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maximum likelihood. The accuracy of these estimates is evaluated through a Monte Carlo simulation study. To demonstrate
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superiority over several existing models.
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1. Introduction

Discrete data frequently arise in various contexts, such as infant mortality rates in specific regions, car accidents
within a certain time frame, disease recovery cases, and insurance claim liabilities. Accurately modeling such
data requires selecting an appropriate discrete probability mass function. Among the various discrete probability
distributions, the Poisson distribution is commonly used. However, a significant limitation of the Poisson
distribution is that its mean equals its variance, which can be restrictive in many scenarios. In addition, it is
suitable only when events occur independently at a constant rate. Often, count data exhibit an overdispersion,
where the variance exceeds the mean. In such cases, the negative binomial distribution is typically employed to
model overdispersed data, but it only performs well when the probability of success, denoted as p, is close to
unity. Moreover, zero-inflated data, which frequently occur across various fields of real-world applications, present
another challenge. The negative binomial distribution suffers from the need to simultaneously account for both
overdispersion and zero inflation accurately, as demonstrated in the analysis of three real datasets reported in this
paper.

To address these challenges, other discrete distributions, such as the zero-inflated Poisson [1], zero-inflated
negative binomial [2], and zero-inflated Bell [3] distributions, have been considered. Although these distributions,
particularly the latter two, can effectively analyze both excess zeros and overdispersion, they have been shown
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to perform inaccurately in certain cases, such as when analyzing the number of mothers receiving antenatal care
visits, as noted in [4].

Based on these issues, many authors have been motivated to define new discrete probability distributions to
overcome the deficiencies that appear in some classical discrete probability models. Notable among the methods
of constructing such models is the discretizing of a continuous probability distribution. In this context, we refer the
reader, but not limited to, [5, 6, 7, 8, 9, 10], among others. Moreover, another method is by mixing continuous and
discrete distributions [11, 12] or by mixing discrete distributions [13].

Recently, Bhati and Joshi [14] implemented Azzalini’s [18] method to define a new geometric distribution. It
is worth mentioning that this method was originally used to define what is called in the literature the skewed
normal distribution. Later on, many authors used the idea to implement symmetric non-normal distributions, see,
for example, [19], and asymmetric continuous distributions, see, for example, [20].

It is worth emphasizing that Azzalini’s method depends on the form of the cumulative distribution of the baseline
distribution. This implies that the new distribution will be tractable as long as the cumulative distribution is in a
closed form. Notably, the geometric distribution possesses a closed-form cumulative distribution. Consequently,
[14] derived a tractable weighted geometric distribution and defined as follows: a random variable X is said to
have a weighted geometric distribution with shape parameters α > 0, and 0 < θ < 1, denoted by WG(α, θ), if its
probability mass function (PMF) is given below

qX(x; θ, α) =
(1− θ)(1− θα+1)

1− θα
θx(1− θ−α(x+1)), x = 0, 1, . . . . (1)

.
When α → ∞, then (1) converges to the geometric distribution and when α → 0, it converges to the negative

binomial with α = 2 and θ. Moreover it is a unidomal distribution. Additionally, the range of coefficient of variation
assumes values in (1/2 , 2/

√
2θ) and the range of the skewness measures assume values (1/2

√
2 , 4/

√
θ) though

these ranges were not mentioned in [14]. Notice that this range can be determined analogously to the one reported in
proposition 8. Indeed, such measures could, in principle, provide insights into the flexibility of the model. Note that
when these measures provide wider ranges, it implies greater flexibility in modeling various types of data. While
the WG distribution has several good properties and can be used effectively for modeling count data, a limitation
arises when the data exhibits greater skewness than the range assumed by the WG distribution. In such cases, the
WG distribution may not capture the skewness in the data well. This spurs a closer look at a new distribution with
a wider range of skewness to capture better the skewness that some models may lose.

A closing remark about generalizing the WG distribution using the idea of weighted distributions is found in [14]
and in a parallel work by [21], which provides a three-parameter geometric distribution. Specifically, they used the
weight, ω = (1− θαx)β , and as a results they obtained,

qqX(x; θ, α, ) ∝ C (1− θ)θx−1(1− θ−αx)β , x = 1, . . . , (2)

where C is the normalizing constant and β > 0. The PMF in (2) is an interesting distribution. However, it can not
be considered a generalization to the one in (1) since the two probability distributions do not have the same support.
The first one, i.e., (1) assumes support in N0 = {0, 1, 2, . . . } whereas the second one, i.e., (2) assumes values in
N = {1, 2, . . . }. Consequently,(2) can not be used to model zero-inflated data which occurs very frequently in
many different real count data. Additionally, the form of (2) is complex, particularly when β is a real positive
number. Even when β = m is an integer positive number it is difficult to study the properties and estimation
smoothly.

This paper introduces a novel distribution that naturally emerges in the study of hidden truncation and selection
models. The proposed distribution is notably derived from the concept of weighted distributions, making the
choice of the weighting function more meaningful, in contrast to the common practice of subjectively selecting a
weighting function. Additionally, these discrete weighted distributions are derived by discretizing their continuous
counterparts, as demonstrated in examples like the discrete weighted Lindley distribution [15], the weighted
discretized Frechet-Weibull distribution [16], the discrete weighted exponential distribution [17], and the references
therein.
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Our motivations for studying the proposed model are as follows: (i) to provide a flexible and interpretable
extension of the geometric distribution; (ii) to derive a discrete distribution directly from a discrete parent
distribution, unlike many discrete distributions that are derived from continuous counterparts; (iii) to rigorously
explore its mathematical and statistical properties; (iv) to accurately analyze right-skewed data; (v) to offer
significant flexibility in modeling overdispersed data and excess zeros simultaneously; and (vi) to improve upon
the recently introduced weighted geometric distribution in (1).

Consequently, our main contributions in this article are as follows: Firstly, we introduce a two-parameter TWG
distribution, derived through the concept of hidden and selection models. This distribution is based on a geometric
series, unlike many discrete distributions that are derived from their continuous counterparts. Notably, the PMF
of the TWG distribution is tractable without involving any complex quantities, and its CDF is available in closed
form—an uncommon feature among discrete distributions. Secondly, we offer several interpretations of the model,
emphasizing its flexibility. The proposed model can be derived hierarchically, making it both interpretable and
applicable in various contexts. Additionally, we provide rigorous proofs for the majority of its statistical and
mathematical properties. Thirdly, we show that the TWG distribution is particularly effective for accurately
modeling right-skewed data. We also establish the existence and uniqueness of the maximum likelihood estimates
(MLE) and offer an efficient simulation algorithm for the model. Finally, we validate the model’s performance
through the analysis of real data that exhibits right-skewness, overdispersion, and excess zeros, demonstrating that
it outperforms many other models.

The rest of the paper is structured as follows. In Section 2, we introduce the new distribution, including some of
its structural properties such as special sub-cases, unimodality, and infinite divisibility. The interpretation results of
the proposed model are reported in Section 3. In Section 4, various statistical measures, including but not limited
to the coefficient of variation and skewness along with their corresponding ranges, are derived. The asymptotic
behavior of extreme values is presented in Section 5. In Section 6, the model parameters are estimated via maximum
likelihood estimates. Simulation experiments are conducted to evaluate the finite sample behavior of the ML
estimates is given in section 7. The assessment of the model using empirical real data is provided in Section 8.
Finally, we conclude with a discussion, summary of conclusions, and suggestions for future work in Section 9.

2. Definition and Basic Properties

This section introduces the definition of the proposed distribution followed by listing some of its basic properties
such as the special sub-cases of the model, unimodality, and infinite divisibility.

Definition 1
A random variable X is said to have a two-parameter weighted geometric distribution with parameters 0 < θ <
1, α > 0, if the PMF of X is given below

pX(x) := Pr[X = x] =
(1− θ1+α)(1− θ1+2α)

(1− θα)2 (1 + θα+1)
(1− θ)θx

(
1− θα(1+x)

)2

, x = 0, 1, 2, . . . (3)

and 0 otherwise.

The cumulative distribution, CDF, and the hazard rate function, HRF, are given in the following

FX(x;α, θ) = 1− c(θ, α)θx+1

[
1

1− θ
− 2

θα(x+2)

1− θ1+α
+

θ2α(x+2)

1− θ1+2α

]
, (4)

and

HRFX(x;α, θ) =

(
1− θα(1+x)

)2
θ
[

1
1−θ − 2 θα(x+2)

1−θ1+α + θ2α(x+2)

1−θ1+2α

] , (5)

where

c(θ, α) =
(1− θ)(1− θ1+α)(1− θ1+2α)

(1− θα)2 (1 + θα+1)
.
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Remark 1
The derivation of the PMF of the TWG distribution can be obtained by determining the normalizing constant in the
following equation d

∑∞
x=0(1− θ)θx

(
1− θα(1+x)

)2
= 1. By expanding the term

(
1− θα(1+x)

)2
and applying the

geometric series property, the normalizing constant can be identified as d = (1− θ1+α)(1− θ1+2α)/(1− θα)2 (1 +
θα+1). Notice that the parameter α is a quality parameter that may control the effect of skewness

From now and on, we refer to a random variable X whose probability mass function (PMF) is given in Eq.(3)
as the two-parameter weighted geometric random variable, and is denoted by TWG(α, θ). The PMF behavior of
the TWG distribution for different values of parameters α and θ is shown in Figure 1. It is found that the PMF
exhibits unimodal, right skewed or decreasing behavior form. Figure 2 shows the HRF of the TWG distribution for
different values of parameters α and θ, it can be seen that its HRF is an increasing function behavior for all α > 0
and 0 < θ < 1 [see Proposition 3] .

2.1. Preliminary properties

In this section, we provide some basic properties of the TWG(α, θ) distribution, including its special cases,
unimodality, decreasing failure rate, and infinite divisibility.

Proposition 1
Let A = {TWG(α, θ) : α > 0 and 0 < θ < 1} be a family of TWG distributions then we have the following
properties (1) As α → ∞, the TWG(α, θ) distribution became Geo(θ); i.e., limα→∞ pX(x;α, θ) = Geo(θ); (2) If
α → 0, then the TWG(α, θ) distribution reduces to the WNB(3, θ) with weight function w(x, θ) = 2(x+ 1)/(x+

2)(1 + θ), where WNB(r,θ) stands for a weighted negative distribution, i.e., limα→0 pX(x;α, θ) = (1+x)2

1+θ (1−
θ)3θx, x = 0, 1, . . .

Proposition 2
Let X be a TWG(α,θ) random variable. Then TWG(α,θ) is strongly unimodal.

Proof
It is enough to show that p2X(x) > pX(x+ 1) · pX(x− 1) for all x ≥ 1. Consider the ratio between two consecutive
probabilities,

RX(x) =
pX(x)

pX(x− 1)
=

θ
(
1− θα(x+1)

)2
(1− θαx)

2 , x = 1, 2, . . . .

The change in the ratio between two consecutive points can be shown as

∆RX(x) = RX(x)−RX(x− 1) = −2
θα(x−1)

[
(1− θα)2

(
1 + θ2αx

)
+ θα(x+1)

](
1− θα(x−1)

)2
(1− θαx)

2
.

Therefore R(y) is a decreasing function in y, and hence the proposed distribution is unimodal. Additionally, it
implies log-concavity.

Proposition 3
The HRF is an increasing function for all α > 0 and 0 < θ < 1.

Proof
To show that HRFX(x) = pX(x)/FX(x), where pX(x) and FX(x) = 1− FX(x) are the PMF and survival
function of TWG distribution is an increasing function in x, we need to show that for considering points such
that x1 < x2 implies that HRFX(x1) < HRFX(x2). Toward this goal, we show that for fixed y ∈ N the following
ratio is an a decreasing function in x rX(x) = pX(x+ y)/pX(x) = θy

(
1− θα(x+y+1)

)2
/
(
1− θα(x+1)

)2
. The

log-ratio is

lr(x) := log(r(x)) = 2
[
log

(
1− θα(x+y+1)

)
− log

(
1− θα(x+1)

)]
+ y log(θ) (6)
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4 ON A TWO-PARAMETER WEIGHTED GEOMETRIC DISTRIBUTION

Figure 1. PMF plots of TWG(α, θ) distribution for different values of parameters α and θ.

On differentiating Eq. (6) in x, we have that

lr
′
(x) := log(rX(x)) = −2α log(θ)θα(x+1)

{
θαy − 1(

1− θα(x+y+1)
) (

1− θα(x+1)
)} (7)

Clearly, Eq. (7) is negative for all x > 0, i.e., lr
′
(x) < 0 for ∀x > 0, implying that r(x) is a decreasing function for

x > 0. Hence, we have for x1 < x2, we have

rX(x1) > rX(x2) =
pX(x1 + y)

pX(x1)
>

pX(x2 + y)

pX(x2)
. (8)

Observe that Eq. (8) can be displayed as pX(x2)pX(x1 + y)− pX(x1)pX(x2 + y) > 0, which equivalent to say
that pX(x) belongs to the class of Pólya frequency of order 2 (PF2). Now, we are in a position to proof our claim,
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since x1 < x2, we have that

pX(x1)FX(x2)− pX(x2)FX(x1) = pX(x1)

∞∑
y=0

pX(x2 + y)− pX(x2)

∞∑
y=0

pX(x1 + y)

=

∞∑
y=0

pX(x1)pX(x2 + y)− pX(x2)pX(x1 + y)︸ ︷︷ ︸
≤0 inview of Eq.(8)


Hence, we have that pX(x1)FX(x2)− pX(x2)FX(x1) ≤ 0, implying that pX(x1)/FX(x1) ≤ (x2)/FX(x2), as
required.
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Figure 2. HRF plots of TWG(α, θ) distribution for different values of parameters α and θ.

3. Important Properties

The proposed model can be explained as follows:

Proposition 4
Let X1, X2 and X3 be independent and identically random variables such that each one follows the geometric
distribution with parameter θ. For any positive integer α ∈ N, define the following random variable

X := X11I {X2 ≤ α(X1 + 1)− 1, X3 ≤ α(X1 + 1)− 1} ,

where 1I(A) denotes the indicator function of a set A. Then the PMF of X is given via Eq.(3)
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Proof
We have that p(x1, x2, x3) = (1− θ)3θx1+x2+x3 , xi = 0, 1, . . . ; i = 1, 2, 3. The pmf of X is

pX(x) = Pr (X1 = x |X2 ≤ α(X1 + 1)− 1, X3 ≤ α(X1 + 1)− 1)

=
Pr (X1 = x, X2 ≤ α(x+ 1)− 1, X3 ≤ α(x+ 1)− 1)

Pr (X2 ≤ α(X1 + 1)− 1, X3 ≤ α(X1 + 1)− 1)

=
Pr(X1 = x) Pr(X2 ≤ α(x+ 1)− 1)Pr(X3 ≤ α(x+ 1)− 1)

Pr (X2 ≤ α(X1 + 1)− 1, X3 ≤ α(X1 + 1)− 1)

=
pX1

(x)FX2
(α(x+ 1)− 1)FX3

(α(x+ 1)− 1)

Pr (X2 ≤ α(X1 + 1)− 1, X3 ≤ α(X1 + 1)− 1)
.

On using pY (y) = (1− θ)θy, and FY (y) = 1− θ(y+1), it then follows that,

pX(x) =
(1− θ)θx(1− θα(x+1))2

Pr (X2 ≤ α(X1 + 1)− 1, X3 ≤ α(X1 + 1)− 1)
.

Some algebra lead that

Pr (X2 ≤ α(X1 + 1)− 1, X3 ≤ α(X1 + 1)− 1) =

∞∑
x1=0

α(x1+1)−1∑
x2=0

α(x1+1)−1∑
x3=0

(1− θ)3θx1+x2+x3

=
(1− θα)

2 (
1 + θθ+1

)
(1− θα+1) (1− θ2α+1) .

The following proposition establishes that the TWG distribution can be obtained hierarchically as follows.

Proposition 5
Suppose that V,X1 and X2 are random variables such that

X1, X2|v, θ ∼i.i.d Geo(θv+1), v ∼ Geo(θ).

If we define the random X by X = V 1I {Y1 ≤ α, Y2 ≤ α} , it then follows that the PMF of X is given via Eq. (3).

Proof
Put A = {X1 < α,X2 < α} . Clearly, the definition of X implies that X d

= (V |(X1, X2) ∈ A). Thus, the PMF of
X is;

pX(x) = Pr(V = x | (X1, X2) ∈ A) =
pV (x) Pr ((X1, X2) ∈ A |V = x)

Pr((X1, X2) ∈ A)
.

Notice that pV (x) = (1− θ)θx. Moreover, we have that

Pr [(X1, X2) ∈ A |V = x] =
(
1− θv+1

)2 α−1∑
x1=0

α−1∑
x2=0

θ(x+1)x1 · θ(x+1)x2 =
(
1− θα(x+1)

)2

.

Similarly, a computation show that

Pr [(X1, X2) ∈ A] =

∞∑
v=0

α−1∑
x1=0

α−1∑
x2=0

(1− θ)θvθ(x+1)x1 · θ(x+1)x2 =
1

c(α, θ)
,

and the required result follows.
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Observe that Proposition (5) has a relation to the selection models proposed in [22] but for discrete distributions.
The following proposition shows that the TWG distribution can be obtained from a mixture of geometric
distributions.

Proposition 6
Let X1, X2 and X3 be independent geometric random variables such that X1 ∼ Geo(θ), X2 ∼ Geo(θ1+α) and
X3 ∼ Geo(θ1+2α) respectively. Let X4 be a geometric random variable with PMF; pX4

(x) = (1− θ)θx−1, x =
1, 2, . . . , denoted by Ge⋆(θ), and assume it is independent of X1, X2 and X3. If Z = X1 +X2 +X3 and
W = X4 +X2 +X3, then Eq (3) can be obtained from

pX(x;α, θ) = δ pZ(x;α, θ) + (1− δ) pW (x, α, θ) with δ =
1

1 + θ1+α
,

and the PMF of Z
pZ(x;α, θ) = c1 Geo(θ) + c2 Geo(θ1+α) + c3 Geo(θ1+2α),

where the constants c1 c2 and c3 are given below

c1 =
(1− θ1+α)(1− θ1+2α)

(1− θα)(1− θ2α)
, c2 =

(1− θ)(1− θ1+2α)

(1− θα)(1− θ−α)
and c3 =

(1− θ)(1− θ1+α)

(1− θ−α)(1− θ−2α)
, (9)

whereas the PMF of W is

fW (x;α, θ) = c1 Geo*(θ) + c2 Geo(θ1+α) + c3 Geo(θ1+2α), (10)

with d1 = θc1, d2 = c2 and d3 = c3.

Proof
The moment generating function of X (see Section 4) is given by

MX(t) =
(1− θ)(1− θ1+α)(1− θ1+2α)(1 + θα+1 exp(t))

(1− θ exp(t))(1− θ1+α exp(t))(1− θ1+2α exp(t))(1 + θ1+α)
,

=

(
1

1 + θ1+α

)
MW (t) +

(
θ1+α

1 + θ1+α

)
MZ(t),

where MZ(t) and MW (t) are the moment generating functions of Z and W respectively. Now the MGF of Z can
be written as a partial fraction; i.e.,

MZ(t) = c1
(1− θ)

1− θ exp(t)
+ c2

(1− θ1+α)

1− θ1+α exp(t)
+ c3

(1− θ1+2α)

(1− θ2α+1 exp(t))
,

where c1, c2, and c3 are given in (9). From the uniqueness and the linearity of the inverse Laplace transform, the
PMF of W is given via (10). The PMF of W, can be obtained similarly and this is complete the proof

Interestingly, the following proposition establishes that the connection between the continuous version and
discrete version. [20] introduced a two-parameter weighted exponential distributions whose its PDF is given by
f(x, λ, α) = (1+2α)(1+α)

α2 λ exp(−λx) (1− exp(−λαx))
2
, and referred to it as TWE(α, λ).

Proposition 7
If X:TWE(α, λ) then the discrete version of X follows X:TWG(α, exp(−λ))

Proof
It is well-known that a discrete version analogous of continuous random if its PMF is

pY (y) =
fX(y)∑∞
k=0 fX(k)

, y = 0, 1, . . . .

Stat., Optim. Inf. Comput. Vol. x, Month 2024
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Clearly,

pY (y) =
exp(−λx) (1− exp(−αλx))

2∑∞
k=0 exp(−λk) (1− exp(−αλk)

2 , y = 0, 1, . . .

It is readily seen that

∞∑
k=0

exp(−λk) (1− exp(−αλk))
2
=

exp(−λ) [1− exp(−αλ)]
2
[1 + exp(−λ(α+ 1))]

[1− exp(−λ)] [1− exp(−λ(α+ 1)] [1− exp(−λ(2α+ 1))]
.

4. Statistical Properties

In this section, we introduce some statistical measures including the moment generating function, moments,
skewness and kurtosis. Moreover, we determine the range of skewness and kurtosis. The moment generating
function (MGF) of X for |t| < −(α+ 1) ln(θ), is given by

MX(t) =
(1− θ)(1− θα+1)(1− θ1+2α)(1 + θα+1 exp(t))

(1− θ exp(t))(1− θα+1 exp(t)) (1− θ1+2α exp(t)) (1 + θα+1)
.

To find the mean, the variance , and the kth moment we use the cummulant function . The cummulant function
(KX(t) = logMX(t)) is given by

κX(t) = ln(1 + θα+1 exp(t))− ln(1− θ exp(t))− ln(1− θα+1 exp(t))− ln(1− θ2α+1 exp(t)) + c. (11)

On differentiating Eq.(11) and letting t = 0, we have that

µ = θ

[
1

1− θ
+

θα

1− θα+1
+

θα

1 + θα+1
+

θ2α

1− θ2α+1

]
, (12)

V ar(X) = θ

[
1

(1− θ)2
+

θα

(1− θα+1)2
+

θα

(1 + θα+1)2
+

θ2α

(1− θ2α+1)2

]
, (13)

β1 = θ

[
1 + θ

(1− θ)3
+

(1 + θα+1)θα

(1− θα+1)3
+

(1− θα+1)θα

(1 + θα+1)3
+

(1 + θ2α+1)θ2α

(1− θ2α+1)3

]
, (14)

Apparently, the TWG distribution can be used to model data with overdispersion since the dispersion index defined
as IX = V ar(X)/µ is greater than 1/4 and hence can model data with index of dispersion equal to 1 or greater.
To see this, we have that IX ≥ (1 + θ)/{2(2 + θ)(1− θ)} > 1/4, since 1 + θ > 1 and that 1/(2 + θ)(1− θ) is an
increasing function in θ.

Proposition 8
If X : TWG(α, θ), then we have the following facts: (1) The range of the coefficient of variation (c.v.) is,
(1/3, 3/

√
3θ); (2) the range of the of the skewness measure (β1), is (1/24

√
3, 13/

√
θ).

Proof
(1)observe that the mean and the variance are decreasing functions in α. To see this, on differentiating the mean in
(12) with respect to α, we have dµ/dα = θα ln(θ){(1− θα+1)−2 + (1 + θα+1)−2 + 2θα(1− θα+1)−2}, implying
that dµ/dα < 0 since ln(θ) < 0. Therefore, we have that µ ≥ limα→∞ θ{(1− θ)−1 + θα(1− θα+1)−1 + θα(1 +
θα+1)−1 + θ2α(1− θ2α+1)−1} = θ/(1− θ). On the other hand, we have that µ ≤ limα→0 θ{(1− θ)−1 + θα(1−
θα+1)−1 + θα(1 + θα+1)−1 + θ2α(1− θ2α+1)−1} = 2θ(2 + θ)/(1− θ2). Thus, we have that

θ

1− θ
< µ <

2θ(2 + θ)

1− θ2
. (15)
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Analogously to the above analysis, the variance, σ2 := V ar(X) in (13) is a decreasing function in α. To show
this, we differentiate σ2 with respect to α, which is given by dσ2/dα = (1 + θα+1)θ2α ln(θ){(1 + θα+1)(1−
θα+1)−3 + (1 + θα+1)(1 + θα+1)−3 + 2θα(1 + θ2α+1)(1− θα+1)−3} < 0 due to the fact that θ < 1. There-
fore, we have σ2 ≥ limα→∞ θ{(1− θ)−2 + θα(1− θα+1)−2 + θα(1 + θα+1)−2 + θ2α(1− θ2α+1)−2} = θ/(1−
θ)2. Also, σ2 ≤ limα→0 θ{(1− θ)−2 + θα(1− θα+1)−2 + θα(1 + θα+1)−2 + θ2α(1− θ2α+1)−2} = (4θ(1 + θ +
θ2))/((1− θ)2(1 + θ)2). Therefore, it is clear that the variance function can be bounded as shown by the following
bounds

θ

(1− θ)2
< σ2 <

4θ(1 + θ + θ2)

(1− θ)2(1 + θ)2
(16)

Now the coefficient of variation is defined via c.v := σ/µ. To obtain its lower bound, we have from (15) that
µ ≥ θ/1− θ and from (16) that σ2 < 2

√
θ(1 + θ + θ2/{(1− θ)(1 + θ).} Hence, it follows that

c.v <
2
√
1 + θ + θ2√
θ(1 + θ))

since θ<1
<

2
√
3√

θ(1 + θ)
<

3√
3θ

,

where the last inequality followed from the fact that 1/(1 + θ) is a decreasing function in θ, and hence the upper
bound is obtained. Similar the lower bound can be easily obtained in veiw of eqs (12)and (13). Similar to the prove
of part (1), the third centered measure µ3 is a decreasing function in α. Therefore, after some algebra , the skewness
measure; β1 = µ3/σ3/2 can be bounded as given in the following inequality

v1(θ) :=
(1 + θ)4

8 θ1/2 (1 + θ + θ2)
3/2

≤ β1 ≤ v2(θ) :=
3(1 + θ)4 + (1− θ)4

θ1/2(1 + θ)2
,

Notice that 1/(1 + θ + θ2) is a decreasing function and on using the fact that in (1 + θ)4 > 1, it then follows that the
lower bound v1(θ) ≥ 1/24

√
3. On the other hand, the upper bound can shown to be less than or equal to 13/θ1/2,

and hence the proof is completed.

Remark 2
Proposition 8 shows that the TWG distribution has a wider range of coefficient of variation and skewness compared
to the WG model. Specifically, the coefficient of variation (c.v.) for the WG model from [14] is is (1/2, 2/

√
2θ)

whereas for the TWG it is (1/3, 3/
√
3θ) indicating a wider for the TWG model. Similarly, the range of skewness

is (1/24
√
3, 13/

√
θ), which is wider than the corresponding range for the WG distribution, (1/

√
2, 4/

√
θ). This

demonstrates that the TWG model is more flexible in modeling count data compared to the WG distribution.

5. Large behavior of extreme values

Let X1, . . . , Xn be an independent and identically distributed (i.i.d) random variables from TWG(α,θ). Certainly,
the central limit theorem asserts that as n → ∞, the sample mean X converges to a normal distribution with
mean µ and variance σ2/n, where µ and σ2 are the mean and variance of TWG, respectively. On the other
hand, understanding the asymptotic behavior of extreme statistics, particularly the maximum value, is important
due to its wide-ranging applications across disciplines. If we denote Mn := max(X1, . . . , Xn), as the maximum
value, we seek deterministic sequences of real numbers (an)n≥1 and positive real numbers (bn)n≥1 such that
Wn := bn (max(X1, . . . , Xn)− an), in distribution to some probability distribution. According to Theorem 1.7.13
of [23] admits a non-degenerate probability distribution if and only if 1− F (x)/(1− F (x− 1)) → 1, n → ∞.
The following theorem establishes that Wn using the TWG distribution admits a non-degenerate probability
distribution.

Theorem 5.1
Let {Xn : n ≥ 1} be a sequence of i.i.d from TWG distribution. Then there is no non-degenerate limiting
distribution for Wn.
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Proof
limn→∞(1− F (n))/(1− F (n− 1)) = limn→∞ θn+1[(1− θ)−1 − 2θα(n+2)(1− θ1+α)−1 + θ2α(n+2)(1−
θ1+2α)−1]/θn[(1− θ)−1 − 2θα(n+1)(1− θ1+α)−1 + θ2α(n+1)(1− θ1+2α)−1] = θ ̸= 1.

Remark 3
The geometric and the weighted negative binomial distributions (specifically, WNBD(3, θ)) are sub-special cases
derived from the TWG distribution. Consequently, Wn corresponding to these distributions does not converge to
any non-degenerate limiting distribution

6. Maximum likelihood estimates

Estimating the unknown parameters of the proposed distribution is performed via the maximum likelihood
estimates (MLEs) method. We discuss the MLEs thoroughly, particularly their existence, uniqueness, and
asymptotic distributions. In order to provide reliable estimates of model parameters, mainly in terms of calculations,
we re-parametrize the model parameters by letting λ = θα. The log-likelihood of λ and θ using a set of observations
of size n, say; xn := (x1, . . . , xn) is

ℓ(θ, λ) = n
[
ln(1− θ) + ln(1− λθ) + ln(1− λ2θ)− 2 ln(1− λ)− ln(1 + λθ)

]
+ ln(θ)

n∑
i=1

xi + 2

n∑
i=1

ln(1− λ1+xi). (17)

The score function is given by U = (ℓ(θ, λ)/∂θ, ℓ(θ, λ)/∂λ)t, where

ℓ(θ, λ)

∂θ
= −n

[
1

1− θ
+

2λ

1− λ2θ2
+

λ2

1− λ2θ

]
+

∑n
i=1 xi

θ
, (18)

ℓ(θ, λ)

∂λ
= −n

[
2θ

1− λ2θ2
+

2θλ2

1− λ2θ

]
+

2n

1− λ
− 2

n∑
i=1

(xi + 1)λxi

1− λxi+1
. (19)

The ML estimates; λ̂ and θ̂ are obtained by solving U = 0. The following theorem shows that the score function
has unique solutions, and hence the existence and uniqueness of the ML estimates of the parameters can be proved.

Theorem 6.1
The right-hand-side of equation (18) has a unique solution in terms of θ, and the root, θ̂, lies in( ∑n

i=1 xi

4n+
∑n

i=1 xi
,

∑n
i=1 xi

n+
∑n

i=1 xi

)
. (20)

Proof
Put g(θ;λ, xn) := ω(θ, λ, xn)− n

1−θ +
∑n

i=1 xi

θ , where ω(θ, λ, xn) = −n[2λ(1− λ2θ2)−1 + λ2(1− λ2θ)−1].
Since ω(θ, λ, xn) ≤ 0, it then follows that

g(θ;λ, xn) ≤ − n

1− θ
+

∑n
i=1 xi

θ
,

and hence g(θ;λ, xn) < 0 if and only if θ >
∑n

i=1 xi/(n+
∑n

i=1 xi). On the other hand, we have that

g(θ;λ, xn) ≥ 4n

1− θ
+

∑n
i=1 xi

θ
.

It then follows that g(θ;λ, xn) > 0 if and only if θ <
∑n

i=1 xi/(4n+
∑n

i=1 xi). So there exists at least one root of
g(θ;λ, xn) in the interval ( ∑n

i=1 xi

4n+
∑n

i=1 xi
,

∑n
i=1 xi

n+
∑n

i=1 xi

)
.

Stat., Optim. Inf. Comput. Vol. x, Month 2024



M. K. SHAKHATREH AND H. AL-MOFLEH 11

To show the uniqueness, the first derivative of g(θ;λ, xn) is g
′
(θ;λ, xn) = ω

′
(θ, λ, xn)− n

(1−θ)2 −
∑n

i=1 xi

θ2 . Clearly,

g
′
(θ;λ, xn) < 0 due to ω

′
(θ, λ, xn) < 0, and hence the the uniqueness is proven.

Theorem 6.2
Let Λ(λ; θ, xn) denote the function on the right-hand-side of equation (19), then there exists a root say, λ̂ such that
Λ(λ̂; θ, xn) = 0.

Proof
We have that limλ→0 Λ(λ; θ, x

n) = n(1− θ) > 0. On the other hand, we have that

lim
λ→1

Λ(λ; θ, xn) = −n

[
2θ

1− θ2
+

2θ

1− θ

]
− 2 lim

λ→1

[
n∑

i=1

(1 + xi)λ
xi

1− λ1+xi
− 1

1− λ
,

]
≤ − 2nθ

1− θ
+

n∑
i=1

xi.

The upper bound is negative if and only if θ >
∑n

i=1 xi

2n+
∑n

i=1 xi
. In view of (20), it follows that when θ ∈( ∑n

i=1 xi

2n+
∑n

i=1 xi
,

∑n
i=1 xi

n+
∑n

i=1 xi

)
, the ML of λ say λ̂, exists and satisfy Λ(λ̂; θ, xn) = 0.

6.1. Asymptotic distributions

This subsection provides the asymptotic distributions of the ML estimates; λ̂ and θ̂. Notice that the likelihood
function satisfies all the regularities conditions required to establish the asymptotic normality distribution of λ̂ and
θ̂. Consequently, as n goes to infinity, we have

√
n(θ̂ − θ, λ̂− λ) =⇒ N2(0, I

−1). where I is the Fisher information
per unit observation. The asymptotic normality of the ML estimates of the original parameters say, θ̂ and α̂ is

√
n(θ̂ − θ, λ̂− λ) =⇒ N2(0,GI−1 GT ), G =

 1 0

− α
θ ln(θ)

1
θα ln(θ)

 .

7. Data Generation and Simulation Study

Here, we provide an efficient algorithm for simulating random samples from the CILPS distribution given via
TWG(λ, θ). Additionally, Monte Carlo simulation experiments are conducted in order to evaluate the performance
of the ML estimates model parameters.

7.1. Generation algorithm

Following propositions 5 or 6, we can generate random samples from the TWG distribution. However, on using
proposition 5 we can generate the required sample as long as α is a positive integer number. On the other hand
proposition 6 can be used to generate irrespective that α is integer or not. However, we provide an efficient
algorithm of generating random samples from the TWG.

Algorithm 1
This algorithm can be used for generating random samples from CILPS using the CDF given (4)

1. Slicing up the interval [0, 1] into sub-intervals which define a partition of [0, 1] as: I0 = [0, FX(0)), I1 =
[FX(0), FX(1)), I2 = [FX(1), FX(2)),. . ., Ik = [FX(xk−1), FX(xk)),. . ., where FX(.) is the CDF in Eq.(4)
with λ = θα.

2. Generate Ui ∼ Uniform(0, 1), i = 1, 2, . . . , n.
3. If Ui ∈ Ij , let Y = xi for i = 1, 2, . . . , n and j = 0, 1, 2, . . . .
4. Then Pr[Ui ∈ Ij ] = Pr[FX(xj−1) ≤ Ui < FX(xj)] = FX(xj)− FX(xj−1) = pX(xi) = Pr[X = xj ] for i =

1, 2, . . . , n and j = 0, 1, 2, . . . .
5. So, Y is the required sample.
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7.2. Monte Carlo Simulation study

In this section, we analyze the performance of the estimators from four different methods for estimating the
parameters of the TWG distribution through simulation experiments. The simulation steps are: (i) select the sample
size n; (ii) use Algorithm 1 to generate a random sample of size n from the TWG model; (iii) calculate the TWG
model parameter estimates; and (iv) repeat steps (ii) and (iii) N times. Sample sizes are n = 30, 50, 80, 120, 200,
and 350, with parameter combinations; λ = 0.50, 0.60, 0.80, 0.90 and θ = 0.40, 0.50, 0.80, 0.95. The number of
replications is N = 1000. We evaluate the finite sample performance of the ML estimates using the following
metrics for each sample size: the average of absolute value of biases (|Bias(Θ̂ΘΘ)|), |Bias(Θ̂ΘΘ)| = 1

N

∑N
i=1 |Θ̂ΘΘ−ΘΘΘ|,

the mean square error of the estimates (MSEs), MSEs = 1
N

∑N
i=1(Θ̂ΘΘ−ΘΘΘ)2, and the mean relative estimates

(MREs), MREs = 1
N

∑N
i=1 |Θ̂ΘΘ−ΘΘΘ|/ΘΘΘ, where ΘΘΘ = (λ, θ)⊺ All calculations are performed using R software

(version 4.2.2)[31]. Table1 shows the Monte Carlo simulation results for , MSE, and MRE of the TWG parameters.
The findings provide significant insights. The parameter estimates demonstrate strong performance, with minimal
bias and acceptable MSE across all scenarios. These estimates are reliable, closely matching the true values, and
indicate asymptotic unbiasedness. Moreover, the MSE trends towards zero, confirming the consistency of the
estimates.This is also confirmed, as demonstrated in Figures 3 through 6. Specifically, for n ≥ 50 , the convergence
of the considered measures tends to zero.

Table 1. Simulation results for various values of ΘΘΘ = (λ, θ)⊺.

Est. Est. Par.
ΘΘΘ = (λ = 0.50, θ = 0.40)⊺ ΘΘΘ = (λ = 0.50, θ = 0.50)⊺

n n
30 50 80 120 200 350 30 50 80 120 200 350

|BIAS| λ̂ 0.35635 0.31591 0.27530 0.24046 0.19308 0.15172 0.32314 0.26914 0.22878 0.19473 0.14652 0.10432
θ̂ 0.11500 0.10016 0.08845 0.07797 0.06339 0.05032 0.11357 0.09668 0.08215 0.07011 0.05378 0.03803

MSE λ̂ 0.15676 0.13173 0.10821 0.08915 0.06323 0.04304 0.13710 0.10530 0.08280 0.06373 0.03988 0.02087
θ̂ 0.01687 0.01337 0.01105 0.00912 0.00653 0.00445 0.01815 0.01389 0.01084 0.00842 0.00540 0.00277

MRE λ̂ 0.71271 0.63182 0.55061 0.48092 0.38616 0.30343 0.64629 0.53827 0.45756 0.38945 0.29303 0.20863
θ̂ 0.28751 0.25039 0.22113 0.19493 0.15849 0.12579 0.22713 0.19336 0.16430 0.14022 0.10757 0.07605

Est. Est. Par.
ΘΘΘ = (λ = 0.50, θ = 0.80)⊺ ΘΘΘ = (λ = 0.50, θ = 0.95)⊺

n n
30 50 80 120 200 350 30 50 80 120 200 350

|BIAS| λ̂ 0.20498 0.15315 0.11576 0.09422 0.07082 0.05173 0.20160 0.16379 0.13186 0.11037 0.08377 0.06413
θ̂ 0.05453 0.03697 0.02677 0.02050 0.01464 0.01069 0.00988 0.00683 0.00502 0.00393 0.00298 0.00227

MSE λ̂ 0.06681 0.03883 0.02276 0.01448 0.00797 0.00418 0.06028 0.04248 0.02791 0.02002 0.01126 0.00659
θ̂ 0.00666 0.00317 0.00158 0.00081 0.00037 0.00019 0.00023 0.00009 0.00004 0.00003 0.00001 0.00001

MRE λ̂ 0.40995 0.30631 0.23151 0.18845 0.14163 0.10345 0.40319 0.32757 0.26372 0.22073 0.16755 0.12827
θ̂ 0.06816 0.04621 0.03346 0.02562 0.01830 0.01336 0.01040 0.00718 0.00529 0.00414 0.00313 0.00239

Est. Est. Par.
ΘΘΘ = (λ = 0.60, θ = 0.40)⊺ ΘΘΘ = (λ = 0.60, θ = 0.50)⊺

n n
30 50 80 120 200 350 30 50 80 120 200 350

|BIAS| λ̂ 0.33408 0.29775 0.26609 0.24060 0.20388 0.16220 0.30375 0.26509 0.22755 0.19867 0.16090 0.12123
θ̂ 0.10846 0.09959 0.08808 0.07998 0.06751 0.05473 0.11136 0.09821 0.08549 0.07448 0.06077 0.04592

MSE λ̂ 0.13156 0.10910 0.09190 0.07862 0.06133 0.04373 0.11448 0.09183 0.07350 0.05917 0.04275 0.02660
θ̂ 0.01465 0.01245 0.01016 0.00861 0.00658 0.00481 0.01603 0.01306 0.01055 0.00848 0.00618 0.00384

MRE λ̂ 0.55681 0.49625 0.44348 0.40099 0.33981 0.27033 0.50626 0.44181 0.37924 0.33111 0.26816 0.20205
θ̂ 0.27114 0.24897 0.22019 0.19995 0.16876 0.13683 0.22271 0.19642 0.17097 0.14895 0.12154 0.09183

Est. Est. Par.
ΘΘΘ = (λ = 0.60, θ = 0.80)⊺ ΘΘΘ = (λ = 0.60, θ = 0.95)⊺

n n
30 50 80 120 200 350 30 50 80 120 200 350

|BIAS| λ̂ 0.19029 0.15118 0.11002 0.08771 0.06603 0.04894 0.17994 0.14114 0.10975 0.08934 0.06864 0.05181
θ̂ 0.05935 0.04401 0.03059 0.02326 0.01650 0.01207 0.01069 0.00705 0.00518 0.00417 0.00317 0.00232

MSE λ̂ 0.05684 0.03761 0.02063 0.01321 0.00715 0.00384 0.05299 0.03426 0.02071 0.01361 0.00788 0.00435
θ̂ 0.00718 0.00432 0.00213 0.00117 0.00051 0.00024 0.00028 0.00010 0.00005 0.00003 0.00002 0.00001

MRE λ̂ 0.31714 0.25197 0.18337 0.14618 0.11004 0.08157 0.29991 0.23524 0.18291 0.14890 0.11440 0.08635
θ̂ 0.07419 0.05501 0.03824 0.02907 0.02062 0.01509 0.01125 0.00742 0.00546 0.00439 0.00334 0.00244
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Table 1: Simulation results for various values of ΘΘΘ = (λ, θ)⊺ (Continued).

Est. Est. Par.
ΘΘΘ = (λ = 0.80, θ = 0.40)⊺ ΘΘΘ = (λ = 0.80, θ = 0.50)⊺

n n
30 50 80 120 200 350 30 50 80 120 200 350

|BIAS| λ̂ 0.25218 0.23295 0.21518 0.19822 0.17979 0.15838 0.22875 0.20481 0.18975 0.17226 0.15323 0.13376
θ̂ 0.09030 0.08288 0.07727 0.07127 0.06506 0.05711 0.09080 0.08220 0.07751 0.07146 0.06405 0.05638

MSE λ̂ 0.08521 0.06941 0.05743 0.04807 0.03894 0.03062 0.06858 0.05315 0.04386 0.03640 0.02933 0.02306
θ̂ 0.01116 0.00902 0.00763 0.00638 0.00520 0.00404 0.01055 0.00847 0.00736 0.00630 0.00515 0.00413

MRE λ̂ 0.31522 0.29119 0.26897 0.24777 0.22473 0.19798 0.28594 0.25601 0.23718 0.21532 0.19154 0.16720
θ̂ 0.22576 0.20721 0.19317 0.17818 0.16266 0.14278 0.18160 0.16439 0.15502 0.14293 0.12811 0.11277

Est. Est. Par.
ΘΘΘ = (λ = 0.80, θ = 0.80)⊺ ΘΘΘ = (λ = 0.80, θ = 0.95)⊺

n n
30 50 80 120 200 350 30 50 80 120 200 350

|BIAS| λ̂ 0.15123 0.12519 0.10191 0.08449 0.06714 0.04804 0.10551 0.07598 0.05731 0.04668 0.03475 0.02624
θ̂ 0.06450 0.05435 0.04487 0.03614 0.02865 0.02002 0.01357 0.00881 0.00638 0.00489 0.00358 0.00268

MSE λ̂ 0.03264 0.02250 0.01574 0.01147 0.00759 0.00407 0.02392 0.01230 0.00590 0.00379 0.00199 0.00111
θ̂ 0.00621 0.00473 0.00357 0.00254 0.00168 0.00085 0.00047 0.00019 0.00008 0.00004 0.00002 0.00001

MRE λ̂ 0.18903 0.15648 0.12739 0.10561 0.08393 0.06004 0.13189 0.09498 0.07164 0.05835 0.04343 0.03280
θ̂ 0.08063 0.06793 0.05608 0.04517 0.03582 0.02503 0.01428 0.00928 0.00672 0.00515 0.00377 0.00282

Est. Est. Par.
ΘΘΘ = (λ = 0.90, θ = 0.40)⊺ ΘΘΘ = (λ = 0.90, θ = 0.50)⊺

n n
30 50 80 120 200 350 30 50 80 120 200 350

|BIAS| λ̂ 0.21145 0.19393 0.17947 0.16426 0.15027 0.13413 0.18024 0.16725 0.15190 0.13989 0.12690 0.11227
θ̂ 0.08095 0.07361 0.06815 0.06256 0.05700 0.05172 0.07721 0.07106 0.06585 0.06122 0.05620 0.05021

MSE λ̂ 0.08204 0.06429 0.05138 0.04081 0.03257 0.02459 0.05709 0.04504 0.03442 0.02788 0.02176 0.01607
θ̂ 0.01111 0.00902 0.00743 0.00600 0.00481 0.00373 0.00909 0.00751 0.00621 0.00517 0.00419 0.00319

MRE λ̂ 0.23495 0.21548 0.19941 0.18251 0.16697 0.14903 0.20026 0.18583 0.16878 0.15543 0.14100 0.12474
θ̂ 0.20237 0.18402 0.17038 0.15639 0.14250 0.12930 0.15442 0.14212 0.13170 0.12243 0.11241 0.10043

Est. Est. Par.
ΘΘΘ = (λ = 0.90, θ = 0.80)⊺ ΘΘΘ = (λ = 0.90, θ = 0.95)⊺

n n
30 50 80 120 200 350 30 50 80 120 200 350

|BIAS| λ̂ 0.10672 0.09289 0.08268 0.07305 0.06237 0.05118 0.06429 0.04658 0.03569 0.02822 0.02129 0.01566
θ̂ 0.05352 0.04836 0.04436 0.03956 0.03422 0.02833 0.01792 0.01285 0.00906 0.00686 0.00486 0.00340

MSE λ̂ 0.01658 0.01168 0.00892 0.00708 0.00530 0.00384 0.00894 0.00397 0.00216 0.00137 0.00074 0.00039
θ̂ 0.00364 0.00300 0.00257 0.00213 0.00170 0.00127 0.00065 0.00038 0.00020 0.00011 0.00005 0.00002

MRE λ̂ 0.11857 0.10321 0.09187 0.08117 0.06929 0.05686 0.07144 0.05176 0.03966 0.03135 0.02365 0.01741
θ̂ 0.06690 0.06045 0.05544 0.04945 0.04278 0.03541 0.01886 0.01352 0.00953 0.00722 0.00511 0.00357

Figure 3. The heatmaps of the simulated biases, MSE and MRE of the MLE simulation method for ΘΘΘ = (λ = 0.50, θ = 0.40)⊺.

Figure 4. The heatmaps of the simulated biases, MSE and MRE of the MLE simulation method for ΘΘΘ = (λ = 0.50, θ = 0.95)⊺.
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Figure 5. The heatmaps of the simulated biases, MSE and MRE of the MLE simulation method for ΘΘΘ = (λ = 0.60, θ = 0.50)⊺.

Figure 6. The heatmaps of the simulated biases, MSE and MRE of the MLE simulation method for ΘΘΘ = (λ = 0.60, θ = 0.95)⊺.

8. Data Illustration

This section demonstrates the potential of fitting the TWG model to three real data sets. Importantly, all three
data sets are zero-inflated and exhibit overdispersion. Additionally, the TWG model will be compared with several
competitive models, namely: the weighted geometric distribution (WG) from [14], the negative binomial (NB),
the new discrete distribution (ND) from [27], the generalized geometric distribution (GGD) from [26], the general
Poisson Lindley distribution (GPLD) from [30], and the new generalized Poisson Lindley distribution (NGPLD)
from [25].

The competitive models are compared by using goodness-of-fit criteria and information-theoretic criteria
including the maximized log-likelihood under the model (−ℓ̂), Akaike information criterion (AIC), corrected
Akaike information criterion (CAIC), Bayesian information criterion (BIC), Hannan-Quinn information criterion
(HQIC) and Kolmogorov Smirnov (K-S) statistics with its corresponding p-value. Moreover, the chi-square (χ2)
test is used with its corresponding p-value where the estimated probabilities are under the null hypothesis. The
model with minimum values for these statistics and the highest p-value for the chi-square (χ2) test could be chosen
as the best model to fit the data.

8.1. Data set 1: Number of ticks on 82 sheeps

As a first example, we use a dataset from [28] that represents the number of ticks counted on 82 sheep. Preliminary
analysis shows that the sample mean is x = 6.561, the sample variance is s2 = 34.768, and the sample skewness
is b1 = 1.53. The data include some zero count observations. To determine whether this data can be classified
as zero-inflated, we calculate the sample index dispersion as i = s/x = 2.99 > 1, indicating that the data exhibit
overdispersion. This suggests that the TWG model can be used to fit this data. The theoretical skewness measure
of the TWG and WG distributions involves an unknown parameter, θ, which needs to be estimated for comparison
purposes. The ML estimate of θ under the WG distribution is θ̂WG = 0.83397, and under the TWG distribution,
it is θ̂TWG = 0.8363. Consequently, the estimated range of the WG’s skewness measure is (0.35, 4.38), and for
the TWG’s measure, it is (0.024, 10.051). The sample skewness b1 = 1.53 falls within the estimated ranges of
skewness for both models. However, the TWG distribution provides a wider range, suggesting it may better capture
the features of the current data compared to the TW distribution. The numerical values of ML estimates and their
corresponding standard errors (SE), −ℓ̂, AIC, CAIC, BIC, and K-S statistics with their corresponding p-values
are given in Table 2. Additionally, the table includes the chi-square (χ2) test along with its corresponding p-value.
Considering the p-value of the K-S statistic, we may conclude that the candidate models fit this data well. However,
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a closer look at the value of χ2 along with its corresponding p-value suggests that the TWG is better than all
considered models. More precisely, the value of χ2 along with its p-value (in parentheses) is 6.93157(0.73189) for
TWG; 8.47572(0.58247) for WG; 9.12373(0.52040) for NB; 14.17070(0.16535) for ND; 12.66584(0.24296) for
GGD; 9.84419(0.45427) for GPLD; 8.95550(0.53633) for NGPLD; and 437.24582 (< 0.00001) for POID. Clearly,
the TWD outperforms all considered models in terms of having the smallest value of χ2 and the highest p-value.The
performance of WG and NGPLD is almost similar, followed by NB as a close second, whereas the performance
of ND, GGD, and POID is poor, with POID being the worst candidate for this data. Figures 7 demonstrate the
empirical distribution of the number of claims versus the fitted models, revealing that the fitted count is almost
close to the empirical count counterpart. This can also be confirmed by examining Table 2. Figure 8 (right panel)
confirms that the overall pattern follows almost a straight line, indicating that the data come from the TWG. Finally,
the violin plot for the number of ticks is shown in Figure 8 (left panel), with the mean of the empirical data being
6.56.

Table 2. The goodness-of-fit for the number of ticks on sheep data.

Number of ticks Frequency TWG WG NB ND GGD GPLD NGPLD POID
0 4 3.84899 5.36429 5.25564 8.62476 7.60945 5.46171 4.53062 0.11599
1 5 7.62239 7.72433 7.35044 8.15383 7.65695 7.11952 6.87624 0.76100
2 11 9.00703 8.41172 8.03188 7.64244 7.53404 7.74641 7.88163 2.49646
3 10 8.87624 8.20883 7.95758 7.09696 7.25145 7.75768 8.04428 5.45975
4 9 8.06696 7.56929 7.47830 6.52613 6.83284 7.39048 7.70253 8.95531
5 11 7.04584 6.75091 6.79914 5.94055 6.31081 6.80587 7.08277 11.75112
6 3 6.02967 5.89570 6.04301 5.35202 5.72181 6.11455 6.33324 12.84980
7 5 5.10505 5.07781 5.28296 4.77256 5.10141 5.39079 5.54816 12.04389
8 3

 79 2 10.92693 11.10266 11.76539 11.09105 11.69298 12.11448 12.29804 21.80242
10 2
11 5

 9
12 0
13 2 7.90013 8.15474 8.68048 8.74151 8.83863 8.93497 8.85463 5.50042
14 2
15 1



8

16 1
17 0
18 0
19 1
20 0 7.57076 7.73973 7.35518 8.05820 7.44962 7.16354 6.84786 0.26384
21 1
22 1
23 1
24 0
≥25 2

Total 82 82 82 82 82 82 82 82 82

Parameter (θ̂, α̂) (θ̂, α̂) (r, p̂) (θ̂, α̂) (θ̂, α̂) (θ̂, α̂) (θ̂, α̂) α̂
ML Estimate (0.83632,3.45951) (0.83397,1.75893) (1.77748,0.21317) (0.81583,-3.21969) (0.80878,2.31141) (0.31070,1.27577) (0.30408,61.52066) (6.56098)

SE (0.02100,1.54830) (0.02626,1.46955) (0.35158,0.03669) (0.03315,3.36365) (0.02970,0.82881) (0.06192,0.39822) (0.03024,1106.74777) (0.28286)
-2ℓ 473.53610 474.97729 475.92369 480.62995 479.43766 476.88396 476.27931 650.23707
AIC 477.53610 478.97729 479.92369 484.62995 483.43766 480.88396 480.27931 652.23707

CAIC 477.68800 479.12919 480.07559 484.78184 483.58955 481.03585 480.43121 652.28707
BIC 482.34954 483.79073 484.73713 489.44338 488.25109 485.69739 485.09275 654.64379

HQIC 479.46862 480.90981 481.85622 486.56247 485.37018 482.81648 482.21183 653.20334
K-S (stat) 0.13998 0.93458 0.93591 0.89482 0.90720 0.93339 0.94475 0.99859

K-S (p-value) 0.08043 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001
χ2 (stat) 6.93157 8.47572 9.12373 14.17070 12.66584 9.84419 8.95550 437.24582

d.f. 10 10 10 10 10 10 10 10
χ2 (p-value) 0.73189 0.58247 0.52040 0.16535 0.24296 0.45427 0.53633 < 0.00001

8.2. Data set 2: Number of claims by auto insurance policyholders

The second dataset we use is from [29], representing the number of claims made by automobile insurance
policyholders. The sample for this data has a mean of x = 0.194, a variance of s2 = 0.226, and a skewness of
b1 = 2.901. The sample index of dispersion is i = 1.163, indicating an excess of zero counts, as seen in Table 3.
Consequently, the TWG model could potentially fit this data. The estimated range index of dispersion IX under
the WG and TWG distributions, considering the ML estimates of θ under these models, are (0.353, 10.5778) and
(0.024, 34.378), respectively. Notice that the estimated range of the skewness measure provides a wider range
than the corresponding range under the WG distribution. This flexibility in the range may capture the skewness
present in the data much better. The numerical values of ML estimates and their corresponding standard errors
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Figure 7. The fitted PMFs for the number of ticks on sheep data.

(SE), −ℓ̂, AIC, CAIC, BIC, and K-S statistics with their corresponding p-values are given in Table 3. Additionally,
the table includes the chi-square (χ2) test along with its corresponding p-value. Based on the p-value of the K-
S statistic, we conclude that the candidate models fit this data well. On the other hand, the value of the χ2 and
its corresponding p-value suggest that the TWG is better than all considered models. Specifically, the χ2 values
along with corresponding p-values (in parentheses) are 2.23057 (0.52595) for TWG, 2.31023 (0.51056) for WG,
2.50381 (0.47460) for NB, 2.32019 (0.50866) for ND, 2.30978 (0.51065) for GGD, 2.52653 (0.47052) for GPLD,
2.66315 (0.44653) for NGPLD, and 6.16087 (0.04594) for POID. Clearly, the TWG model performs better than all
considered models in terms of having the smallest χ2 value. Notice that the performance of GGD is slightly better
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Figure 8. The Violin plot for the number of ticks on sheep data and the PP plot of TWG model.

than WG, followed closely by ND, whereas the performance of NB, GPLD, NGPLD and POID is unsatisfactory,
with POID being the worst candidate for this data. Figures 9 demonstrate the empirical distribution of the number
of claims versus the fitted models, showing that the TWG model is slightly better than the WG distribution and
much better than the other considered models. Figure 10 (right panel) shows the P-P plot for the TWG, revealing
that the data can be reasonably fitted by this model. Finally, the violin plot for the number of claims is shown in
Figure 10 (left panel), with the mean of the data being 0.19.

Table 3. The goodness-of-fit for the number of claims in automobile insurance data.

Number of claims Frequency TWG WG NB ND GGD GPLD NGPLD POID
0 1563 1563.64977 1564.27976 1564.54711 1563.70288 1563.61628 1564.47933 1564.60266 1544.15002
1 271 266.23346 265.10615 264.48258 266.14402 266.29933 264.58780 264.25293 299.77364
2 32

 41

38.65674 39.05115 39.44336 38.75173 38.69618 39.43853 39.68639
3 7

}
9

31.07634
4 2 6.46003 6.56293 6.52695 6.40137 6.38821 6.49434 6.45803

Total 1875 1875 1875 1875 1875 1875 1875 1875 1875

Parameter (θ̂, α̂) (θ̂, α̂) (r, p̂) (θ̂, α̂) (θ̂, α̂) (θ̂, α̂) (θ̂, α̂) α̂
ML Estimate (0.14301,1.23178) (0.14324,0.87361) (1.30821,0.87078) (0.14122,-0.45415) (0.14118,1.21138) (7.28427,1.29334) (7.87479,8.83600) (0.19414)

SE (0.02050,0.62647) (0.02311,0.70663) (0.41723,0.03644) (0.02102,0.52387) (0.02073,0.22442) (2.09865,0.43049) (2.33896,18.40592) (0.01018)
-2ℓ 1986.67188 1986.77573 1987.00211 1986.76708 1986.75321 1987.02640 1987.18774 2003.50320
AIC 1990.67188 1990.77573 1991.00211 1990.76708 1990.75321 1991.02640 1991.18774 2005.50320

CAIC 1990.67829 1990.78214 1991.00852 1990.77349 1990.75962 1991.03281 1991.19415 2005.50533
BIC 2001.74461 2001.84845 2002.07484 2001.83981 2001.82594 2002.09913 2002.26047 2011.03956

HQIC 1994.75084 1994.85469 1995.08107 1994.84604 1994.83217 1995.10536 1995.26670 2007.54268
K-S (stat) 0.83395 0.83428 0.83443 0.83397 0.83393 0.83439 0.83445 0.82355

K-S (p-value) < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001
χ2 (stat) 2.23057 2.31023 2.50381 2.32019 2.30978 2.52653 2.66315 6.16087

d.f. 3 3 3 3 3 3 3 2
χ2 (p-value) 0.52595 0.51056 0.47460 0.50866 0.51065 0.47052 0.44653 0.04594

8.3. Data set 3: European corn borer biological experiment data

As a Final example, we consider the European corn borer biological experiment data [24], which is given in
Table 4. For this data we have that ,x = 1.434, the sample variance is s2 = 2.446, and the sample skewness is
b1 = 1.156. The sample index of dispersion is i = 1.163, indicating an excess of zero counts, as seen in Table 3.
So, the TWG model can be used to fit this data. Likewise, the estimated range index of dispersion IX under
the WG and TWG distributions, using the ML estimates of θ considering these models, are (0.353, 5.318) and
(0.024, 17.283), respectively. Clearly, the sample skewness belongs to both range intervals. However, the estimated
range of skewness under the TWG distribution is wider than the corresponding one under TW distribution. Prehaps,
such property maybe useful in analyzing the considered data fairly eoungh. Table 4 presents the numerical values
of ML estimates, their standard errors (SE), −ℓ̂, AIC, CAIC, BIC, and K-S statistics with corresponding p-values.
Additionally, the table includes the chi-square (χ2) test and its p-value. The p-value of the K-S statistic indicates
that the candidate models fit this data well.Conversely, the χ2 value and its p-value suggest that the TWG model is
superior to all other models considered. Specifically, the χ2 values and their p-values (in parentheses) are 0.7696
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Figure 9. The fitted PMFs for the number of claims in automobile insurance data.

Figure 10. The Violin plot for the number of claims in automobile insurance data and the PP plot of TWG model.

(0.979) for TWG, 0.9113 (0.96940 ) for WG, 1.1866 (0.946) for NB, 1.4621 (0.917)for ND, 1.38956 (0.925) for
GGD, 1.38133 (0.926) for GPLD, 1.4445 (0.919)for NGPLD , 38.53494 (< 0.00001) for POID. The TWG model
outperforms all other models, exhibiting the smallest (χ2) test and its p-value, with the WG model as a close second.
While the performance of the NB model is satisfactory, it falls short compared to the TWG and WG models. The
GGD and GPLD models show similar performance, as do the ND and NGPLD models. Lastly, the POID model
proves to be the least effective candidate for fitting this count data.. Figures 11 depict the empirical distribution of
the number of claims versus the fitted models, showing that the TWG model is better than the WG distribution and
much better than the other models. Figure 12 (right panel) reveals that the P-P plot is approximately a straight line,
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implying that the current follows the TWG distributions. Finally, the violin plot for number of borers is displayed
in Figure 12 (left panel) with the mean of the current data being 1.434

Table 4. The goodness-of-fit for the number of borers per hill of corn data.

Number of borers Frequency TWG WG NB ND GGD GPLD NGPLD POID
0 43 43.54439 44.03339 44.27292 45.18934 44.86048 44.26714 44.61771 27.22561
1 35 32.43318 31.78375 31.08465 30.23314 30.48909 30.75575 30.46035 40.38467
2 17 19.05118 19.03365 19.09808 18.86369 19.00636 19.19999 19.06579 29.95196
3 11 10.83777 10.91771 11.17520 11.19163 11.21716 11.36347 11.33580 14.80958
4 5 6.13667 6.19118 6.37575 6.42545 6.40738 6.50053 6.51439 5.49189
5 4

 9
6 1
7 2 7.99680 8.04032 7.99340 8.09675 8.01952 7.91312 8.00596 2.13628
8 2

Total 120 120 120 120 120 120 120 120 120

Parameter (θ̂, α̂) (θ̂, α̂) (r, p̂) (θ̂, α̂) (θ̂, α̂) (θ̂, α̂) (θ̂, α̂) α̂
ML Estimate (0.56577,3.36179) (0.56461,2.23691) (1.33313,0.47334) (0.54812,-0.87792) (0.54747,1.38447) (1.07982,1.12032) (1.05837,1.40250) (1.48333)

SE (0.04164,1.84988) (0.04696,1.92865) (0.37334,0.07491) (0.06064,1.30187) (0.05691,0.45802) (0.26916,0.42338) (0.27516,2.49000) (0.11118)
-2ℓ 400.26108 400.39705 400.60973 400.89437 400.82906 400.77618 400.83031 438.37586
AIC 404.26108 404.39705 404.60973 404.89437 404.82906 404.77618 404.83031 440.37586

CAIC 404.36365 404.49962 404.71229 404.99694 404.93163 404.87874 404.93287 440.40976
BIC 409.83607 409.97204 410.18471 410.46936 410.40404 410.35116 410.40529 443.16335

HQIC 406.52511 406.66108 406.87376 407.15840 407.09309 407.04021 407.09434 441.50787
K-S (stat) 0.36287 0.63306 0.63106 0.62342 0.62616 0.63111 0.62819 0.77312

K-S (p-value) < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001
χ2 (stat) 0.76961 0.91134 1.18662 1.46206 1.38956 1.38133 1.44447 38.53494

d.f. 5 5 5 5 5 5 5 5
χ2 (p-value) 0.97893 0.96940 0.94615 0.91741 0.92545 0.92634 0.91939 < 0.00001
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Figure 11. The fitted PMFs for the number of borers per hill of corn data.
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Figure 12. The Violin plot for the number of borers per hill of corn data and the PP plot of TWG model.

9. Discussion and Conclusion

This article introduces a new flexible weighted geometric (TWG) distribution. Among its many notable properties,
the TWG distribution excels in capturing skewness due to its broader range of skewness measures, resulting in
satisfactory performance when fitting real data. Several important statistical and mathematical features, including
unimodality, infinite divisibility, and the moment-generating function, are obtained and interpreted. The model
parameters are estimated using the maximum likelihood method, and their existence is discussed. The finite sample
behavior of these estimates is investigated through a Monte Carlo simulation study. Finally, the proposed model is
fitted using real data that exhibits overdispersion, and it is compared to some existing models, with the proposed
model outperforming all others.

In this section, we provide a further discussion of the proposed distribution. The TWG distribution introduced in
(3), along with its properties discussed in previous sections, can be viewed as a special case of the following family
of probability mass functions (PMF):

Definition 2
A random variable X is said to follow a two-parameter weighted geometric distribution with parameters
α1, α2, θ > 0, if its PMF of is given below

gpX(x; θ, α1, α2) := Pr[X = x] = k(θ, α1, α2)(1− θ) θx
(
1− θα1(1+x)

)(
1− θα2(1+x)

)
, x = 0, 1, 2, . . .

(21)

and 0 otherwise, where k(θ, α1, α2 is a normalizing constant

Observe that when α1 → ∞, then gpX(x; θ, α1, α2) converges to WG(θ , α2,) thus generalizing the WG
distribution proposed in [14]. Similarly, when α2 → ∞, then gpX(x; θ, α1, α2) converges to WG(θ , α1,) again
generalizing the WG distributions. Therefore, the family of PMF distribution generated via (21) generalizes the
WG distribution. Moreover, when α1 = α2 = α, we obtain the TWG distribution, with its PMF given via (3).

While the family of PMF described via in (21) is interesting and includes the WG and TWG as special cases,
it presents several challenges. First, the normalization is intractable. Second, the PMF in (21) is not identifiable,
leading to difficulties in statistical inference, particularly in obtaining the ML estimates, unless a constraint is
imposed on the parameters α1 and α2, for example, α2 = w(α1). A specific case of this is when α1 = α2,
which yields the TWG distribution discussed in this paper. A detailed statistical analysis, along with numerical
computations, is warranted and would be better explored in a separate paper. We plan to address these points
in future research. Additionally, statistical inferences about the unknown parameters can be made using different
estimation methods, including Bayesian approaches and regression modeling, particularly median regression, since
the mean function has a complex structure.
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