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Abstract Data clustering is an essential technique for organizing unsupervised data, extracting subjects automatically,
and swiftly retrieving or filtering information. In this study, we approach the task of clustering multivariate angular
distributions using nonparametric Bayesian mixture models featuring von Mises distributions. Our approach operates within
a nonparametric Bayesian framework, specifically leveraging the Dirichlet process. Unlike finite mixture models, our
approach assumes an infinite number of clusters initially, inferring the optimal number automatically from the data. Morever,
our paper introduces a unified approach, leveraging Ward’s algorithm, Dirichlet process, and von Mises Mixture distributions
(DPM-MvM), to effectively capture both the structure and variability inherent in the data. We’ve developed a variational
inference algorithm for DPM-MvM enabling automatic determination of the number of clusters. Our experimental results
showcase the efficiency and accuracy of our method for analyzing multivariate angular data with state of the art approaches.
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1. Introduction

The Bayesian methodology has gained considerable traction in recent years due to its widespread application in
finite mixture models, which are utilized across various fields [1, 2]. These mixture models have proven invaluable
in a plethora of tasks including image organization, color segmentation, restoration, texture processing, anomaly
detection, sentiment analysis, and recommendation systems [3, 4, 5, 6]. Probabilistic methods play a crucial role in
deciphering the underlying patterns within such data [7], with the Bayesian approach being particularly noteworthy
for its ability to estimate model uncertainty, encompassing both model fit uncertainty and parameter estimation
uncertainty [8]. By merging the Bayesian approach with finite mixture models, potent probabilistic modeling tools
are forged for both univariate and multivariate data [9], which have found widespread application in modeling
diverse practical scenarios where data stems from multiple mixed populations.
Despite the extensive theoretical exploration of the Dirichlet distribution, its practical applications, especially in
parameter estimation, have received limited attention [10]. Current studies tend to focus on individual distributions
or are restricted to the two-parameter Beta distribution, possibly due to the distribution’s unfamiliarity among
many researchers [11]. Thus, this study presents an algorithm aimed at estimating the parameters of a Dirichlet
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mixture, with the goal of bridging the gap between theoretical underpinnings and practical implementation [12].
The proposed algorithm integrates a penalty term into the objective function to ascertain the optimal number of
components necessary for accurate data modeling.
In this investigation, we center our attention on the Dirichlet distribution as a superior option for data modeling [13].
Serving as the multivariate extension of the Beta distribution, the Dirichlet distribution offers exceptional flexibility
and ease of use [14]. Notably, it permits multiple symmetric and asymmetric modes, thereby accommodating data
exhibiting right, left, or symmetric skewness. Furthermore, to capture the underlying structure and variability in
multivariate angular data, we employ Mixture von Mises distributions. Estimating a hierarchical von Mises model
without specifying the number of clusters poses a challenge [15, 16, 17]. To tackle this, we employ an exploratory
approach utilizing Ward’s algorithm to group observations into homogeneous clusters based on similarities.
Subsequently, upon obtaining the clusters, we utilize the Dirichlet process to estimate cluster proportions [18]. A
Mixture von Mises distributions Model is then employed to estimate cluster means and dispersions. This approach
offers flexibility, robustness, and computational feasibility in capturing the complex structure and variability of the
data.
The subsequent sections of this paper are organized as follows: Section 2 delves into the Dirichlet distribution,
while Section 3 presents the Dirichlet Process Mixture by von Mises Mixture Distributions Method. Section 4 is
dedicated to describing the estimation algorithm for fitting the model, and Section 5 presents and discusses the
experimental results. Finally, conclusions are drawn in Section 6.

2. The Dirichlet distribution

Let ∆n denote the (n− 1)- dimensional probability simplex, representing the set of vectors in Rn with non-
negative components that sum up to one

∆n = {q = (q1, . . . , qn) ∈ Rn,

n∑
i=1

qi = 1, qi, i = 1, . . . , n} (1)

The family of Dirichlet distributions constitutes a collection of probability distributions on parametrized by n
positive scalars x1, ..., xn > 0 (see Figure 1), which encompass the following probability density function with
respect to the Lebesgue measure [19, 20]. The probability density of the Dirichlet distribution of order k ≥ 2 and
parameter α is expressed as follows

P (y | α) = 1

β(α)

d∏
j=1

y
αj−1
j ,

(
α =

∏d
j=1 Γ(αj)

Γ(1Tα)

)
, 1T y = 1, y > 0 (2)

P (y;α) =
Γ(α0)∏k
i Γ(αi)

k∏
i

yαi−1 (3)

Where α > 0 and the normalization factor β(α) corresponds to the beta function, formulated as a function of
the gamma function. When setting θ = α, the parameters of the exponential family are delineated as follows:
T (y) = log y , b(θ) = β(θ), h(y, θ) = 1∏d

j=1 yj
, a(Φ) = 1 . For the sake of enhanced generality and to underscore

the specific properties of this distribution required for our findings, we will proceed by considering a broader
Dirichlet mixture in the subsequent analysis. We will only impose the essential assumptions on this mixture to
facilitate our study.

3. Dirichlet Process Mixture by von Mises Mixture Distributions (DPM-MvM)

The Dirichlet Process Mixture (DPM) is a non-parametric extension of mixture models where the number of
mixture components is not predetermined but rather inferred from the data [21, 22]. The performance of the model
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Figure 1. Visualization of a 3D Dirichlet Distribution: Mapping Dimensions onto Axes and Contours Depicting Density at
(x, y, 1-x-y).

is influenced by the choice of parameters for the Dirichlet Process. The parameter α is a vector that controls the
concentration of clusters [23]. In other words, it governs the model’s propensity to form either a large number of
small clusters or a small number of large clusters. A higher value of α promotes the creation of more clusters by
increasing the probability of introducing new clusters. Conversely, a lower value of α encourages the concentration
of data into fewer clusters. To determine the optimal α, we employed an empirical approach based on cross-
validation by testing various α values. This approach involves partitioning the data into subsets, training the model
on certain subsets, and validating it on the remaining subsets to ascertain the best value of α [24].
We employ a probabilistic model to depict collections of multivariate N samples, denoted as θi, drawn from
a mixture of von Mises distributions. This mixture encompasses an unknown number, M, of independent
components, each characterized by parameterskk and µk. Here, πm = P (ci = k) signifies the probability of sample
I originating from a particular cluster, while indicates the assignment of sample I to one of the M clusters.

P (θi;µ1, . . . , µM , k1, . . . , kM , π1, . . . , πM ) =

M∑
m=1

πm

N∏
i=1

f(θi;µm, km) (4)

Estimating a von Mises Mixture model through the Dirichlet distribution in a supervised manner, without a
predetermined number of clusters, presents a challenge due to the often ambiguous parameterization of cluster
count. However, there are strategies to tackle this complexity using exploratory methods. In our approach, we
employ an unsupervised statistical modeling technique, utilizing Ward’s algorithm to explore potential group
structures within the data. This method facilitates the grouping of observations based on their similarities, obviating
the need to predefine the number of groups. Once these exploratory groups are identified, the Dirichlet process is
leveraged to estimate group proportions. Additionally, a von Mises Mixture distribution model is applied to estimate
the parameters of each group, offering a comprehensive insight into the underlying structure of the data. In this
section, we present a novel approach, combined by mixture model utilizing the Dirichlet Process Mixture (DPM).
This model is tailored to autonomously ascertain the number of topics, enabling the precise revelation of latent
topics within each label. Our starting point is a dataset X = x1, x2, . . . , xN , comprising d-dimensional vectors,
each representing individual data instances.

Let denote the set of labels V = v1, v2, . . . , vN , where each vicorresponds to the label of xi. The label vn is
generated using a multinomial distribution: vnMult(δ), where δ = (δ1, δ2, . . . , δvn) represents each von Mises
distributions proportion. By utilizing separate DPMs, our model can autonomously determine the optimal number
of topics for each class. As a result, our model acquires the unique topics essential for distinguishing between
classes and interpreting labels. Let zn denote an assignment variable representing the mixture topics linked to a
data instance xn. When the label zn is known, zn is generated via a multinomial distribution: Zn ∼ Mult(π(µuvn

).
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The conditional distribution of xn given vn, µ1, µ2, . . . , µn and k is P (xn | vn, k, µ1, µ2, . . . ) = MvM(xn |
µvn,zn , kvn,z). Here, µv,t (where t = 1, 2, . . . ,∞) represents the mean direction vectors, which are the specific
topics associated with label (see Figure2) .[26] Mardia and El–Atoum (1976) recognized the von Mises (vM)
distribution as the conjugate prior for the mean direction.

Figure 2. Graphical Model of DPM by MvM

4. Variational Inference for DPM of MvM distributions

During the training process, each instance xn is associated with a labelvn . Let Xv and Zv denote the instances
and their assignment variables, respectively, in class . The posterior distribution can then be represented as

P (Z,U, µ | X,V, αv, kv) =

V∏
v=1

P (Zv, Uv, µv | Xv, αv) (5)

Where Uv = {µv,1, µv,2, . . . , µv,t, . . . }, µv = {µv,1, . . . , µv,t, . . . }. We utilize hidden variables, denoted as Uv =
{µv,1, µv,2, . . . , µv,t, . . . } and µv, = {µv,1, . . . , µv,t, . . . }, in order to delineate specific topics associated with label
v, we independently learn the Dirichlet Process Mixture (DPM) for each label v , separate from other classes. To
facilitate the learning process of the DPM for classv , we introduce a mean-field variational method. Let Nv denote
the number of instances labeled as v. However, in DPM models, the value of zn can be unbounded. Therefore, the
variational distribution requires truncation. We set the truncation level T to a fixed value and set q(µv,T = 1) = 1, ,
indicating that the mixture proportions πv,t(u) = 0 for t > 1. It is crucial to highlight that the model retains its full
Dirichlet process nature and is not truncated; solely the variational distribution undergoes truncation. For inferring
latent variables and estimating proportions, we utilize the mean-field variational inference method. This approach
endeavors to pinpoint a distribution within a simple family that closely mimics the true posterior. We approximate
the fully factorized family of distributions over the hidden variables:

q(Uv, µv, Z
v | γv, µ̃, k̃,Φ) =

T−1∏
t=1

q(µv,t | γv,t
T∏

t=1

q(µv,t | µ̃v,t, k̃v,t)

Nv∏
n=1

q(zn | Φn) (6)

With, q(µv,t | γv,t) = β(µv,t|γv,t1 , γv,t2), q(µv,t|µ̃v,t, k̃v,t) = MvM(µv,t|µ̃v,t, k̃v,t),
q(zn|Φn) = Mult(zn|Φn)(q(zn = t|Φn) = Φn,t).
Here,γv,t1 , γv,t2 , µ̃v,t, k̃v,t,Φn. are the free variational parameters. Utilizing this factorization, we obtain a lower
bound L(γv, µ̃v, k̃v,Φ) for the log likelihood.

L(γv, µ̃v, k̃v,Φ) = Eq[logP (Xv | Zv, Uv, µv)] + Eq[logP (Zv | Uv)] + Eq[logP (Uv | αv)]−
Eq[log q(Uv | γv)]− Eq[log q(Z

v | Φ)]− Eq[log q(µv | µ̃v, k̃v)]
(7)
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To optimize the lower bound of the log-likelihood, we utilize an EM algorithm to iteratively train the model. This
entails iteratively executing two steps, namely the E-step and the M-step, until convergence is attained. In the
E-step, the lower bound is optimized with respect to each of the free parameters γv, µ̃v, k̃v,Φ as

γv,t1 = 1 + ΣNv

i=1Φi,t (8)

γv,t2 = αv +ΣNv

i=1Σ
T
j=t+1Φi,j (9)

Φn,t ∝ exp(Sn,t) (10)

k̃v,t =

N∑
n=1

kv,tΦn,tµ̃
T
v,txn (11)

The EM procedure involves iteratively alternating between E and M steps until a suitable convergence criterion
is met. Post-training, our model uncovers inherent topics represented by µ̃v,t and k̃v,t within each label v.
Furthermore, the concentration parameter k̃v,t signifies the density of instances around µ̃v,t. Notably, in the
Dirichlet Process Mixture (DPM), a majority of instances tend to cluster around a limited number of topics, as
indicated by Tv, representing the number of topics for each label. Consequently,T =

∑V
v=1 Tv topics are identified

from the training set (see algorithm 1).

Algorithm 1 : DPM-MvM

Require: Set χ of data points
Ensure: Inilialize randomly µ0, k0, γt1, γt2, µt, kt,Φ(t = 1. . . T ;n = 1. . .N)

1: repeat
2: The E Step (Expectation)
3: for t = 1 to T do do
4: γt1 = 1 +

∑N
i=1 Φi,t

5:
6: γt2 = α+

∑N
i=2

∑T
j=t+1 Φi,j

7:
8: µt =

∑N
n=1 kΦn,txn+k0µ0

∥
∑N

n=1 kΦn,txn+k0µ0∥
9:

10: kt =
∑N

n=1 kΦn,txn + k0µ
T
t xn + k0µ

T
t µ0

11:
12: for n = 1 to T do do
13: Compute Φn,t in (10)
14: end for
15: end for
16: repeat
17: Step M (Maximization)
18: Compute µ0,k0 in (11)
19: Until Convergence

During the testing phase, each unlabeled instance is generated from a mixture of T von Mises distributions
learned during training. Probabilities of xm pertaining to topics θm = {θ1, ..., θT } are established based on prior
studies. For classification, the label of xm is deduced from the cumulative probabilities assigned to the topics of
each label. Additionally, our approach introduces a novel representation θ for instances within the topical space,
offering potential applications like dimension reduction and data visualization. Each label is distinguished by its
specific topics, thus highlighting the discriminative nature within the topical space through our methodology.
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(a) Iteration = 1 (b) Iteration = 2 (c) Iteration = 3

(d) Iteration = 10 (e) Iteration = 50 (f) Iteration = 100

Figure 3. Graphical Representation of Data Using the DPM-MvM Approach Across Six Iterations

5. Experimental Design

In this section, we present a series of experiments aimed at assessing the merits of our approach from various
perspectives. We aim to furnish concrete evidence of its capability to discern patterns in the thematic space
and to classify with efficiency. Furthermore, we seek to highlight its proficiency in outlier detection during the
learning process. Additionally, we will conduct a comparative analysis of our approach against some of the most
advanced supervised methods. Our primary objective with the simulated data is to validate the accuracy of our
implementations by generating a dataset that adheres to specified von Mises (vM) distributions. We introduce
a synthetic dataset comprising 500 points in a two-dimensional space, divided into a total of 5 components,
each containing 100 points. The mean directions of the components are defined as follows: µ1 = (1, 0),µ2 =
(0,

√
−1),µ3 = (0, −1√

2
),µ4 = ( 1√

2
, −1√

2
),µ5 = (1, 1), with a concentration parameter k = 5 for each component. We

utilize this dataset to demonstrate the effectiveness of our algorithm in identifying cluster structures (see Figure 3).

The CNAE-9 [27] dataset is extracted from a text mining problem. The dataset contains 1080 free text business
descriptions of Brazilian companies. The goal is to classify these descriptions in 9 categories. The features are 856
word frequency records. IoT customers are typically enterprises. Therefore, its description is quite useful in order
to classify target customers. The CNAE-9 dataset also had the instances ordered. Thus the samples were shuffled
randomly.

Table 1. Detection performance by different approaches for the CNAE-9 dataset and our simulated dataset for the DPL-MvM
approach

Methods F Accuracy (%)
Deep Mixtures of Dirichlet-
Multinomials (k2 = 5) [28]

92.50 0.975

VMM-RJMCMC [29] 74.19 76.99
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Methods F Accuracy (%)
FMcDBMM [30] 85.01 90.94
VMM-EM [31] 73.90 75.18
InVMM-MCMC [32] 81.81 83.91
GDMM-En [33] 76.87 78,93
InVMM [34] 79.34 81.23
DPM-MvM 95.95 98.82

Our DPM-MvM approach has clearly outperformed all other evaluated methods in terms of performance,
as illustrated in the table below. With an exceptional categorization accuracy of 98.82% and a highly precise
estimation of the number of clusters, our method has demonstrated remarkable results (refer to Table 1). The
DPM-MvM method achieves an accuracy of 95.95%, surpassing all other evaluated methods. Competing methods,
such as FMcDBMM (85.01%) and Mixtures of Dirichlet-Multinomials (88.39%), exhibit lower performance,
thereby affirming the robustness of our approach. Regarding the estimation of the number of clusters, DPM-
MvM attains an impressive accuracy of 98.82%. This result is significantly higher than those of other methods,
including Mixtures of Dirichlet-Multinomials, which, despite its strong performance (97.14%), does not match the
efficacy of our approach. These results underscore the significant advantages of employing a combined Dirichlet
Process Model (DPM) and a mixture of von Mises distributions (MvM). The DPM provides flexibility by allowing
a non-parametric estimation of the number of clusters, while von Mises distributions are particularly well-suited
for modeling angular or circular data, thereby enhancing overall precision.
Our DPM-MvM approach demonstrated superior performance compared to all other evaluated methods, achieving
the highest categorization accuracy of 98.82% and the most precise estimation of the number of clusters. These
findings underscore the significant benefits of employing both the Dirichlet process model and a mixture of von
Mises distributions.
Analysis of Computational Complexity
The initialization of the model involves assigning each data point to an initial cluster. This step typically has a
linear complexity with respect to the number of data points, O(N), where N is the number of data points. This
initialization is crucial for commencing the iterative process of parameter estimation. Subsequently, the parameters
are estimated using the Expectation-Maximization (EM) Algorithm: The EM algorithm, or its variants (such as
Variational EM), are often used to estimate parameters in Dirichlet Process Mixture Models (DPMMs). For each
iteration:
• E-Step: Calculation of responsibilities (posterior probabilities) for each data point with respect to each cluster.
This step requires O(KN) operations, where K is the number of clusters and N is the number of data points.
• M-Step: Updating the parameters of each von Mises distribution based on the current responsibilities. This step
also involves a complexity of O(KN).
As the Dirichlet Process evolves, the number of mixture components K can dynamically increase. This increase
in K results in higher computational costs for likelihood calculations and parameter updates. When K becomes
large, the complexity of updating cluster assignments and computing likelihoods can become O(K2N) due to the
increased number of components to consider.
Challenges for Large-Scale Datasets
For large-scale datasets, several complexity issues arise:
• As the dataset size N and the number of components K increase, computational and memory requirements grow
significantly. The O(KN) complexity per iteration can become prohibitive, especially if K increases with the dataset
size. Additionally, storing parameters and intermediate results for a large number of clusters and data points can
lead to substantial memory consumption. This requirement can be a limiting factor when managing large datasets.
Furthermore, the time required for the algorithm to converge may increase with the dataset size and the number of
components. Longer training times may be necessary to ensure that the algorithm has sufficiently converged.
Implementation of DPM-MVM in R
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In this study, we employed the R programming language along with its associated libraries to implement the
Dirichlet Process Mixture Model with von Mises distributions (DPM-MVM). The implementation utilizes several
key R packages, each serving a crucial role:
DirichletReg: This package provides advanced tools for modeling mixtures based on Dirichlet processes. It offers
essential functionalities for specifying and fitting Dirichlet Process Mixture Models (DPMMs), which are critical
for handling the non-parametric nature of the DPM-MVM approach. MCMCpack: This library is used for Bayesian
modeling and Monte Carlo simulations. It facilitates the estimation of posterior distributions through Markov Chain
Monte Carlo (MCMC) methods, which are vital for approximating the parameters of the DPM-MVM model.
circular: This package is designed specifically for analyzing angular data and von Mises distributions. It includes
a variety of functions for managing and interpreting circular data, which are indispensable for the accurate
implementation of von Mises distributions within the DPM-MVM framework. By integrating these R packages, we
effectively implemented the DPM-MVM algorithm, leveraging the specialized tools and functions each package
provides. This comprehensive approach addresses multiple facets of the model, including Dirichlet process mixture
modeling, Bayesian inference, and circular data analysis.

6. Conclusion

The novel DPM-MvM model offers a comprehensive representation for a vector of multivariate angular data,
incorporating varying degrees of variation and capitalizing on dependencies among the random functions. It serves
as a fundamental and valuable tool for handling multivariate angular data. Additionally, our approach introduces
a promising and resilient framework for analyzing intricate circular datasets. By harnessing the adaptability of the
Dirichlet Process Mixture, the model can automatically adjust to the underlying structure of the data, while the
von Mises Mixture Distributions adeptly capture the circular dependence and variability within the multivariate
angular observations. This innovative methodology not only tackles the challenges inherent in angular data but
also presents a probabilistic framework facilitating uncertainty quantification, robustness, and enhanced model
fitting. Consequently, this research makes a substantial contribution to the realms of circular statistics and Bayesian
modeling.
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