +70% <0.5
0.2 5 Ughnx Ugompertz

Johnsonsb Ughne
Ugompertz Uchen
Uburrxii Johnsonsb
Uweibull Ulogistic

10 Ugompertz Uchen
Ughnx Johnsonsb
Uweibull Ulogistic
Leeg Kum
Johnsonsb Leeg

0.5 5 Johnsonsb Ughne
Ugompertz Uchen
Ubs Johnsonsb
Uburrxii Ulogistic
Uweibull Kum

10 Ugompertz Uchen
Ughnx Johnsonsb
Uweibull Ulogistic
Johnsonsb Kum
Leeg Leeg

0.7 5 Johnsonsb Ugompertz
Ubs Ughne
Ugompertz Uchen
Uburrxii Johnsonsb
Uweibull Ulogistic

10 Ughnx Johnsonsb
Uweibull Ulogistic
Ugompertz Kum
Leeg Leeg
Ubs Uchen

0.9 5 Johnsonsb Ughne
Ugompertz Uchen
Ubs Johnsonsb
Uburrxii Ulogistic
Uweibull Kum

10 Ugompertz Uchen
Uweibull Johnsonsb
Leeg Ulogistic
Ubs Kum
Ulogistic Leeg

Stat., Optim. Inf. Comput. Vol. x, Month 2024



10 DISCRIMINATION BETWEEN QUANTILE REGRESSION MODELS FOR BOUNDED DATA

Table 5. The best fitting model when n=50 for 80% >0.5 and 20% >0.5

Tau P Case: 80% >0.5 +20% <0.5 Case: 20% >0.5 +80% <0.5
0.2 5 Uburrxii Johnsonsb

Ugompertz Kum
Ughnx Leeg
Leeg Ughne
Uchen Uchen

10 Johnsonsb Johnsonsb
Ughnx Ugompertz
Ugompertz Leeg
Ulogistic Ulogistic
Uweibull Uchen

0.5 5 Uburrxii Johnsonsb
Ugompertz Kum
Ughnx Leeg
Leeg Ughne
Uchen Uchen

10 Johnsonsb Johnsonsb
Ughnx Ugompertz
Ugompertz Leeg
Ulogistic Ulogistic
Uweibull Uchen

0.7 5 Uburrxii Johnsonsb
Ugompertz Kum
Ughnx Leeg
Leeg Ughne
Uchen Uchen

10 Johnsonsb Johnsonsb
Ughnx Ugompertz
Ugompertz Leeg
Ulogistic Ulogistic
Uweibull Uchen

0.9 5 Uburrxii Johnsonsb
Ugompertz Kum
Ughnx Leeg
Leeg Ughne
Uchen Uchen

10 Johnsonsb Johnsonsb
Ughnx Ugompertz
Ugompertz Leeg
Ulogistic Ulogistic
Uweibull Uchen
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Table 6. The best fitting model when n=50 for 10% >0.5 and 90% >0.5

Tau P Case: 90% >0.5 +10% <0.5 Case: 10% >0.5 +90% <0.5
0.2 5 Uchen Uburrxii

Ubs Kum
Johnsonsb Johnsonsb
Ulogistic Leeg
Kum Uchen

10 Uchen Ughnx
Ubs Kum
Johnsonsb Johnsonsb
Ulogistic Ughne
Kum Leeg

0.5 5 Uchen Uburrxii
Ubs Kum
Johnsonsb Johnsonsb
Ulogistic Leeg
Ughnx Uchen

10 Ughnx Ughnx
Uweibull Kum
Johnsonsb Johnsonsb
Ughne Ughne
Ubs Leeg

0.7 5 Uchen Uburrxii
Ubs Kum
Johnsonsb Johnsonsb
Ulogistic Leeg
Ughnx Uchen

10 Ughnx Ughnx
Kum Kum
Ubs Johnsonsb
Uweibull Ughne
Johnsonsb Leeg

0.9 5 Ubs Uburrxii
Johnsonsb Kum
Ulogistic Johnsonsb
Ughnx Leeg
Kum Uchen

10 Kum Ughnx
Ubs Kum
Ughnx Johnsonsb
Uweibull Ughne
Johnsonsb Leeg
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Table 7. The best fitting model when n=200 for 70% >0.5 and 30% >0.5

Tau P Case: 70% >0.5 +30% <0.5 Case: 30% >0.5 +70% <0.5
0.2 5 Uweibull Johnsonsb

Ugompertz Uchen
Leeg Kum
Johnsonsb Ulogistic
Uburrxii Ughnx

10 Ughnx Johnsonsb
Uweibull Ulogistic
Johnsonsb Leeg
Ugompertz Uchen
Ulogistic Uweibull

0.5 5 Ubs Johnsonsb
Uweibull Uchen
Ugompertz Kum
Leeg Ulogistic
Johnsonsb Ughnx

10 Ughnx Johnsonsb
Ubs Ulogistic
Uweibull Leeg
Johnsonsb Uchen
Ugompertz Uweibull

0.7 5 Ugompertz Johnsonsb
Ughnx Uchen
Ubs Kum
Uweibull Ulogistic
Leeg Ughnx

10 Ughnx Johnsonsb
Ubs Ulogistic
Uweibull Leeg
Johnsonsb Uchen
Ugompertz Uweibull

0.9 5 Ugompertz Johnsonsb
Ughnx Uchen
Ubs Kum
Uweibull Ulogistic
Leeg Ughnx

10 Ughnx Johnsonsb
Ubs Ulogistic
Uweibull Leeg
Johnsonsb Uchen
Ugompertz Uweibull
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Table 8. The best fitting model when n=200 for 80% >0.5 and 20%

Tau P Case: 80% >0.5 +20% <0.5 Case: 20% >0.5 +80% <0.5
0.2 5 Ugompertz Uchen

Uweibull Johnsonsb
Leeg Ulogistic
Uchen Ubs
Uburrxii Ugompertz

10 Johnsonsb Uchen
Uburrxii Johnsonsb
Ulogistic Leeg
Kum Ulogistic
Leeg Ubs

0.5 5 Ugompertz Uchen
Uweibull Johnsonsb
Leeg Ulogistic
Uchen Ubs
Uburrxii Ugompertz

10 Johnsonsb Uchen
Uburrxii Johnsonsb
Ulogistic Leeg
Kum Ulogistic
Leeg Ubs

0.7 5 Ugompertz Uchen
Uweibull Johnsonsb
Leeg Ulogistic
Uchen Ubs
Uburrxii Ugompertz

10 Johnsonsb Uchen
Uburrxii Johnsonsb
Leeg Leeg
Ulogistic Ulogistic
Kum Ubs

0.9 5 Ugompertz Uchen
Uweibull Johnsonsb
Leeg Ulogistic
Uchen Ubs
Uburrxii Ugompertz

10 Johnsonsb Uchen
Uburrxii Johnsonsb
Ulogistic Leeg
Kum Ulogistic
Leeg Ubs
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Table 9. The best fitting model when n=200 for 10% >0.5 and 90%

Tau P Case: 90% >0.5 +10% <0.5 Case: 10% >0.5 +90% <0.5
0.2 5 Kum Uchen

Ughnx Ugompertz
Johnsonsb Ulogistic
Ubs Uburrxii
Ugompertz Uweibull

10 Ughnx Ugompertz
Uchen Kum
Kum Ughne
Ubs Uchen
Johnsonsb Ulogistic

0.5 5 Kum Uchen
Ughnx Ugompertz
Johnsonsb Ulogistic
Ubs Uburrxii
Ugompertz Uweibull

10 Ughnx Kum
Uchen Ugompertz
Kum Ulogistic
Ubs Uchen
Johnsonsb Leeg

0.7 5 Kum Uchen
Ughnx Ugompertz
Johnsonsb Ulogistic
Ubs Uburrxii
Ugompertz Uweibull

10 Ughnx Ugompertz
Uchen Kum
Kum Uchen
Ubs Ughne
Johnsonsb Ulogistic

0.9 5 Kum Uchen
Ughnx Ugompertz
Johnsonsb Ulogistic
Ubs Uburrxii
Ugompertz Uweibull

10 Ughnx Ugompertz
Uchen Kum
Kum Ulogistic
Ubs Uchen
Johnsonsb Ughne

Table 10. The best fitting model for the application data

Model BIC value
Ugompertz -1833.281
Uweibull -1821.399
Leeg -1813.187
Uchen -1802.668
Uburrxii -1791.237
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