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Abstract Let G = (V,E) be a simple, connected and un-directed graph, for f : E(G) → {1, 2, . . . , |E(G)|}, the weight of
a vertex v ∈ V (G) under f is wf (v) = Σe∈E(v)f(e), where E(v) is the set of vertices incident to v. The function f is called
vertex antimagic edge labeling if every vertex has distinct weight. While, rainbow vertex coloring is a coloring of graph
vertices where each vertex on the graph is connected by a path that all internal vertices on the u− v path have different
colors. The purpose of this research is to find the rainbow vertex antimagic coloring on prism graphs and it’s operations.
Rainbow vertex antimagic coloring is a combination of antimagic labeling and rainbow vertex coloring. The rainbow vertex
antimagic connection number of G, denoted by rvac(G), is the smallest number of colors taken over all rainbow colorings
induced by rainbow vertex antimagic labelings of G. In this paper we aim to discover some new theorems regarding to
rvac(G).
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1. Introduction

A graph G is a pair of sets (V (G), E(G)), where V (G) is a non-empty finite set of elements called vertices, and
E(G) is a set (which can be empty) of unordered pairs (u, v) from the vertex (u, v) of the elements of V (G),
called edges [8],[13]. A graph is a finite set of vertices where the vertices are represented by node and edges are
represented by lines [17]. A vertex without edges can be called a graph, while an edge without vertex cannot be
called a graph [3]. A graph that only consists of one vertex without any edges is called a trivial graph [2]. The
number of sets of vertex in a graph is called the cardinality of the vertex, generally denoted by |V (G)|. Meanwhile,
the edge cardinality or the number of edge sets in a graph is denoted by |E(G)| [7].

Antimagic Labeling was first introduced in 1990 by Hartsfield and Ringel with several graphs studied, namely
path graphs, complete graphs and two conjectures about Antimagic Labeling. Antimagic Labeling is a bijective
mapping of the vertex set or edge set such that the sum of each paired edge has a different value [1].

Graph coloring is a part of graph labeling. Vertex coloring in a graph is the assignment of colors to all vertex in
a graph, provided that the two neighboring vertices must have different colors. The graph G is said to be rainbow
connected if every two distinct vertices in G are connected by a rainbow path [5]. The minimum number of colors
such that a graph is rainbow connected is called the rainbow connection number, denoted rc(G).
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The Rainbow Vertex Connection is a development of the Rainbow Connection concept [4]. It is divided into
two types namely Rainbow Edge Connection and Rainbow Vertex Connection. A rainbow vertex connection is the
color of the vertex of a graph, where each vertex in the graph is connected by a path that has interior vertices of a
different color [14]. The Rainbow Vertex Connection Number of a graph G is a number that expresses the number
of minimal colors assigned to a graph G, the rainbow vertex connection number of a graph G is usually symbolized
by rvc(G) [6].

Dafik, et al (2019) combined the concept of rainbow coloring and antimagic labeling [16]. Rainbow vertex
antimagic coloring is a combination of rainbow vertex connection with antimagic labeling [10],[18]. For a bijective
function mapping f : E(G) → {1, 2, 3, ..., |E(G)|} with v ∈ V (G), a vertex weight function wf (v) = Σe∈E(v)f(e),
where E(v) is the set of edges adjacent to vertex v. The function f is called antimagic edge labeling, if each vertex
has a different weight. A path P on graph G with edge labeling is called a rainbow path if for any two vertices u
and v, all interior vertices on the path u− v have different weights. If for any two vertices u and v of G, a rainbow
path u− v exists, then f is called the rainbow vertex antimagic labeling of G. When we assign each edge uv with
a vertex weight color wf(v), then we say the graph G is a rainbow vertex antimagic coloring. The rainbow vertex
antimagic connection number of graph G denoted by rvac(G), is the smallest number of colors drawn from all the
rainbow colorings induced by rainbow vertex antimagic labeling of graph G.

Hereunder are the definitions and theorems employed in the present study. The graphs studied are prism graphs
and it’s operations. A prism graph is a connected graph which is the Cartesian product of a cycle graph Cn with n
vertices and a path graph Pm with m vertices, where n and m are integer.

Definition 1.1. A prism graph is a Cartesian product of a cycle graph Cn with n = 3 vertices and a path Pm with
m vertices, with m ∈ N can be donated by Pr3,m.

Definition 1.2. A prism graph is a cartesian product of a cycle graph Cn with n = 5 vertices and a path Pm with
m vertices, with m ∈ N can be donated by Pr5,m.

Definition 1.3. A prism graph is a Cartesian product of a cycle graph Cn with n = 6 vertices and a path Pm with
m vertices, with m ∈ N can be donated by Pr6,m.

Definition 1.4. [9] A Shackle graph is a graph resulting from k copies of the graph G which is symbolized by
Shack(G, v, k) where k ≥ 2 and k is a natural number.

Definition 1.5. [12] Let Gi be a finite collection of graphs and each Gi has a fixed vertex voi called a terminal.
The amalgamation Amal{Gi, voi} is formed by taking of all the Gi’s and identifying their terminals.

Theorem 1.6. [15] Let G be a connected graph with diam(G), then rvc(G) ≥ diam(G)− 1.

Theorem 1.7. [11] Let G be a connected graph, then rvac(G) ≥ rvc(G)

2. Methodology

The research methods used in this study are (pattern recognition) and deductive axiomatic method. The research
procedure carried out to determine Rainbow Vertex Antimagic Coloring is as follows:

1) Define a graph G;
In this step, the researcher determines the research object. The graphs that used in this research are prism
graphs and their operations namely Pr3,m, Pr5,m, Pr6,m, Shackle (Pr5,2, v

k
2,2, k), and Amal(Pr5,3, x1, k).

2) Determine the cardinality of the graph G;
In this step, researchers look for the cardinality of each graph namely Pr3,m, Pr5,m, Pr6,m, Shackle
(Pr5,2, v

k
2,2, t), and Amal(Pr5,3, x1, k).

3) Determine the label of Rainbow Vertex Connection on the graph. This is to obtain the lower bound which
will later be used as the lower bound of the rvac number of the graph;
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4) Determine the coloring of Rainbow Vertex Antimagic Coloring on the graph. The coloring of Rainbow Vertex
Antimagic Coloring on a graph starts by performing Antimagic labeling on the graph. We give a Label on
each edge with an integer k = {1, 2, 3, ..., q} so that the weight at each vertex is different. Then give color to
each vertex. The color is obtained from the sum of the weights of each edge so that the weight at each vertex
is different and the color is minimum ;

5) Determine the upper bound of rvac(G) by constructing a bijective function, then showing that any two
distinct vertices on graph G satisfy the requirement of Rainbow Vertex Antimagic Coloring. If the upper
bound fulfill the definition of rainbow vertex antimagic coloring, where all the internal vertices on the graph
have different colors and contain rainbow path, then the value of Rainbow Vertex Antimagic Coloring of
graph G is obtained. It can be symbolized as rvac(G).

6) A new theorem is obtained after proving the lower bound and upper bound of rainbow vertex antimagic
connection number in graph G.;

3. Results and Discussion

This research formulates four theorems concerning rainbow vertex antimagic connection numbers in prism graphs
and their operations, as elaborated below :

Theorem 3.1. Rainbow Vertex Antimagic Connection Number of Prism Graph (Pr3,m) for m ≥ 3 is
rvac(Pr3,m) = m.

Proof. Let Pr3,m be a Prism Graph (Pr3,m) with a set of vertices V (Pr3,m) = {vi,j ; 1 ≤ i ≤ 3, 1 ≤ j ≤ m}
and the edge set E(Pr3,m) = {vi,jvi,(j+1); 1 ≤ i ≤ 3, 1 ≤ j ≤ m− 1} ∪ {vi,jv(i+1),j ; 1 ≤ i ≤ 2, 1 ≤ j ≤ m} ∪
{v1,jv3,j ; 1 ≤ j ≤ m}. First, we will show the lower bound of the Rainbow Vertex Antimagic Coloring of Prism
Graph (Pr3,m) by determining the diameter of the Prism Graph (Pr3,m). The diameter of Pr3,m is diam(Pr3,m) =
m+ 1. Based on Theorem 1.6, the value of rvc(Pr3,m) ≥ diam(Pr3,m)− 1. The identified diameter determines
the value of rvc(Pr3,m) ≥ m.

rvc(Pr3,m) ≥ diam(Pr3,m)− 1 = (m+ 1)− 1 = m

Based on Theorem 1.7, which states that rvac(G) ≥ rvc(G) we obtain the value of rvac(Pr3,m) ≥ m. Thus, we
got the lower bound of Rainbow Vertex Antimagic Connection Number of Prism Graph (Pr3,m) for m ≥ 3 is
rvac(Pr3,m) ≥ m. Second, we show the upper bound of Rainbow Vertex Antimagic Coloring on the Prism Graph
(Pr3,m), rvac(Pr3,m) ≤ m. The bijective function of the edge labels in the Prism graph Pr3,m is as follows:

f(vi,1v(i+1),1) =

{
1, i = 1
2, i = 2

f(v1,jv3,j) = 3, j = 1

f(vi,jv(i+1),j) =

 6j − 3, i = 1, j = 0mod3, j ̸= n or i = 2, j = 1mod3, j ̸= 1, n
6j − 4, i = 1j = 2mod3, j ̸= n or i = 2, j = 0mod3, j ̸= n
6j − 5, i = 1j = 1mod3, j ̸= 1, n or i = 2, j = 2mod3, j ̸= n

f(vi,jv(i+1),j) =

 6j − 3, i = 1, j = 0mod3, j = n or i = 2, j = 1mod3, j = n
6j − 4, i = 1j = 1mod3, j = n or i = 2, j = 2mod3, j = n
6j − 5, i = 1j = 2mod3, j = n or i = 2, j = 0mod3, j − n

f(v1,jv3,j) =

 6j − 3, j = 2mod3, j ̸= n
6j − 4, j = 1mod3, j ̸= 1, n
6j − 5, j = 0mod3, j ̸= n

f(v1,jv3,j) =

 6j − 3, j = 2mod3, j = n
6j − 4, j = 0mod3, j = n
6j − 5, j = 1mod3, j = n
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f(vi,jvi,(j+1)) =



6j, i = 1, j = 0mod3 or i = 2, j = 1mod3,
or i = 3, j = 2mod3

6j − 1, i = 1, j = 1mod3 or i = 2, j = 2mod3
or i = 3, j = 0mod3

6j − 2, i = 1j = 2mod3 or i = 2, j = 0mod3
or i = 3, j = 1mod3

Based on the edge labels above, we identify the vertex weight w(vi,j), 1 ≤ i ≤ 3, 1 ≤ j ≤ m, as follows:
w(vi,1) = 9
w(vi,j) = 24j − 16; 2 ≤ j ≤ m− 1
w(vi,m) = 18m− 5

Next, we analyze the set of different edge weights at each vertex. Based on the vertex weight labels above,
there are three different sets of vertex weights, namely {w(vi,1)}, {w(vi,j)} and {w(vi,m)}. The following is a
description of the different sets of vertex:
|{w(vi,1)}| = 1
|{w(vi,j)}| = |{32, 56, 80, 104, . . . , 24m− 40}| = m− 2
|{w(vi,m)}| = 1

Based on the description of the set of vertex weights, the number of sets of vertex weights is derived as follows:

|W | = |{w(vi,1)}|+ |{w(vi,j)}|+ |{w(vi,m)}| = 1 + (m− 2) + 1 = m

Based on the set of vertex weights, we determine the upper bound rvac(Pr3,m) = m. Based on the lower bound
and upper bound, the value obtained for the Rainbow Vertex Antimagic Connetion Numberon the Prism graph
Pr3,m is m, which can be symbolized by rvac(Pr3,m) = m. The following Table 1 shows the rainbow path from
the Prism graph (Pr3,m).

Table 1. Rainbow Path vertex u− v on the Pr3,m
Case u v Rainbow Vertex Coloring u− v

1 vi,j vi,m vi,j , vi,j+1, vi,j+2, . . . , vi,m
2 vi,j vi+1,m vi,j , vi+1,j , vi+1,j+1, vi+1,j+2 . . . , vi+1,m

3 v1,j v3,m vi,j , v3,j , v3,j+1, v3,j+2 . . . , v3,m

Based on Table 1, each different vertex on the Pr3,m has interior vertex with different colors, also known as
rainbow path, which complies with the definition of Rainbow Vertex Antimagic Coloring. Based on the lower and
upper bound and Table 1, the value for the Rainbow Vertex Antimagic Connetion Number of the Pr3,m is m or can
be denoted as rvac(Pr3,m) = m. The following is an example of Rainbow Vertex Antimagic Coloring of Pr3,5:

Theorem 3.2. Rainbow Vertex Antimagic Connection Number of Pr5,m for m ≥ 3 is rvac(Pr5,m) = m.

Proof. Let Pr5,m is a Prism Graph (Pr5,m) with a vertex set V (Pr5,m) = {vi,j ; 1 ≤ i ≤ 5, 1 ≤ j ≤ m}
and the edge set E(Pr5,m) = {vi,jvi,(j+1); 1 ≤ i ≤ 5, 1 ≤ j ≤ m− 1} ∪ {vi,jv(i+1)j ; 1 ≤ i ≤ 4, 1 ≤ j ≤ m} ∪
{v1,jv(5,j ; 1 ≤ j ≤ m}. First, we will show the the Rainbow Vertex Antimagic Coloring of Pr5,m by determining
the diameter of Prism Graph Pr5,m. The diameter of the Prism Graph Pr5,m is diam(Pr5,m) = m+ 1. Based on
Theorem 1.6, the value of rvc(Pr5,m) ≥ diam(Pr5,m)− 1. The diameter for the value of rvc(Pr5,m) ≥ m has
been obtained.

rvc(Pr5,m) ≥ diam(Pr5,m)− 1 = (m+ 1)− 1 = m

Based on Theorem 1.7, which states that rvac(G) ≥ rvc(G) the value of rvac(Pr5,m) ≥ m is obtained. Based
on this condition, the lower bound of Rainbow Vertex Antimagic Connection Number in Pr5,m for m ≥ 3 is
rvac(Pr5,m) ≥ m. Second, the upper bound of Rainbow Vertex Antimagic Coloring on the Prism Graph Pr5,m is
hereby shown. The bijective function of the edge labels on the Prism graph Pr5,m is as follows:

f(vi,1v(i+1),1) =


1, i = 1
4, i = 2
2, i = 3
5, i = 4
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Figure 1. Rainbow Vertex Antimagic Coloring of Pr3,5

f(v1,jv5,j) = 3, j = 1

f(vi,jv(i+1),j) =



10j − 5, i = 1, j = 3mod5, j ̸= n or i = 2, j = 4mod5, j ̸= n,
or i = 3, j = 0mod5, j ̸= n or i = 4, j = 1mod5, j ̸= 1, n

10j − 6, i = 1j = 4mod5, j ̸= n or i = 2, j = 0mod5, j ̸= n
or i = 3, j = 1mod5, j ̸= 1, n or i = 4, j = 2mod5, j ̸= n

10j − 7, i = 1j = 0mod5, j ̸= n or i = 2, j = 1mod5, j ̸= 1, n
or i = 3, j = 2mod5, j ̸= n or i = 4, j = 3mod5, j ̸= n

10j − 8, i = 1j = 1mod5, j ̸= 1, n or i = 2, j = 2mod5, j ̸= n
or i = 3, j = 3mod5, j ̸= n or i = 4, j = 4mod5, j ̸= n

10j − 9, i = 1j = 2mod5, j ̸= n or i = 2, j = 3mod5, j ̸= n
or i = 3, j = 4mod5, j ̸= n or i = 4, j = 0mod5, j ̸= n

f(vi,jv(i+1),j) =



10j − 5, i = 1, j = 4mod5, j = n or i = 2, j = 0mod5, j = n,
or i = 3, j = 1mod5, j = n or i = 4, j = 2mod5, j = n

10j − 6, i = 1j = 1mod5, j = n or i = 2, j = 2mod5, j = n
or i = 3, j = 3mod5, j = n or i = 4, j = 4mod5, j = n

10j − 7, i = 1j = 3mod5, j = n or i = 2, j = 4mod5, j = 5n
or i = 3, j = 0mod5, j = n or i = 4, j = 1mod5, j = n

10j − 8, i = 1j = 0mod5, j = n or i = 2, j = 1mod5, j = n
or i = 3, j = 2mod5, j = n or i = 4, j = 3mod5, j = n

10j − 9, i = 1j = 2mod5, j = n or i = 2, j = 3mod5, j = n
or i = 3, j = 4mod5, j = n or i = 4, j = 0mod5, j = n

f(v1,jv5,j) =


10j − 5, j = 2mod5, j ̸= n
10j − 6, j = 3mod5, j ̸= n
10j − 7, j = 4mod5, j ̸= n
10j − 8, j = 0mod5, j ̸= n
10j − 9, j = 1mod5, j ̸= 1, n

f(v1,jv5,j) =


10j − 5, j = 3mod5, j = n
10j − 6, j = 0mod5, j = n
10j − 7, j = 2mod5, j = n
10j − 8, j = 4mod5, j = n
10j − 9, j = 1mod5, j = n
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f(vi,jvi,(j+1)) =



10j, i = 1, j = 1mod5 or i = 2, j = 2mod5, or i = 3,
j = 3mod5 or i = 4, j = 4mod5 or i = 5, j = 0mod5

10j − 1, i = 1, j = 0mod5 or i = 2, j = 1mod5, or i = 3,
j = 2mod5 or i = 4, j = 3mod5 or i = 5, j = 4mod5

10j − 2, i = 1, j = 4mod5 or i = 2, j = 0mod5, or i = 3,
j = 1mod5 or i = 4, j = 2mod5 or i = 5, j = 3mod5

10j − 3, i = 1, j = 3mod5 or i = 2, j = 4mod5, or i = 3,
j = 0mod5 or i = 4, j = 1mod5 or i = 5, j = 2mod5

10j − 4, i = 1, j = 2mod5 or i = 2, j = 3mod5, or i = 3,
j = 4mod5 or i = 4, j = 0mod5 or i = 5, j = 1mod5

Based on edge label above,we obtain the vertex weights of the Pr5,m (w(vi,j)), 1 ≤ i ≤ 5, 1 ≤ j ≤ m, as defined
below:
w(vi,1) = 14
w(vi,j) = 40j − 28; 2 ≤ j ≤ m− 1
w(vi,m) = 30m− 26

Next, we analyze the set of different edge weights at each vertex. Based on the vertex weight labels above,
three different sets of vertex weights are identified, namely {w(vi,1)}, {w(vi,j)} and {w(vi,m)}. The following is a
description of the different sets of edge weights in succession:
|{w(vi,1)}| = 1
|{w(vi,j)}| = |{52, 92, 132, 172, . . . , 40m− 68}| = m− 2
|{w(vi,m)}| = 1

As such, based on the description of the set of vertex weights above, we obtain the number of sets of vertex
weights as follows:

|W | = |{w(vi,1)}|+ |{w(vi,j)}|+ |{w(vi,m)}| = 1 + (m− 2) + 1 = m

Based on the set of vertex weights, we determine the upper bound rvac(Pr5,m) = m. Based on the lower bound
and upper bound, the value for the Rainbow Vertex Antimagic Connetion Number on the Prism graph Pr5,m is
m, which can be symbolized as follows rvac(Pr5,m) = m. The (rainbow path) form the Prism Graph Pr5,m is
displayed in Table 2.

Table 2. Rainbow Path Vertex u− v on the Prism Graph Pr5,m
Case u v Rainbow Vertex Coloring u− v

1 vi,j vi,m vi,j , vi,j+1, vi,j+2, . . . , vi,m
2 vi,j vi+1,m vi,j , vi+1,j , vi+1,j+1, vi+1,j+2 . . . , vi+1,m

3 vi,j v5,m vi,j , v5,j , v5,j+1, v5,j+2 . . . , v5,m
4 v1,j v3,m vi,j , vi+1,j , vi+1,j+1, vi+1,j+2 . . . , vi+1,m, vi+2,m

5 v1,j v4,m vi,j , v5,j , v5,j+1, v5,j+2 . . . , v5,m, v4,m

Table 2 demonstrates that each different vertex on the Prism graph Pr5,m has interior vertex with different colors,
known as rainbow path. These vertex comply with the definition of Rainbow Vertex Antimagic Coloring. Based
on lower bound and upper bound and Table 2. the value obtained for the Rainbow Vertex Antimagic Connetion
Number of the Prism graph Pr5,m is m and can be denoted as rvac(Pr5,m) = m.

Hereunder is the example of Rainbow Vertex Antimagic Coloring on Prism Graph Pr5,6 (See Figure 2):

Theorem 3.3. Rainbow Vertex Antimagic Connection Number on Prism Graph Pr6,m for m ≥ 3 is rvac(Pr6,m) =
m+ 2.

Proof. Let Pr6,m is Prism Graph Pr6,m with vertex set V (Pr6,m) = {vi,j ; 1 ≤ i ≤ 6, 1 ≤ j ≤ m} and edge
set E(Pr6,m) = {vi,jvi,(j+1); 1 ≤ i ≤ 6, 1 ≤ j ≤ m− 1} ∪ {vi,jv(i+1)j ; 1 ≤ i ≤ 5, 1 ≤ j ≤ m} ∪ {v1,jv(6,j ; 1 ≤
j ≤ m}. First, we will show the lower bound of the Rainbow Vertex Antimagic Coloring on the Prism Graph
Pr6,m Graph by determining the diameter of the Prism Graph Pr6,m. The diameter of the Prism Graph Pr6,m
is diam(Pr6,m) = m+ 3. Therefore, based on Theorem 1.6, the value of rvc(Pr6,m) ≥ diam(Pr6,m)− 1. As
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Figure 2. Rainbow Vertex Antimagic Coloring on Prism Graph Pr5,6

such, from the obtained diameter, we determine the value of rvc(Pr6,m) ≥ m+ 2. Following Theorem 1.7. which
states that rvac(G) ≥ rvc(G) we affirm the value of rvac(Pr6,m) ≥ m+ 2. Under this condition, the value of
rvac(Pr6,m) ≥ m+ 2 is as follows.

rvc(Pr6,m) ≥ diam(Pr6,m)− 1 = (m+ 3)− 1 = m+ 2

Second, we show the upper bound of Rainbow Vertex Antimagic Coloring of Prism Graph
rvac(Pr6,m) ≤ m+ 2. The bijective function of the edge labels on the Prism Graph Pr6,m is as follows:

f(vi,1v(i+1),1) =


4, i = 1
1, i = 2
5, i = 3
2, i = 4
6, i = 5

f(v1,jv(6,j) = 3, j = 1

f(vi,jv(i+1),j) =



12j − 6, i = 1, j = 2mod6, j ̸= n or i = 2, j = 3mod6, j ̸= n,
or i = 3, j = 4mod6, j ̸= n or i = 4, j = 5mod6, j ̸= n
or i = 5, j = 0mod6, j ̸= n

12j − 7, i = 1j = 3mod6, j ̸= n or i = 2, j = 4mod6, j ̸= n
or i = 3, j = 5mod6, j ̸= n or i = 4, j = 0mod6, j ̸= n
or i = 5, j = 1mod6, j ̸= 1, n

12j − 8, i = 1j = 4mod6, j ̸= n or i = 2, j = 5mod6, j ̸= n
or i = 3, j = 0mod6, j ̸= n or i = 4, j = 1mod6, j ̸= 1, n
or i = 5, j = 2mod6, j ̸= n

12j − 9, i = 1j = 5mod6, j ̸= n or i = 2, j = 0mod6, j ̸= n
or i = 3, j = 1mod6, j ̸= 1, n or i = 4, j = 2mod6, j ̸= n
or i = 5, j = 3mod6, j ̸= n
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f(vi,jv(i+1),j) =



12j − 10, i = 1j = 0mod6, j ̸= n or i = 2, j = 1mod6, j ̸= 1, n
or i = 3, j = 2mod6, j ̸= n or i = 4, j = 3mod6, j ̸= n
or i = 5, j = 4mod6, j ̸= n

12j − 11, i = 1j = 1mod6, j ̸= 1, n or i = 2, j = 2mod6, j ̸= n
or i = 3, j = 3mod6, j ̸= n or i = 4, j = 4mod6, j ̸= n
or i = 5, j = 5mod6, j ̸= n

f(vi,jv(i+1),j) =



12j − 6, i = 1, j = 0mod6, j = n or i = 2, j = 1mod6, j = n,
or i = 3, j = 2mod6, j = n or i = 4, j = 3mod6, j = n
or i = 5, j = 4mod6, j = n

12j − 7, i = 1j = 2mod6, j = n or i = 2, j = 3mod6, j = n
or i = 3, j = 4mod6, j = n or i = 4, j = 5mod6, j = n
or i = 5, j = 0mod6, j = n

12j − 8, i = 1j = 4mod6, j = n or i = 2, j = 5mod6, j = n
or i = 3, j = 0mod6, j = n or i = 4, j = 1mod6, j = n
or i = 5, j = 2mod6, j = n

12j − 9, i = 1j = 5mod6, j = n or i = 2, j = 0mod6, j = n
or i = 3, j = 1mod6, j = n or i = 4, j = 2mod6, j = n
or i = 5, j = 3mod6, j = n

12j − 10, i = 1j = 1mod0, j = n or i = 2, j = 2mod6, j = n
or i = 3, j = 3mod6, j = n or i = 4, j = 4mod6, j = n
or i = 5, j = 5mod6, j = n

12j − 11, i = 1j = 3mod6, j = n or i = 2, j = 4mod6, j = n
or i = 3, j = 5mod6, j = n or i = 4, j = 0mod6, j = n
or i = 5, j = 1mod6, j = n

f(v1,jv6,j) =



12j − 6, j = 1mod6, j ̸= 1, n
12j − 7, j = 2mod6, j ̸= n
12j − 8, j = 3mod6, j ̸= n
12j − 9, j = 4mod6, j ̸= n
12j − 10, j = 5mod6, j ̸= n
12j − 11, j = 0mod6, j ̸= n

f(v1,jv6,j) =



12j − 6, j = 5mod6, j = n
12j − 7, j = 1mod6, j = n
12j − 8, j = 3mod6, j = n
12j − 9, j = 4mod6, j = n
12j − 10, j = 0mod6, j = n
12j − 11, j = 2mod6, j = n
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f(vi,jvi,(j+1)) =



12j, i = 1, j = 0mod6 or i = 2, j = 1mod6, or i = 3,
j = 2mod6 or i = 4, j = 3mod6 or i = 5, j = 4mod6
or i = 6, j = 5mod6

12j − 1, i = 1, j = 5mod6 or i = 2, j = 0mod6, or i = 3,
j = 1mod6 or i = 4, j = 2mod6 or i = 5, j = 3mod6
or i = 6, j = 4mod6

12j − 2, i = 1, j = 4mod6 or i = 2, j = 5mod6, or i = 3,
j = 0mod6 or i = 4, j = 1mod6 or i = 5, j = 2mod6
or i = 6, j = 3mod6

12j − 3, i = 1, j = 3mod6 or i = 2, j = 4mod6, or i = 3,
j = 5mod6 or i = 4, j = 0mod6 or i = 5, j = 1mod6
or i = 6, j = 2mod6

12j − 4, i = 1, j = 2mod6 or i = 2, j = 3mod6, or i = 3,
j = 4mod6 or i = 4, j = 5mod6 or i = 5, j = 0mod6
or i = 6, j = 1mod6

f(vi,jvi,(j+1)) =

 12j − 5, i = 1, j = 1mod6 or i = 2, j = 2mod6, or i = 3,
j = 3mod6 or i = 4, j = 4mod6 or i = 5, j = 5mod6
or i = 6, j = 0mod6

Based on the edge label above, we derive the vertex weights of the Prism Graph (w(vi,j)), 1 ≤ i ≤ 6, 1 ≤
j ≤ m, as follows:
w(v1,1) = 14
w(vi,1) = 17; 2 ≤ i ≤ 6
w(vi,j) = 48j − 34; 2 ≤ j ≤ m− 1

w(vi,m) = 36m− 35



1 ≤ i ≤ 2, j = 3mod6
2 ≤ i ≤ 3, j = 4mod6
3 ≤ i ≤ 4, j = 5mod6
4 ≤ i ≤ 5, j = 0mod6
5 ≤ i ≤ 6, j = 1mod6
i = 6, 1, j = 2mod6

w(vi,m) = 36m− 32;



i = 1, j = 4mod6
i = 2, j = 5mod6
i = 3, j = 0mod6
i = 4, j = 1mod6
i = 5, j = 2mod6
i = 6, j = 3mod6

w(vi,m) = 36m− 29;



3 ≤ i ≤ 5, j = 3mod6
4 ≤ i ≤ 6, j = 4mod6
i = 1, 5, 6, j = 5mod6
i = 1, 2, 6, j = 0mod6
1 ≤ 3 ≤ 6, j = 1mod6
2 ≤ i ≤ 4, j = 2mod6

Next, we analyze the set of different edge weights at each vertex. The following is a description of the
different sets of vertex weights in succession:
|{w(v1,1)}| = 1
|{w(vi,1}) = 1
|{w(vi,j)}| = {62, 110, 158, 206, . . . , 48m− 82} = m− 2
|{w(vi,m)}| = 1
|{w(vi,m)}| = 1
Based on the description of the set of vertex weights above, the number of vertex weight sets is determined as
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follows:
|W | = |{w(v1,1)}|+ |{w(vi,1)}|+ |{w(vi,j)}|+ |{w(vi,m)}|+ |{w(vi,m)}| = 1 + 1 + (m− 2) + 1 + 1 = m+ 2

Based on the set of vertex weights, the upper bound rvac(Pr6,m) = m+ 2 is obtained. Based on lower
bound and upper bound, the value for the Rainbow Vertex Antimagic Connetion Number on the Prism Graph
Pr6,m is m+ 2, which can be symbolized as follows rvac(Pr6,m) = m+ 2. The (rainbow path) of the Prism
Graph Pr6,m which can be seen in Table 3 and Table 4.

Table 3. Rainbow Trajectory vertex u− v on the Prism GraphPr6,m
Case u v Rainbow Vertex Coloring u− v

1 vi,j vi,m vi,j , vi,j+1, vi,j+2, . . . , vi,m
2 vi,j vi+1,m vi,j , vi+1,j , vi+1,j+1, vi+1,j+2 . . . , vi+1,m

3 vi,j v6,m vi,j , v6,j , v6,j+1, v6,j+2 . . . , v6,m
4 vi,j vi+2,m vi,j , vi+1,j , vi+1,j+1, vi+1,j+2 . . . , vi+1,m, vi+2,m

5 v1,j v5,m v1,j , v6,j , v6,j+1, v6,j+2 . . . , v6,m, v5,m
6 v2,j v6,m v2,j , v1,j , v1,j+1, v1,j+2 . . . , v1,m, v6,m

Table 4. Rainbow Trajectory u− v on The Prism Graph Pr6,m
Case u v Condition Rainbow Vertex Coloring u− v

1 vi,j vi+3,j i = 1; 3mod6 vi,j , vi+1,j , vi+1,j+1, . . . , vi+2,m, vi+3,m

vi,j vi+3,j i = 2; 3mod6 vi,j , vi−1,j , v5,j+1, v5,j+2, . . . , v5,m, vi+3,m

vi,j vi+3,j i = 3; 3mod6 vi,j , vi−1,j , vi−2,j+1, vi−2,j+2, . . . , vi−2,m, vi+3,m

2 vi,j vi+3,j i = 1; 4mod6; 5mod6 vi,j , vi+1,j , vi+1,j+1, . . . , vi+2,m, vi+3,m

vi,j vi+3,j i = 2; 4mod6; 5mod6 vi,j , vi+1,j+1, vi+1,j+2, . . . , vi+2,m, vi+3,m

vi,j vi+3,j i = 3; 4mod6; 5mod6 vi,j , vi+1,j+1, vi+1,j+2, . . . , vi+2,m, vi+3,m

3 vi,j vi+3,j i = 1; 0mod6; 1mod6 vi,j , vi+5,j+1, vi+5,j+2, . . . , vi+4,m, vi+3,m

vi,j vi+3,j i = 2; 0mod6; 1mod6 vi,j , vi−1,j , vi+4,j+2, . . . , vi+4,m, vi+3,m

vi,j vi+3,j i = 3; 0mod6; 1mod6 vi,j , vi−1,j , vi−2,j+2, . . . , vi−2,m, vi+3,m

vi,j vi+3,j i = 1; 2mod6 vi,j , vi+5,j+1, vi+5,j+2, . . . , vi+4,m, vi+3,m

vi,j vi+3,j i = 2; 2mod6 vi,j , vi−1,j , vi+4,j+2, . . . , vi+4,m, vi+3,m

vi,j vi+3,j i = 3; 2mod6 vi,j , vi−1,j , vi−2,j+2, . . . , vi−2,m, vi+3,m

Based on Table 3 and Table 4 each different vertex on the Prism graph Pr6,m has interior vertex with different
colors, which satisfies the definition Rainbow Vertex Antimagic Coloring. As a corollary, the value obtained
for the Rainbow Vertex Antimagic Connetion Number of the Prism Graph Pr6,m is m+ 2 or denoted as
rvac(Pr(6,m) = m+ 2.
The following is an example of Rainbow Vertex Antimagic Coloring on the Prism Graph Pr6,6:

Theorem 3.4. Rainbow Vertex Antimagic Connection Number in the Shackle of Prism Graph, Shackle
(Pr5,2, v

k
2,2, t), for t ≥ 3 and 1 ≤ k ≤ t− 1 is rvac(Shackle(Pr5,2, v

k
2,2, t)) = 3t− 1.

Proof. Let Shackle (Pr5,2, v
k
2,2, t) is Shackle of Prism Graph with the vertex set V (Shackle(Pr5,2, v

k
2,2, t)) =

{vki,j ; 1 ≤ i ≤ 5, j = 1, 1 ≤ k ≤ t} ∪ {vki,(j+1); 1 ≤ i ≤ 4, 1 ≤ j ≤ 2, 1 ≤ k ≤ t} ∪ {vk5,(j+1); j = 1, k = 1} and
edge set E(Shackle(Pr5,2, v

k
2,2, k)) = {vki,jvi,(j+1)k ; 1 ≤ i ≤ 5, j = 1, 1 ≤ k ≤ t} ∪ {vki,jvk(i+1),j ; 1 ≤ i ≤ 4, 1 ≤

j ≤ 2, 1 ≤ k ≤ t} ∪ {vk1,jvk5,j ; 1 ≤ j ≤ 2, 1 ≤ k ≤ t}. First, we will show the lower bound of the Rainbow Vertex
Antimagic Coloring on the Shackle (Pr5,2, v

k
2,2, t) by finding the diameter of the Shackle Prism Graph . The

diameter of Shackle Prism Graph, Shackle (Pr5,2, v
k
2,2, t), is diam(Shackle(Pr5,2, v

k
2,2, t)) = 2t+ 1. So Based on

Theorem 1.6., value of rvc(Shackle(Pr5,2, v
k
2,2, t) ≥ diam(Shackle(Pr5,2, v

k
2,2, t)− 1. So from the diameter that

has been obtained the value rvc(Shackle(Pr5,2, v
k
2,2, t) ≥ 2t.

rvc(Shackle(Pr5,2, v
k
2,2, t) ≥ diam(Shackle(Pr5,2, v

k
2,2, t)− 1 = (2t+ 1)− 1 = 2t

Stat., Optim. Inf. Comput. Vol. 13, February 2025



838 ON RAINBOW VERTEX ANTIMAGIC COLORING OF RELATED PRISM GRAPHS

Figure 3. Rainbow Vertex Antimagic Coloring on the Prism Graph Pr6,4

Based on this condition, we identify the value of rvc(Shackle(Pr5,2, v
k
2,2, t) ≥ 2t. Because the shackle operation

connection vertex between the prism graphs t and t+ 1 is connected by a vertex, it must have a different color.
Based on this condition, we obtain rvc(Shackle(Pr5,2, v

k
2,2, t) ≥ 3t. Each path from v1i,1 − vki,1 does not pass

through the inner prism graph, so based on this condition we obtain rvc(Shackle(Pr5,2, v
k
2,2, t) ≥ 3t− 1. Based

on Theorem 1.7 which states that rvac(G) ≥ rvc(G) then The value obtained is rvac(Shackle(Pr5,2, v
k
2,2, t) ≥

3t− 1.Based on this condition, we determine the value rvac(Shackle(Pr5,2, v
k
2,2, t) ≥ 3t− 1.

Second, the upper bound of the Rainbow Vertex Antimagic Coloring on the Shackle of Prism Graph. The
bijective function of the edge labels in the Shackle of Prism Graph, Shackle (Pr5,2, v

k
2,2, t), is presented below:

f(vki,1v
k
(i+1),1) =


15k − 14, i = 1; 1 ≤ k ≤ t
15k − 11, i = 2; 1 ≤ k ≤ t
15k − 13, i = 3; 1 ≤ k ≤ t
15k − 10, i = 4; 1 ≤ k ≤ t

f(vki,2v
k
(i+1),2) =


15k − 4, i = 1; 1 ≤ k ≤ t
15k − 1, i = 2; 1 ≤ k ≤ t
15k − 3, i = 3; 1 ≤ k ≤ t
15k, i = 4; 1 ≤ k ≤ t

f(vk1,jv
k
5,j) = 15k − 12, j = 1; 1 ≤ k ≤ t

f(vk1,jv
k
5,j) = 15k − 2, j = 2; 1 ≤ k ≤ t

f(vki,1v
k
i,2) =


15k − 5, i = 1, 1 ≤ k ≤ t,
15k − 6, i = 2, 1 ≤ k ≤ t,
15k − 7, i = 3, 1 ≤ k ≤ t,
15k − 8, i = 4, 1 ≤ k ≤ t,
15k − 9, i = 5, 1 ≤ k ≤ t

Based on the edge label above, the vertex weight of Shackle (Pr5,2, v
k
2,2, t) is (w(vki,j)), 1 ≤ i ≤ 5, 1 ≤ j ≤

2; 1 ≤ k ≤ t, as follows:
w(vki,j) = 45k − 31

w(vki,(j+1)) =

{
45k − 11, i = 1, 3, 4, t; 1 ≤ k ≤ t
90k + 23, i = 2; 1 ≤ k ≤ t− 1

Next, we analyze the set of different edge weights at each vertex. What follows is the description of the different
sets of vertex weights in succession:
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|{w(vki,j)}| = |{14, 59, 104, 149, . . . , 45k − 31}| = t

|{w(vki,(j+1))}| = |{34, 79, 124, 169, . . . , 45k − 11}| = t for i = 1, 3, 4, t; 1 ≤ k ≤ t

|{w(vki,(j+1))}| = |{113, 203, 239, . . . , 90k − 67}| = t− 1 for i = 2; 1 ≤ k ≤ t− 1

So, based on the description of the set of vertex weights above, we obtain the number of sets of vertex weights
as follows:

|W | = |{w(vki,j)}|+ |{w(vki,(j+1))}|+ |{w(vki,(j+1))}| = t+ t+ (t− 1) = 3t− 1

Based on the set of vertex weights, we determine the upper bound of rvac(Shackle(Pr5,2, v
k
2,2, t))= 3t− 1.

Based on lower bound and upper bound, the value of the Rainbow Vertex Antimagic Connetion Number on the
Prism Graph Shackle (Pr5,2, v

k
2,2, t) is 3t− 1, can be symbolized as rvac(Prk5,2) = 3t− 1. The following rainbow

path of the of the Shackle (Pr5,2, v
k
2,2, t) is shown in Table 5.

Table 5. Rainbow Path vertex u− v on the Prism Graph Shackle (Pr5,2, v
k
2,2, t)

Case u v Rainbow Vertex Coloring u− v

1 vki,1 vki+2,1 vki,1, v
k
i+1,1, v

k
i+2,1

2 vk1,1 vk4,1 vk1,1, v
k
5,1, v

k
4,1

3 vki,1 vti,2 vki,1, v
k
i,2, v

k
2,2, v

k+1
1,2 , vk+2

1,2 , . . . , vti,2
4 vki,1 vti,1 vki,1, v

k
i,2, v

k
2,2, v

k+1
1,2 , vk+2

1,2 , . . . , vt1,2, v
t
i,1

5 vki,2 vti,2 vki,2, v
k
2,2, v

k+1
1,2 , vk+1

2,2 , vk+2
1,2 , . . . , vti,2

6 vki,2 vti,1 vki,2, v
k
2,2, v

k+1
1,2 , vk+1

2,2 , vk+2
1,2 , . . . , vt1,2, v

t
i,1

Based on Table 5, we define that each different vertex on the Shackle (Pr5,2, v
k
2,2, t) has interior vertex with different

colors, which satisfies the definition Rainbow Vertex Antimagic Coloring. Based on the lower and upper bound as
well as Table 5, the Rainbow Vertex Antimagic Connetion Number value from the Shackle (Pr5,2, v

k
2,2, t) is 3t− 1,

which can be denoted as rvac(Shackle(Pr5,2, v
k
2,2, t)) = 3t− 1.

Hereunder is an example of Rainbow Vertex Antimagic Coloring on the Shackle (Pr5,2, v
k
2,2, t):

Figure 4. Rainbow Vertex Antimagic Coloring on the Shackle (Pr5,2, v
k
2,2, t)

Theorem 3.5. Rainbow Vertex Antimagic Connection Number on Amal(Pr5,3, x1, k) for k ≥ 2 is
rvac(Amal(Pr5,3, x1, k)) = 3k + 1.

Proof. Let Amalgamation (Pr5,3, x1, k) is Amalgamation of Prism Graph with the vertex set
V (Amal(Pr5,3, x1, k)) = {vki,j ; 1 ≤ i ≤ 5, 1 ≤ j ≤ 2, 1 ≤ k ≤ t} ∪ {vki,3; 2 ≤ i ≤ 5, j = 1, 1 ≤ k ≤ t} ∪ {x1}
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and edge set E(Amal(Pr5,3, x1, k)) = {vki,jvi,(j+1)k ; 1 ≤ i ≤ 5, 1 ≤ j ≤ 2, 1 ≤ k ≤ t} ∪ {vki,jvk(i+1)j ; 1 ≤ i ≤
4, 1 ≤ j ≤ 3, 1 ≤ k ≤ t} ∪ {vk1,jvk(5,j ; 1 ≤ j ≤ 3, 1 ≤ t ≤ k}. First, we will show the lower bound of the Rainbow
Vertex Antimagic Coloring on the Amal(Pr5,3, x1, k) by finding the diameter of the Amal(Pr5,3, x1, k) . The
diameter of Amal(Pr5,3, x1, k) is diam(Amal(Pr5,3, x1, k)) = 3k + 2. So Based on Theorem 1.6., value of
rvc(Amal(Pr5,3, x1, k))) ≥ diam(Amal(Pr5,3, x1, k))− 1. So from the diameter that has been obtained the
value rvc(Amal(Pr5,3, x1, k)) ≥ 3k + 1. is thus formulated as follow:

rvc(Amal(Pr5,3, x1, k)) ≥ diam(Prk5,3)− 1 = (3k + 2)− 1 = 3k + 1

Second, we show the upper bound of Rainbow Vertex Antimagic Coloring on the Amal(Pr5,3, x1, k) ≤
3k + 1. The bijective function of the edge labels in the Amal(Pr5,3, x1, k) is defined as follows:

f(vki,jv
k
i,(j+1)) =


25k − 15, i = 1; j = 1; 1 ≤ k ≤ t
25k − 16, i = 2; j = 1; 1 ≤ k ≤ t
25k − 17, i = 3; j = 1; 1 ≤ k ≤ t
25k − 18, i = 4; j = 1; 1 ≤ k ≤ t
25k − 19, i = 5; j = 1; 1 ≤ k ≤ t

f(vki,jv
k
i,(j+1)) =


25k − 5, i = 2; j = 2; 1 ≤ k ≤ t
25k − 6, i = 3; j = 2; 1 ≤ k ≤ t
25k − 7, i = 4; j = 2; 1 ≤ k ≤ t
25k − 8, i = 5; j = 2; 1 ≤ k ≤ t
25k − 9, i = 1; j = 2; 1 ≤ k ≤ t

f(vki,jv
k
(i+1),j) =


25k − 20, i = 4; j = 1; 1 ≤ k ≤ t
25k − 21, i = 2; j = 1; 1 ≤ k ≤ t
25k − 23, i = 3; j = 1; 1 ≤ k ≤ t
25k − 24, i = 1; j = 1; 1 ≤ k ≤ t

f(vki,jv
k
(i+1),j) =


25k − 11, i = 4; j = 2; 1 ≤ k ≤ t
25k − 12, i = 3; j = 2; 1 ≤ k ≤ t
25k − 13, i = 2; j = 2; 1 ≤ k ≤ t
25k − 14, i = 1; j = 2; 1 ≤ k ≤ t

f(vki,jv
k
(i+1),j) =


25k − 1, i = 3; j = 3; 1 ≤ k ≤ t
25k − 2, i = 1; j = 3; 1 ≤ k ≤ t
25k − 3, i = 4; j = 3; 1 ≤ k ≤ t
25k − 4, i = 2; j = 3; 1 ≤ k ≤ t

f(vk1,jv
k
5,j) =

 25k − 22, j = 1; 1 ≤ k ≤ t
25k − 10, j = 2; 1 ≤ k ≤ t
25k, j = 3; 1 ≤ k ≤ t

Based on the edge label above, the vertex weight of Amal(Pr5,3, x1, k) is {w(vki,j), 1 ≤ i ≤ 5, 1 ≤ j ≤
2; 1 ≤ k ≤ t}, {w(vki,3), 2 ≤ i ≤ 5, j = 1; 1 ≤ k ≤ t}, and {w(x1)} as follows:

w(vki,j) =

{
75k − 61, 1 ≤ i ≤ 5; j = 1; 1 ≤ k ≤ t
100k − 48, 1 ≤ i ≤ 5; j = 2; 1 ≤ k ≤ t

w(vki,3) = 75n− 11, 2 ≤ i ≤ 5; 1 ≤ k ≤ t

w(x1) =
1
2 (75n

2 + 53n)
Next, we analyze the set of different edge weights at each vertex. Based on the vertex weight labels above,

we identify nine different sets of vertex weights, namely {w(vki,j)}, {w(vki,3)}, and {w(x1)} Next, we analyze the
set of different edge weights at each vertex. Based on the vertex weight labels above, we identify nine different sets
of vertex weights, namely
|{w(vki,j)}| = {14, 89, 164, 239, . . . , 75k − 61} = k

|{w(vki,(j+1))}| = {52, 152, 252, 352, . . . , 100k − 48} = k
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|{w(vki,3)}| = {64, 139, 214, 289, . . . , 75k − 11} = k

|{w(x1)}| = {64, 203, 417, 706 . . . , 1
2 (75n

2 + 53n)} = 1
Based on the description of the set of vertex weights above, the number of sets of vertex weights is formulated

as follows:

|W | = |{w(vki,j)}|+ |{w(vki,(j+1))}|+ |{w(vki,3)}|+ |{w(x1)}| = k + k + k + 1 = 3k + 1

Based on the set of vertex weights, we determine the upper bound rvac(Amal(Pr5,3, x1, k)) = 3k + 1.
Based on lower bound and upper bound, the value of Rainbow Vertex Antimagic Connetion Number on the
Amal(Pr5,3, x1, k) is 3k + 1, can be symbolized as rvac(Amal(Pr5,3, x1, k)) = 3k + 1. The rainbow path of the
Amal(Pr5,3, x1, k) is presented in Table 6.

Table 6. Rainbow Trajectory vertex u− v on the Amal(Pr5,3, x1, k)

Case u v Rainbow Vertex Coloring u− v

1 vki,1 vki+2,1 vki,1, v
k
i+1,1, v

k
i+2,1

2 vk1,1 vk4,1 vk1,1, v
k
5,1, v

k
4,1

3 vki,1 vti,2 vki,1, v
k
i,2, v

k
2,2, v

k+1
1,2 , vk+2

1,2 , . . . , vti,2
4 vki,1 vti,1 vki,1, v

k
i,2, v

k
2,2, v

k+1
1,2 , vk+2

1,2 , . . . , vt1,2, v
t
i,1

5 vki,2 vti,2 vki,2, v
k
2,2, v

k+1
1,2 , vk+1

2,2 , vk+2
1,2 , . . . , vti,2

6 vki,2 vti,1 vki,2, v
k
2,2, v

k+1
1,2 , vk+1

2,2 , vk+2
1,2 , . . . , vt1,2, v

t
i,1

Table 6 shows that each different vertex on the Amal(Pr5,3, x1, k) has interior vertex with different colors, which
also complies with the definition Rainbow Vertex Antimagic Coloring. Based on the lower and upper bound and
the details in Table 6, the value for the Rainbow Vertex Antimagic Connetion Number of the Amal(Pr5,3, x1, k) is
3k + 1 which can be denoted as rvac(Amal(Pr5,3, x1, k)) = 3k + 1.
Hereunder is an example of Rainbow Vertex Antimagic Coloring on the Amal(Pr5,3, x1, k):

Figure 5. Rainbow Vertex Antimagic Coloring on the Amal(Pr5,3, x1, 3)

4. Conclusion

In this research, we have examined the accurate value of rainbow vertex antimagic connection number on a
prism graph and its operations, namely Pr3,m, Pr5,m, Pr6,m, Shackle (Pr5,2, v

k
2,2, t), and Amal(Pr5,3, x1, k).

The research results have concluded four theorems regarding the rainbow vertex antimagic connection number in
prism graphs and their operations.

Stat., Optim. Inf. Comput. Vol. 13, February 2025



842 ON RAINBOW VERTEX ANTIMAGIC COLORING OF RELATED PRISM GRAPHS

Acknowledgement

The authors express their gratitude for the support from University of Jember 2024.

REFERENCES

1. Arumugam S., Premalatha K., Ba ca M. dan Semani cova-Fenov c a A. 2017. Pewarnaan antimagic vertex lokal dari Graphs Combin.
33: 275-285. preprint.

2. Balakrishnan, R dan K. Ranganathan. 2012. A Textbook of Graph Theory Second Edition . New York: Springer Science+Business
Media.

3. Bondy, J. A dan U. S. R. Murty. 1976. Graph Theory with Applications. United States of America: Elsevier Science Publishing Co.,
Inc.

4. Chartrand, G., G. L. Johns., K. A. Mckeon., and P. Zhang. 2008. Rainbow connection in graphs. Math. Bohemica. 133:85-98.
5. Dafik, Ika H. Agustin, A. Fajariyanto., R. Alfarisi. 2016. On The Rainbow coloring for some graph operations. AIP Conference

Proceedings, 1707: 1-7.
6. Fitriani, D dan A. N. M. Salman. 2016. Rainbow Connection Number of Amalgamation of Some Graphs. AKCE International Journal

of Graphs and Combinatorics. 13(1): 90-99.
7. Gross, Jonathan L., Jay Yellen. 2006. Graph Theory and Its Applications Second Edition. Boca Raton: Chapman and Hall/CRC.
8. Goddard, W., S. M. Hedetniemi., S.T. Hedetniemi., J. M. Harris dan D. F. Rall. 2008. Braodcast Chromatic Numbers of Graphs. Ars

Combinatoria. 86:1-21.
9. Hasan, M. A., Wulandari, R. Y., and Salman, A. N. M. (2022, February). Rainbow Connection Number of Shackle Graphs. In

International Conference on Mathematics, Geometry, Statistics, and Computation (IC-MaGeStiC 2021) (pp. 58-64). Atlantis Press.
10. H. S. Budi, Dafik, I. M. Agustin, A I Kristiana. 2016. On Rainbow Antimagic Coloring of Graph. ICOPAMBS Conference Series,

11: 1-7
11. Agustin, I. H., Kurniawati, E. Y., and Nisviasari, R. (2022). The rainbow vertex antimagic coloring of tree graphs. In Journal of

Physics: Conference Series (Vol. 2157, No. 1, p. 012019). IOP Publishing.
12. Iswadi, H., Baskoro, E. T., Salman, A. N. M., and Simanjuntak, R. (2010). The resolving graph of amalgamation of cycles. Utilitas

Mathematica, 83, 121-132.
13. Kanna, M. R. R., R. P. Kumar., and R. Jagadeesh. 2016. Computation of Topological Indices of Dutch Windmill Graph. Journal of

Discrete Mathematics. 6:74-81.
14. Krivelevich, M. and R. Yuster. 2009. The Rainbow Connection of Graph is (at most) Reciprocal to Its Minimum Degree. IWOCA.

5874:432-437.
15. Li, X. and S. Liu. 2011. Rainbow vertex-connection number of 2-connected graphs. arXiv:1110.5770v1 [math.CO].
16. Marsidi., I. H. Agustin., Dafik., and E. Y. Kurniawati. 2021. On Rainbow Vertex Antimagic Coloring of Graphs : A New Notion.

CAUCHY. 7(1):64-72.
17. Slamin. 2001. Diregularity of Digrophs Close to Moore Bound, Ph. C. Stud. Thesis. The University of Newcastle. Australia.
18. Sulistiyono B., Slamin, Dafik, Agustin I. H., Alvarisi R.. 2019. On Rainbow Antimagic Coloring Of Some Graphs.

Stat., Optim. Inf. Comput. Vol. 13, February 2025


	1 Introduction
	2 Methodology
	3 Results and Discussion
	4 Conclusion

