

Adaptive Type-II Progressive Hybrid Censoring and Its Impact on Rayleigh Data Overlap Estimation

Amal Helu^{1,*}, Eman Aldabbas¹, Omar Yasin²

¹ Department of Mathematics, University of Jordan, Jordan ¹ Department of Basic Sciences, Princess Sumaya University for Technology, Jordan

Abstract This article employs an adaptive type-II progressive hybrid censoring scheme for estimating the overlap of two Rayleigh distributions with different scale parameters. The estimators for these overlap measures are obtained using this censoring method, and their asymptotic bias and variance are also presented. Furthermore, confidence intervals for these measures are constructed using both the bootstrap method and Taylor approximation. To emphasize the practical significance of our proposed estimators, we analyze real-life data focusing on the impact of mercaptopurine on maintaining remission in patients with acute leukemia.

Keywords Key Words: Bootstrap method; Overlap measures; adaptive type-II progressive hybrid censoring

AMS 2010 subject classifications 62E10, 62N01, 62N02, 62G30

DOI: 10.19139/soic-2310-5070-2148

1. Introduction

Life-testing experiments pose challenges in controlling test duration and conserving experimental units while ensuring efficient estimation. Censoring techniques offer a solution by removing active units and stopping the experiment before all units fail. Progressive censoring is crucial, as it involves removing units at predetermined or random time points during the experiment, accounting for potential losses or removals.

Over the years, progressive censoring has been extensively studied, with models falling into two categories: progressive Type-I censoring, concluding the experiment at predefined times, and progressive Type-II censoring, ending after a predetermined number of failures. Both approaches provide flexibility by allowing unit removal at non-terminal times.

Progressive Type-I censoring involves fixed durations at a specific time, potentially resulting in few or no observed failures for units with long lifetimes. In contrast, progressive Type-II censoring, although flexible, may lead to extended test durations when units have extended lifetimes, which is considered a drawback.

Kundu and Joarder (2006) introduced two progressive hybrid censoring schemes, offering alternatives to traditional progressive Type-II censoring by ending experiments at a certain time T. These schemes adapt to the data, allowing fewer than m observations in Type-I hybrid censoring or extended testing in Type-II hybrid censoring.

During real-life experiments, it is imperative to acknowledge that a fixed censoring scheme may not always be a practical approach. Any intentional or unintentional alternation during the experiment can significantly impact the results. However, Ng et al. (2009) have introduced a new model (depicted in Figure (1) that allows the censoring

ISSN 2310-5070 (online) ISSN 2311-004X (print) Copyright © 2025 International Academic Press

^{*}Correspondence to: Amal Helu (Email: a.helu@ju.edu.jo)

Figure 1. Adaptive type-II progressive hybrid censoring model as proposed by Ng et al. (2009). (a) Experiment ends before time T. (b) Experiment ends after time T.

scheme to be changed as required during the experiment. This model is called adaptive type-II progressive hybrid censoring (Adaptive-IIPH), in which a threshold time T switches between the original and modified schemes.

Assume there are n units in a life-testing experiment, and the effective sample size m(< n) is predetermined, along with the censoring scheme (K_1, K_2, \ldots, K_m) ; however, the values of some of the K_i may change as the experiment progresses. Assuming the experimenter has provided an ideal total test time T. If the m-th failure occurs before time T (see Figure 1(a)), the experiment proceeds similarly to type-II progressive censoring. It halts at time X_m with the pre-fixed censoring scheme (K_1, K_2, \ldots, K_m) . Otherwise, if the experimental time has passed T, but the number of observed failures has not yet reached m, we do not remove any items from the experiment by setting $K_{j+1} = K_{j+2} = \cdots = K_{m-1} = 0$ and $K_m = n - m - \sum_{i=1}^{j} K_i$. This setting can be seen as a design that guarantees m observed failure times while keeping the total test time not too far away from the ideal test time T (depicted in Figure 1(b)). Note that if we set T = 0, we will have a traditional type-II censoring method. However, if $T \to \infty$, the Adaptive-IIPH process becomes a progressive type-II censoring technique.

Adaptive-IIPH significantly impacts real-life applications, as evidenced by its widespread use in literature. Most recently, Alslman and Helu (2023) developed new methods for estimating the stress strength of the inverse Weibull distribution using the Adaptive-IIPH censoring scheme. Asadi et al. (2022) employed Adaptive-IIPH censoring to conduct accelerated life tests on virus-containing microdroplets, monitoring Virus-MD persistence during coughs at different time points. Alotaibi et al. (2022) utilized Adaptive-IIPH censoring for testing sodium sulfur battery lifetimes in a chemical application employing the XLindley distribution. Furthermore, Helu and Samawi (2021) applied Adaptive-IIPH censoring to radar-evaluated rainfall data from 52 cumulus clouds in South Florida, highlighting its versatile utility in various fields.

Estimating the proportion of machines or electronic devices with similar failure time ranges is crucial in reliability analysis, especially when dealing with different sources or stress levels. Various overlap coefficients (OVL), such as Matusia's measure ρ , Morisita's measure λ , and Weitzman's measure Δ , are utilized to achieve this. These coefficients represent the common area between two probability density functions. The depiction of

Figure 2. Overlap of two Rayleigh distributions.

OVL for two distributions in Figure 2 displays the natural interpretations of OVL as a fraction of probability mass under either density, represented by the shaded area in 2.

OVL has found widespread use in various practical applications as well. It has been utilized in quantitative ecology, as demonstrated by Gastwirth (1975). Furthermore, OVL has been applied to electromyographic assessment of muscular asymmetry by Ferrario et al. (2000) and in treatment assessment during clinical trials, as discussed by Mizuno et al. (2005).

For a deeper exploration of the various applications of overlap coefficients, interested readers can refer to the works of Wang and Tian (2017), Martinez-Camblor (2022), Helu (2024).

The mathematical form of the OVL measures are as follows: Suppose two samples of observations are drawn from two continuous distributions $f_1(x)$ and $f_2(x)$. Then the overlap measures are defined as follows:

Matusita's Measure (1955):
$$\rho = \int \sqrt{f_1(x)f_2(x)} dx$$
,
Morisita's Measure (1959): $\lambda = \frac{2\int f_1(x)f_2(x) dx}{\int [f_1(x)]^2 dx + \int [f_2(x)]^2 dx}$,
Weitzman's Measure (1970): $\Delta = \int \min(f_1(x), f_2(x)) dx$.

It is possible to adapt these measures for discrete distributions by using summations. They can also be extended to multivariate distributions. They are quantified on a scale from 0 to 1, with values near 0 indicating significant inequality (or disagreement) and 1 suggesting exact equality (perfect agreement) between density functions.

The mathematical structure of these measures is intricate, and there are no results available on the exact sampling distributions of their estimators. Prior work includes Smith (1982) on discrete Weitzman's measure, Mishra et al. (1986) on sampling properties under homogeneity assumptions, Mulekar and Mishra's (1994) simulations on normal densities, and Lu et al.'s (1989) study of sampling variability. Additionally, Dixon (1993) applied bootstrapping and jackknife techniques, while Mulekar and Mishra (2000) addressed inference problems.

The sampling behavior of a nonparametric estimator of OVL was analyzed by Helu and Samawi (2011). Samawi et al. (2017) conducted a study investigating the similarities and distinctions between the maximum of the Youden index (J) and overlap coefficient (OVL), highlighting the advantages of OVL over J.

In this article, our primary focus lies in making inferences regarding the measure of overlap (OVL) while utilizing Adaptive-IIPH censoring data from two independent Rayeligh distributions with different scale parameters.

Section 2 introduce the Rayleigh distribution and the derivation of the measures. Section 3 introduces the estimators, explores their approximate biases, and establishes confidence intervals via the delta method and bootstrap techniques. Transitioning to Section 4, we present the results of our simulations and engage in a comprehensive discussion. Section 5, on the other hand, spotlights a practical example using real data, culminating in our concluding remarks.

2. The model

The Rayleigh distribution is crucial in life testing experiments because its failure rate is a linear function of time, making it suitable for modeling the aging process of products. Dyer and Whisenand (1973) highlighted its importance in communication engineering, while Polovko (1968) noted its relevance in electrovacuum devices. Introduced by Rayleigh in 1880 and appearing as a special case of the Weibull distribution, the Rayleigh distribution is one of the most commonly used distributions for analyzing lifetime data. It plays a key role in various fields, including project effort loading modeling, survival and reliability analysis, communication theory, physical sciences, technology, diagnostic imaging, applied statistics, and clinical research. This distribution's origin and other aspects are detailed in Siddiqui (1962) and Miller and Sackrowitz (1967), further emphasizing its broad applicability and significance.

A random variable U is said to have a Rayleigh distribution with scale parameter θ (Ray(θ)), if its probability density function (pdf) is given by

$$f(u) = \frac{2u}{\theta} e^{-u^2/\theta}, \theta > 0, u > 0.$$
 (1)

The cumulative distribution function (cdf) corresponding to (1) for u > 0, is

$$F(u) = 1 - e^{-u^2/\theta}.$$

Let $X = U^2$, thus, X has a one-parameter exponential distribution $(Exp(\theta))$, with pdf and cdf as follows:

$$g(x) = \frac{1}{\theta} e^{-\frac{x}{\theta}}, \quad \text{for } x \ge 0, \theta > 0, \tag{2}$$

and

$$G(x) = 1 - e^{-\frac{x}{\theta}}, \quad \text{for } x \ge 0, \theta > 0.$$
(3)

Let $R = \frac{\theta_1}{\theta_2}$, as in Helu and Samawi (2011), the continuous version of the three proposed overlap measures can be expressed as a function of R as follows:

$$\rho = \frac{2\sqrt{R}}{1+R},\tag{4}$$

$$\lambda = \frac{4R}{\left(1+R\right)^2},\tag{5}$$

and

$$\Delta = 1 - R^{\frac{1}{1-R}} \left| 1 - \frac{1}{R} \right|, R \neq 1.$$
(6)

According to Mulekar and Mishra (2000), ρ , λ , and Δ are not monotone for all R > 0. However, they exhibit certain properties, such as symmetry in R, meaning that $OVL(R) = OVL(\frac{1}{R})$. They also remain invariance under linear transformations, Y = aX + b, $a \neq 0$ and attain the maximum value of 1 at R = 1.

2.1. Maximum likelihood estimates

The OVL measures ρ, λ and Δ are functions of θ_1 and θ_2 . In order to draw any inference about the OVL measures, we need to estimate the unknown parameters, θ_1 and θ_2 . In this section we obtain the maximum likelihood estimates (MLEs) of the parameters θ_1 and θ_2 based on the Adaptive-IIPH censored samples. Let $\mathbf{U} = U_{1:m_1:n_1} < U_{2:m_1:n_1} < \ldots < U_{m_1:m_1:n_1}$ be an Adaptive-IIPH censoring sample from $\operatorname{Ray}(\theta_1)$ under the censoring scheme $\{n_1, m_1, K_1, \ldots, K_{J_1}, 0, \ldots, 0, K^* = n_1 - m_1 - \sum_{i=1}^{J_1} K_i\}$ such that $U_{J_1:m_1:n_1} < T_1 < U_{J_1+1:m_1:n_1}$. And, $\mathbf{V} = \{V_{1:m_2:n_2} < V_{2:m_2:n_2} < \ldots < V_{m_2:m_2:n_2}\}$ be an Adaptive-IIPH censoring sample from $\operatorname{Ray}(\theta_2)$ under the scheme

 $\{n_2, m_2, L_1, ..., L_{J_2}, 0, ..., 0, L^* = n_2 - m_2 - \sum_{i=1}^{J_2} L_i\}$ such that $V_{J_{2:m_2:n_2}} < T_2 < V_{J_2+1:m_2:n_2}$. For simplicity, let $U_i = U_{i:m_1:n_1}$ and $V_i = V_{i:m_2:n_2}$. Then the joint likelihood function of the Adaptive-IIPH censored sample (see Balakrishnan and Cramer, 2014) can be written as

$$L(\theta_1, \theta_2 | \mathbf{X}, \mathbf{Y}) = C_1 C_2 [1 - F_1(u_{m_1})]^{K^*} \prod_{i=1}^{m_1} f_1(u_i) \prod_{i=1}^{J_1} [1 - F_1(u_i)]^{K_i}$$

$$[1 - F_2(v_{m_2})]^{L^*} \prod_{i=1}^{m_2} f_2(v_i) \prod_{i=1}^{J_2} [1 - F_2(v_i)]^{L_i},$$
(7)

where,

$$C_1 = n_1(n_1 - K_1 - 1)(n_1 - K_1 - K_2 - 2)...(n_1 - K_1 - K_2 - ... - K_{m_1 - 1} - m_1 + 1),$$

$$C_2 = n_2(n_2 - 1)(n_2 - 1 - L_2 - 2)...(n_2 - L_1 - L_2 - ... - L_{m_2 - 1} - m_2 + 1),$$

$$f_1(u) = \frac{2u}{\theta_1} e^{-u^2/\theta_1}, \qquad F_1(u) = 1 - e^{-u^2/\theta_1}, \text{ for } u > 0, \qquad (8)$$

$$f_2(v) = \frac{2v}{\theta_2} e^{-v^2/\theta_2}, \qquad F_2(v) = 1 - e^{-v^2/\theta_2}, \quad \text{for } v > 0.$$
 (9)

After substituting equations 8 and 9 into equation 7, and then taking the log-likelihood function, we obtain the following:

$$l \propto -m_1 \log(\theta_1) - \frac{\left(K^* u_{m_1}^2 + \sum_{i=1}^{m_1} u_i^2 + \sum_{i=1}^{J_1} K_i u_i^2\right)}{\theta_1} -m_2 \log(\theta_2) - \frac{\left(L^* v_{m_2}^2 + \sum_{i=1}^{m_2} v_i^2 + \sum_{i=1}^{J_2} L_i v_i^2\right)}{\theta_2}.$$
(10)

Using the transformation $X = U^2$ and $Y = V^2$, Eq. 10 becomes

$$l \propto -m_1 \log(\theta_1) - \frac{\left(K^* x_{m_1} + \sum_{i=1}^{m_1} x_i + \sum_{i=1}^{J_1} K_i x_i\right)}{\theta_1} \\ -m_2 \log(\theta_2) - \frac{\left(L^* y_{m_2} + \sum_{i=1}^{m_2} y_i + \sum_{i=1}^{J_2} L_i y_i\right)}{\theta_2}.$$
(11)

Stat., Optim. Inf. Comput. Vol. 14, July 2025

The MLEs of the parameters θ_1 and θ_2 can be obtained by taking the first derivative of Eq.11 with respect to θ_1 and θ_2 and equating the normal equations to 0 to get

$$\hat{\theta}_1 = \frac{K^* x_{m_1} + \sum_{i=1}^{m_1} x_i + \sum_{i=1}^{J_1} K_i x_i}{m_1},\tag{12}$$

$$\hat{\theta}_2 = \frac{L^* y_{m_2} + \sum_{i=1}^{m_2} y_i + \sum_{i=1}^{J_2} L_i y_i}{m_2}.$$
(13)

Viveros and Balakrishnan (1994; page 88) showed that when the underlying distribution is an exponential with unknown mean θ , and when data $W_{1:m:n} < W_{2:m:n} < \cdots < W_{m:m:n}$ are based on progressively type-II censored sample with censoring scheme $\mathbf{K} = (K_1, K_2, \ldots, K_m)$, $\hat{\theta} = \frac{\sum_{i=1}^{m} (K_i+1)w_i}{m}$ is the MLE of θ , and $\hat{\theta} \sim Gamma(m, \frac{\theta}{m})$ in which Gamma(., .) denote the Gamma distribution. Cramer and Iliopolous (2010; Theorems 5 and 7) showed that the MLE when data are based on Adaptive-IIPH coincide with the MLE in deterministic progressive type-II censoring schemes. Thus, the distribution of this particular random variable is invariant with respect to random (fixed) progressive type-II censoring procedure. Thus, we obtain $\hat{\theta}_i \sim G(m_i, \frac{\theta_i}{m_i})$; i = 1, 2. Consequently, the means and variances of the MLEs in (12) and (13) are

$$E(\hat{\theta}_1) = \theta_1, \qquad E(\hat{\theta}_2) = \theta_2, \tag{14}$$

$$Var(\hat{\theta}_1) = \frac{\theta_1^2}{m_1}, \qquad Var(\hat{\theta}_2) = \frac{\theta_2^2}{m_2},$$
 (15)

therefore, the *MLE* of *R* is $\hat{R} = \frac{\hat{\theta}_1}{\hat{\theta}_2}$. Hence, $\frac{\theta_2}{\theta_1}\hat{R}$ has *F*-distribution with $2m_1$ and $2m_2$ degrees of freedom $(F_{2m_1,2m_2})$. Thus, the variance of \hat{R} can be approximated by:

$$Var(\hat{R}) = \frac{m_2^2(m_1 + m_2 - 1)}{m_1(m_2 - 1)^2(m_2 - 2)}R^2.$$
(16)

Clearly, an unbiased estimator of R is given by $\hat{R}^* = \frac{(m_2-1)}{m_2}\hat{R}$ with variance $Var(\hat{R}^*) = \frac{(m_1+m_2-1)}{m_1(m_2-2)}R^2$ and hence $Var(\hat{R}^*) < Var(\hat{R})$. Since the OVL measures are functions of R, therefore, based on the MLE estimate of R, the OVL measures can be estimated by

$$\hat{\rho} = \frac{2\sqrt{\hat{R}^*}}{1+\hat{R}^*},$$
(17)

$$\hat{\lambda} = \frac{4\hat{R}^*}{\left(1 + \hat{R}^*\right)^2},$$
(18)

and,

$$\hat{\Delta} = 1 - \hat{R}^* \frac{1}{1 - \hat{R}^*} \left| 1 - \frac{1}{\hat{R}^*} \right|, \hat{R}^* \neq 1.$$
(19)

Stat., Optim. Inf. Comput. Vol. 14, July 2025

3. Asymptotic properties of OVL

Using the delta method, the asymptotic variance and bias for OVL measures are as follows: Let $OVL = g(\hat{R}^*)$, then the asymptotic variance are given by

$$Var(\hat{\rho}) = \sigma_{\hat{\rho}}^2 \cong \frac{(m_1 + m_2 - 1)}{m_1(m_2 - 2)} \frac{R(1 - R)^2}{(1 + R)^4},$$
(20)

$$Var(\hat{\lambda}) = \sigma_{\hat{\lambda}}^2 \cong \frac{16(m_1 + m_2 - 1)}{m_1(m_2 - 2)} \frac{R^2(1 - R)^2}{(1 + R)^6},$$
(21)

$$Var(\hat{\Delta}) = \sigma_{\hat{\Delta}}^2 \cong \frac{(m_1 + m_2 - 1)}{m_1(m_2 - 2)} \frac{R^{\frac{2}{1-R}} (\ln R)^2}{(1-R)^2}.$$
(22)

with the asymptotic bias

$$Bias(\hat{\rho}) \cong \frac{(m_1 + m_2 - 1)}{m_1(m_2 - 2)} \times \frac{\sqrt{R}(3R^2 - 6R - 1)}{2(1 + R)^3},$$
(23)

$$Bias(\hat{\lambda}) \cong \frac{(m_1 + m_2 - 1)}{m_1(m_2 - 2)} \times \frac{4R^2(R - 2)}{(1 + R)^4},$$
(24)

and,

26

$$Bias(\hat{\Delta}) \cong \begin{cases} H(R)\frac{(m_1+m_2-1)}{m_1(m_2-2)}, & R > 1\\ -H(R)\frac{(m_1+m_2-1)}{m_1(m_2-2)}, & R < 1 \end{cases},$$

$$R^2 \left[\frac{R^{\frac{2R-1}{1-R}}R\{2R-\ln R-2\}\ln R-(R-1)^2}{(R-1)^3}\right].$$
(25)

where, H(R) = I

Consistent estimators for the above variances and biases can be obtained by substituting R by \hat{R}^* in the above formulas.

3.1. Interval estimation

Two types of interval estimation for the OVL measure are considered, namely the asymptotic confidence interval and the bootstrap confidence interval that were introduced by Efron (1992). For a large sample, normal approximation to the sampling distribution using the delta-method, works fairly well. Therefore, the asymptotic $100(1-\alpha)\%$ confidence interval for the OVL measures is given by:

 $\left\{\widehat{OVL} \mp \hat{\sigma}_{\widehat{OVL}} Z_{\alpha/2}\right\}$, where $Z_{\alpha/2}$ is the $\frac{\alpha}{2}$ upper quantile of the standard normal distribution.

There is an obvious bias involved in all OVL measure estimates, however, for large samples, they work fairly well. Thus, the bias corrected interval can be computed as follows:

$$\left(\widehat{OVL} - Bias(\widehat{OVL})\right) \pm \hat{\sigma}_{\widehat{OVL}} Z_{\alpha/2}.$$
(26)

However, uniform bootstrap resampling approach for estimating bootstrap confidence intervals as described by Efron (1992), is designed for one sample case. For a two-sample case, the uniform resampling rules will apply to each sample separately and independently (see Helu and Samawi, 2011).

Let $\mathbf{X} = (X_1, X_2, \cdots, X_{m_1})$ and $\mathbf{Y} = (Y_1, Y_2, \cdots, Y_{m_2})$ be two independent Adaptive-IIPH samples drawn from $f_1(x)$ and $f_2(y)$ respectively. Assume that the parameter of interest is the OVL coefficient. Let S be an estimate of OVL based on the mentioned two random samples. For B uniform re-samples, say $(X_{i1}^*, X_{i2}^*, ..., X_{im_1}^*)$ and $(Y_{i1}^*, Y_{i2}^*, ..., Y_{im_2}^*)$, i = 1, 2, ..., B, let $S_1^*, S_2^*, ..., S_B^*$ be the re-sampling realization of S. Then, the uniform re-sampling approximation to the $100(1 - \alpha)\%$ bootstrap confidence limits can be obtained as follows: Let $S_{(1)}^*, S_{(2)}^*, ..., S_{(B)}^*$ be the order statistics of $S_1^*, S_2^*, ..., S_B^*$. Define $\omega_1 = int(B(\alpha))$ and $\omega_2 = int(B(1-\alpha))$. Then the uniform re-sampling approximation of the $100(1-\alpha)\%$ confidence interval is $\left(\frac{S_{(\omega_1)}^* + S_{(\omega_1+1)}^*}{2}, \frac{S_{(\omega_2)}^* + S_{(\omega_2+1)}^*}{2}\right)$.

4. Simulation Study

This simulation study aims to rigorously compare the performance of maximum likelihood estimators for the measures of overlap. These estimators are derived from diverse sets of Adaptive-IIHP censoring samples, as described by Ng et al. (2009), generated from two independent Rayleigh distributions. The algorithm proceeds as follows:

- 1. Generate two independent progressive type-II censored samples, denoted as $U_1, U_2, ..., U_{m_1}$ and $V_1, V_2, ..., V_{m_2}$ from $\text{Ray}(\theta_1)$ and $\text{Ray}(\theta_2)$, respectively. Use censoring schemes $\mathbf{K} = (K_1, K_2, ..., K_{m_1})$ and $\mathbf{L} = (L_1, L_2, ..., L_{m_2})$ as proposed by Balakrishnan and Cramer(2014).
- 2. Determine the values of J_1 and J_2 , such that $U_{J_1} < T_1 < U_{J_1+1}$ and $V_{J_2} < T_2 < V_{J_2+1}$. Then, remove $U_{J_1+2}, \ldots, U_{m_1}$ and $V_{J_2+2}, \ldots, V_{m_2}$.
- 3. Generate the first $m_1 j_1 1$ order statistics from the truncated distribution $\frac{f_1(u)}{1 F_1(u_{J_1+1})}$ as $U_{J_1+2}, \ldots, U_{m_1}$, and adjust the censoring scheme to $\mathbf{K} = (K_1, \ldots, K_{J_1}, 0, \ldots, 0, K^* = n_1 - m_1 - \sum_{i=1}^{J_1} K_i)$. Similarly, generate the first $m_2 - j_2 - 1$ order statistics from the truncated distribution $\frac{f_2(v)}{1 - F_2(v_{J_2+1})}$ as $V_{J_2+2}, \ldots, V_{m_2}$, and update the censoring scheme to $\mathbf{L} = (L_1, \ldots, L_{J_2}, 0, \ldots, 0, L^* = n_2 - m_2 - \sum_{i=1}^{J_2} L_i)$. Use the transformation $X = U^2$ and $Y = V^2$.
- 4. Calculate $\hat{\theta}_1$ and $\hat{\theta}_2$, and subsequently obtain the estimates of the measures of overlap $\hat{\rho}$, $\hat{\lambda}$, and $\hat{\Delta}$.

In this study, we executed a total of 10,000 simulations, each corresponding to one of four distinct values of R. Specifically:

- 1. When R = 0.003, the resulting parameter values are as follows: $\rho = 0.1, \lambda = 0.01$, and $\Delta = 0.02$.
- 2. For R = 0.03, we observed $\rho = 0.34$, $\lambda = 0.11$,, and $\Delta = 0.13$.
- 3. When R = 0.2, the associated parameter values are $\rho = 0.70$, $\lambda = 0.50$, and $\Delta = 0.42$.
- 4. Lastly, R = 0.8 yielded parameter values of $\rho = 0.98$, $\lambda = 0.96$, and $\Delta = 0.85$.

These simulations are conducted based on four distinct sets of population parameters: $(\theta_1, \theta_2) = (3, 1000), (3, 100), (0.1, 0.5)$, and (4, 5). This comprehensive range of parameter combinations allowed us to explore varying degrees of similarity between the two Rayleigh distributions. Additionally, three primary stopping times are considered: $T_1 = X_{\lfloor \frac{m}{4} \rfloor}, T_2 = X_{\lfloor \frac{4m}{5} \rfloor}$, and $T_3 = X_m + 2$.

We then computed the associated approximate 95% confidence intervals, bias (|Bias|), mean squared error (MSE), length of the confidence intervals (L) and coverage probability (Cov) using Taylor and bootstrap approximation techniques. The bootstrap approximation is based on B = 1000 resamples. For illustrative purposes we generated the censoring samples using $n = n_1 = n_2 = 20, 30, m = m_1 = m_2 = 5, 10, 20$, and set $\mathbf{K} = \mathbf{L}$, employing three censoring schemes:

- Scheme-I: $(n m, 0^{*(m-1)})$, known as scheme-I, where n m units are removed just after the first failure.
- Scheme-II: $(0^{*(m-1)}, n-m)$, known as scheme-II, where n-m units are removed after the last failure.
- Scheme-III: $\left(\frac{n-m}{2}, 0^{*(m-2)}, \frac{n-m}{2}\right)$, known as scheme-III, where $\frac{n-m}{2}$ units are removed after the first and last failures. For brevity, we use the notation 0^{*p} to denote p successive zeros. Thus, the scheme (9, 0, 0, 0, 0, 0) is denoted by $(9, 0^{*5})$.

4.1. Data analysis and comparison study

In this study, we investigate the behavior of overlap estimators when applied to samples drawn from two Rayleigh distributions of varying degrees of similarity based on Adaptive-IIPH censored data. Our research has shed light on the crucial relationship between the similarity between two distributions and the accuracy of the estimators.

Most favorable estimators tend to have minimal |Bias|, smallest MSE, and shortest L. These desirable properties manifest prominently when a substantial disagreement exists between the two Rayleigh density distributions, when $\rho = 0.1$, $\lambda = 0.01$ and $\Delta = 0.02$ as depicted in Tables 6 and 10. Conversely, as the similarity between the source distributions increases, we consistently observe an escalation in |Bias|, MSE, and L across all

OVL estimators. Based on this pattern, these estimators appear less accurate and precise as the source distributions become more congruent (see Tables 6 to 9).

Interestingly, a notable inverse relationship surfaces concerning coverage probability. As the source distributions become more alike, the coverage probability, Cov, decreases for the estimators $\hat{\rho}$ and $\hat{\lambda}$. However, this trend diverges for $\hat{\Delta}$, where the Cov improves with increasing similarity between the two densities.

Furthermore, as the values of $\hat{\rho}$ and $\hat{\lambda}$ approach 1, signifying strong agreement between the source distributions, we observe a similar behavior pattern: |Bias| increases while MSE, L, and Cov decrease. Intriguingly, the $\hat{\Delta}$ estimator deviates from this pattern. As $\hat{\Delta}$ approaches 1, indicating maximum similarity, only the |Bias| of the $\hat{\Delta}$ estimator declines, while MSE and L increase. This suggests that the $\hat{\Delta}$ possesses unique characteristics, performing optimally when the source distributions completely agree or disagree.

Moreover, it is crucial to underscore the consistent behavior of the $\hat{\Delta}$ regarding coverage. Specifically, as $\hat{\Delta}$ approaches the extremes of 0 or 1, there is a consistent increase in *Cov* values. This highlights the remarkable stability of the $\hat{\Delta}$ estimator in scenarios where the source distributions either fully align or diverge.

It is noteworthy that when there exists a substantial disagreement between the two Rayleigh densities, there are minimal differences between the three stopping times. Additionally, when the ratio of m/n is large ($\geq 2/3$), |Bias|, MSE, L, and coverage probability show noticeable improvement.

Shifting our focus to the bootstrap method, results presented in Tables 10 to 13 align with the observations made in Tables 6 to 9, except for instances when the two densities have perfect agreement. In such cases, all three OVL estimates exhibit similar behavior: |Bias| and Cov increase while MSE and L values decrease. Furthermore, the bootstrap results indicate no significant impact from varying censoring schemes or OVL values, except for the consistent coverage values, which remain stable regardless of the source distributions aligning or diverging.

5. Real life data

In this section, we utilize real-life data to demonstrate and validate our proposed method in practical scenarios. The dataset we employ was initially reported by Freireich (1963) and has since been utilized by Gehan (1965) and, more recently, Zhou (2020).

This study aimed to compare the efficacy of 6-mercaptopurine (6-MP), a medication, to placebo regarding sustaining remission in patients with acute leukemia. Table 1 presents the remission durations for two separate cohorts, each comprising 21 patients. One cohort received the placebo, while the other received the drug 6-MP.

Table 1. The duration of the remission time (in weeks) for two groups of leukemia patients

6-MP	6	6	6	6	7	9	10	10	11	13	16
	17	19	20	22	23	25	32	32	34	35	
placebo	1	1	2	2	3	4	4	5	5	8	8
	8	8	11	11	12	12	15	17	22	23	

The legitimacy of the Rayleigh model is checked for 6-MP group and placebo group based on $\theta_1 = 13.64$ and $\theta_2 = 6.92$, respectively, using the Kolmogorov-Smirnov (K-S), Anderson-Darling (A-D), and chi-square tests. The results, presented in Table 2, demonstrate that the Rayleigh model effectively fits both sets of data.

Table 2. Test statistic and p-value associated with each test for 6-MP and placebo

Data	K-S(p-value)	A-D(p-value)	chi-squared(p-value)
6-MP	0.1509 (0.6701)	0.693 (0.2502)	1.911 (0.3846)
placebo	0.1985 (0.3341)	1.652 (0.3312)	2.245 (0.3255)

Additionally, the fitted pdfs and Q-Q plots for the 6-MP and placebo datasets are depicted in Figures 3 to 6, confirming that the Rayleigh model is a good fit for both data sets.

Figure 3. Estimated pdf of the 6-MP data

Figure 4. Estimated pdf of the placebo data

Figure 5. Q-Q plot for the 6-MP data

Figure 6. Q-Q plot for the placebo data

Three different artificial Adaptive-IIHP censored data are created for both sets using the same censoring schemes as those in Section 4. The associated stopping time for each scheme and the generated censored samples are given in Table 3 to 6.

The estimates of the OVLs are calculated based on $m_1 = 11$, $m_2 = 11$. The corresponding *MLEs*, |*Bias*|, asymptotic variance and 95% confidence intervals for OVLs, using Taylor approximation and bootstrap methods, are reported in Table 5, which reveal that the estimates based on Scheme-III, are the closest to those of the complete data set.

6 7 10 11 13 17 19 22 23

10 11 13 16 17 19 20 22 23

Table 3. Artificial Adaptive-IIHP censored samples for 6-MP group

Table 4. Artificial Adaptive-IIHP censored samples for the placebo group

scheme	T				cen	sore	d da	ta foi	r pla	cebo)			
Ι	T_1	1	1	2	5	3	8	11	12	2 1	15	17	22	
II	T_2	1	1	2	2	3	4	4	5	8	8	11		
III	T_3	4	4	5	5	8	8	8	8	11	1	1 1	2	

Table 5. Results based on the real data of Efron (1988)

					otic Inference Bootstrap Inference confidence 95% confidence		
Scheme	Coeff	MLEs (—Bias—)	Asymptotic variance	Lower	Upper	Lower	Upper
Complete	ρ	0.9622(0.0038)	0.0018	0.8837	1	0.8750	0.9939
_	λ	0.9258(0.0207)	0.0133	0.5540	1	0.6628	0.9244
	Δ	0.7971(0.0055)	0.0066	0.7730	1	0.8041	0.9895
1	ρ	0.9537(0.0055)	0.0044	0.8298	1	0.8758	0.9971
-	$\begin{vmatrix} \rho \\ \lambda \end{vmatrix}$	0.9096(0.0429)	0.0261	0.4159	1	0.6297	0.9441
	Δ	0.7753(0.0061)	0.0159	0.6689	1	0.7671	0.9942
2	ρ	0.9421(0.0026)	0.0053	0.8020	1	0.7379	0.9963
	λ	0.8875(0.0431)	0.0254	0.3927	1	0.4571	0.9365
		0.7484(0.0040)	0.0188	0.6184	1	0.5446	0.9926
3	ρ	0.9636(0.0082)	0.0035	0.8556	1	0.7981	0.9911
	$\begin{vmatrix} \rho \\ \lambda \end{vmatrix}$	0.9285(0.0428)	0.0266	0.4383	1	0.5251	0.9016
	Δ	0.8009(0.0124)	0.0131	0.7168	1	0.6368	0.9822

II

III

 T_2

 T_3

6 6

9 10

$0.1, \lambda$	
= o'	
0.003	
R = 0	
hen j	
v), W	
$\mathbf{y} (C_{t}$	
abilit	
t prob	
/erage	
& cov	
(MSE) &	
or (M	
d error (
quared	
nean s	
n L, m	
lengtl	
(as),	
$s(B_i $	
of bias (
alue a	
lute v	
: abso	
lation	
roxim	
or app	: 0.02
Taylo	$ \Box =$
ble 6.	01 and
Ta	0.0

(n,m) Scheme	Estimate Bias	(20,6) I ρ 0.0060420 λ 0.0000437 Δ 0.0003581	II ρ 0.0061776 λ 0.000591 Δ 0.000387		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	II ρ 0.00259 λ 0.00001 Δ 0.00015	III ρ 0.0025862 λ 0.000167 Δ 0.0001520	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	II ρ 0.0032593 λ 0.000278 Δ 0.000278 Δ 0.0002027		$\begin{array}{c ccccccccccc} (30,20) & I & \rho & 0.0014774 \\ & \lambda & 8.4339E-6 \\ & \Delta & 0.0000854 \end{array}$		
$T_1 =$	as MSE	0420 0.0013632 0437 0.0000857 3581 0.0001541	.1776 0.0014654 0591 0.0001147 3887 0.0001860	.1647 0.0014545 0570 0.0001110 3853 0.0001822	5772 0.0005621 0155 0.0000306 1493 0.0000597	.5957 0.0005789 0177 0.0000348 1544 0.0000649	.5862 0.0005710 0167 0.0000329 1520 0.0000625	1920 0.0007036 0203 0.0000400 1867 0.0000763	2593 0.0007565 0278 0.0000543 2027 0.0000528	2456 0.0007457 0261 0.0000511 1994 0.0000893	4774 0.0003203 9E-6 0.0000167 0854 0.0000334	4913 0.0003307 0E-6 0.0000190 0885 0.0000364	4850 0.0003259
$X = X \left[\frac{m}{4}\right]$	Г	2 0.1370793 7 0.0309033 1 0.0436748	4 0.1396942 7 0.0332784 0 0.0458336	5 0.1394582 0 0.0330225 2 0.0456132	1 0.0905628 6 0.0200225 7 0.0286885	9 0.0910966 8 0.0206357 9 0.0292291	0 0.0908168 9 0.0203466 5 0.0289690	6 0.1007145 0 0.0224566 3 0.0320296	5 0.1025033 3 0.0241877 8 0.0335925	7 0.1021431 1 0.0238336 3 0.0332769	3 0.0690805 7 0.0152506 4 0.0219223	7 0.0696436 0 0.0157599 4 0.0223969	9 0.0693905
	Cov	$\begin{array}{c} 0.9694 \\ 0.9314 \\ 0.9433 \end{array}$	$\begin{array}{c} 0.9397 \\ 0.8990 \\ 0.9112 \end{array}$	$\begin{array}{c} 0.9456 \\ 0.8998 \\ 0.9139 \end{array}$	$\begin{array}{c} 0.9598 \\ 0.9342 \\ 0.9415 \end{array}$	$\begin{array}{c} 0.9152 \\ 0.8901 \\ 0.8980 \end{array}$	$\begin{array}{c} 0.9336 \\ 0.9078 \\ 0.9165 \end{array}$	$\begin{array}{c} 0.9607 \\ 0.9314 \\ 0.9415 \end{array}$	$\begin{array}{c} 0.8898 \\ 0.8701 \\ 0.8791 \end{array}$	$\begin{array}{c} 0.9031 \\ 0.8811 \\ 0.8933 \end{array}$	$\begin{array}{c} 0.9556 \\ 0.9412 \\ 0.9459 \end{array}$	$\begin{array}{c} 0.8878 \\ 0.8844 \\ 0.8856 \end{array}$	0.9176
	Bias	$\begin{array}{c} 0.0060822\\ 0.0000454\\ 0.0003639\end{array}$	0.0064261 0.0000950 0.0004467	$\begin{array}{c} 0.0063227 \\ 0.0000760 \\ 0.0004208 \end{array}$	$\begin{array}{c} 0.0025948 \\ 0.0000160 \\ 0.0001515 \end{array}$	0.0026421 0.0000211 0.0001630	$\begin{array}{c} 0.0026162 \\ 0.0000183 \\ 0.0001568 \end{array}$	$\begin{array}{c} 0.0032022\\ 0.0000206\\ 0.0001880\end{array}$	$\begin{array}{c} 0.0033437 \\ 0.0000377 \\ 0.0002220 \end{array}$	$\begin{array}{c} 0.0033084 \\ 0.0000324 \\ 0.0002130 \end{array}$	0.0014808 8.5130E-6 0.0000858	0.0015025 0.0000105 0.0000908	0.0014911
$T_2 = X_{\left[\frac{4 \times m}{5}\right]}$	MSE	0.0013836 0.0000890 0.0001586	0.0016554 0.0001812 0.0002508	0.0015726 0.0001466 0.0002198	$\begin{array}{c} 0.0005699\\ 0.0000316\\ 0.0000612 \end{array}$	0.0006078 0.0000413 0.0000729	$\begin{array}{c} 0.0005875\\ 0.0000359\\ 0.0000665\end{array}$	0.0007083 0.0000405 0.0000772	0.0008199 0.0000730 0.0001132	$\begin{array}{c} 0.0007910 \\ 0.0000631 \\ 0.0001031 \end{array}$	0.0003217 0.0000168 0.0000336	0.0003383 0.0000206 0.0000385	0 0003295
$\left(\frac{4 \times m}{5}\right)$	Г	$\begin{array}{c} 0.1379369\\ 0.0313709\\ 0.0441820 \end{array}$	0.1443622 0.0377267 0.0497573	$0.1424907 \\ 0.0357717 \\ 0.0481029$	$\begin{array}{c} 0.0911549 \\ 0.0203013 \\ 0.0290106 \end{array}$	0.0925539 0.0216871 0.0302602	$0.0917872 \\ 0.0209424 \\ 0.0295882$	$\begin{array}{c} 0.1010205\\ 0.0226069\\ 0.0322024\end{array}$	$\begin{array}{c} 0.1047500\\ 0.0262678\\ 0.0354647\end{array}$	$0.1038460 \\ 0.0253146 \\ 0.0346436 \\ 0.0346436$	$\begin{array}{c} 0.0692359\\ 0.0153194\\ 0.0220038 \end{array}$	0.0701038 0.0161265 0.0227504	0.0696480
	Cov	$\begin{array}{c} 0.9688 \\ 0.9288 \\ 0.9417 \end{array}$	$\begin{array}{c} 0.8810 \\ 0.8434 \\ 0.8579 \end{array}$	$\begin{array}{c} 0.9058 \\ 0.8629 \\ 0.8755 \end{array}$	$\begin{array}{c} 0.9621 \\ 0.9363 \\ 0.9457 \end{array}$	$\begin{array}{c} 0.8812 \\ 0.8684 \\ 0.8738 \end{array}$	$\begin{array}{c} 0.9221 \\ 0.9000 \\ 0.9096 \end{array}$	$\begin{array}{c} 0.9608 \\ 0.9299 \\ 0.9395 \end{array}$	$\begin{array}{c} 0.8207 \\ 0.8255 \\ 0.8280 \end{array}$	$\begin{array}{c} 0.8506 \\ 0.8457 \\ 0.8524 \end{array}$	$\begin{array}{c} 0.9578 \\ 0.9409 \\ 0.9446 \end{array}$	0.8458 0.8532 0.8508	0.9067
	Bias	$\begin{array}{c} 0.0060681 \\ 0.0000469 \\ 0.0003643 \end{array}$	$\begin{array}{c} 0.0060681 \\ 0.0000469 \\ 0.0003643 \end{array}$	$\begin{array}{c} 0.0060699\\ 0.0000470\\ 0.0003647\end{array}$	$\begin{array}{c} 0.0025915\\ 0.0000161\\ 0.0001513\end{array}$	$0.0025910 \\ 0.0000161 \\ 0.0001513$	$\begin{array}{c} 0.0025910 \\ 0.0000161 \\ 0.0001514 \end{array}$	$\begin{array}{c} 0.0031977\\ 0.0000207\\ 0.0001877\end{array}$	$\begin{array}{c} 0.0031980 \\ 0.0000207 \\ 0.0001877 \end{array}$	$\begin{array}{c} 0.0031986\\ 0.0000208\\ 0.0001879 \end{array}$	0.0014806 8.5554E-6 0.0000858	0.0014812 8.5830E-6 0.0000859	0.0014814
$T_3 = X_{[m]} + 2$	MSE	0.0013837 0.0000916 0.0001606	$0.0013837 \\ 0.0000916 \\ 0.0001606$	$\begin{array}{c} 0.0013851 \\ 0.0000919 \\ 0.0001610 \end{array}$	$\begin{array}{c} 0.0005692 \\ 0.0000317 \\ 0.0000612 \end{array}$	$0.0005691 \\ 0.0000317 \\ 0.0000612$	$0.0005692 \\ 0.0000317 \\ 0.0000613$	$\begin{array}{c} 0.0007070\\ 0.0000407\\ 0.0000772 \end{array}$	$0.0007072 \\ 0.0000407 \\ 0.0000772$	$\begin{array}{c} 0.0007076 \\ 0.0000409 \\ 0.0000774 \end{array}$	0.0003218 0.0000169 0.0000337	0.0003222 0.0000169 0.0000338	0.0003223
$m_{]}+2$	Г	$\begin{array}{c} 0.1375773\\ 0.0313801\\ 0.0441039\end{array}$	$0.1375773 \\ 0.0313801 \\ 0.0441039$	0.1376121 0.0314113 0.0441332	$\begin{array}{c} 0.0910362 \\ 0.0202772 \\ 0.0289680 \end{array}$	$0.0910178 \\ 0.0202760 \\ 0.0289632$	0.0910177 0.0202798 0.0289658	$\begin{array}{c} 0.1008776\\ 0.0225653\\ 0.0321388\end{array}$	$\begin{array}{c} 0.1008855\\ 0.0225715\\ 0.0321448\end{array}$	0.1009013 0.0225861 0.0321582	0.0692212 0.0153266 0.0220054	0.0692489 0.0153430 0.0220228	0.0692567
	Cov	$0.9610 \\ 0.9225 \\ 0.9324 \\ 0.9324$	$0.9610 \\ 0.9225 \\ 0.9324 \\ 0.9324$	$\begin{array}{c} 0.9601 \\ 0.9216 \\ 0.9321 \end{array}$	$\begin{array}{c} 0.9568 \\ 0.9320 \\ 0.9430 \end{array}$	0.9565 0.9316 0.9413	$\begin{array}{c} 0.9556 \\ 0.9310 \\ 0.9402 \end{array}$	$\begin{array}{c} 0.9619\\ 0.9357\\ 0.9441\end{array}$	$0.9620 \\ 0.9348 \\ 0.9438 \\ 0.9448 \\ 0$	$\begin{array}{c} 0.9608 \\ 0.9345 \\ 0.9431 \end{array}$	$\begin{array}{c} 0.9542 \\ 0.9374 \\ 0.9438 \end{array}$	$0.9529 \\ 0.9376 \\ 0.9427$	0.9525

$4, \lambda$	
= 0.3	
$3, \rho$	
= 0.0	
n R =	
whe	
Cov),	
ity (C	
babil	
e pro	
/erag	
& co	
SE	
r(M)	
l erro	
uarec	
an sq	
, me	
gth L	
), len	
Bias	
las (
of b	
value	
olute	
: abso	
imation:	
roxim	
r appı	0.13
Taylo	and $\Delta = 0.13$
le 7. 7	11 and 4
Tabl	0.11

	201101100		$T_1 = X$	$X[\frac{m}{4}]$			$I2 = A \left[\frac{4 \times m}{5} \right]$	$\frac{4 \times m}{5}$			$V_{13} = V_{13}$	$= \Lambda_{[m]}^{+2}$	
	Estimate	Bias	MSE	Г	Cov	Bias	MSE	Г	Cov	Bias	MSE	Г	
(20,6) I	$\sigma \prec \Delta$	$\begin{array}{c} 0.0204771 \\ 0.0035217 \\ 0.0036213 \end{array}$	$0.0111874 \\ 0.005917 \\ 0.0044013$	$\begin{array}{c} 0.3955369 \\ 0.2681589 \\ 0.2423341 \end{array}$	$\begin{array}{c} 0.9645 \\ 0.9359 \\ 0.9513 \end{array}$	$\begin{array}{c} 0.0206316\\ 0.0036393\\ 0.003673\end{array}$	0.0113058 0.0060885 0.0044912	0.3973138 0.2713501 0.2443893	$\begin{array}{c} 0.9626 \\ 0.9331 \\ 0.9490 \end{array}$	$\begin{array}{c} 0.0205933\\ 0.0037193\\ 0.0036738\end{array}$	0.0112605 0.0061538 0.004508	0.3958114 0.2706366 0.2436084	
П	$\sigma \prec \Delta$	$0.0210332 \\ 0.0043745 \\ 0.0038586$	$\begin{array}{c} 0.0115481\\ 0.0069695\\ 0.0048750\end{array}$	0.3977913 0.2799135 0.2486130	$\begin{array}{c} 0.9251 \\ 0.9007 \\ 0.9160 \end{array}$	$\begin{array}{c} 0.0220021\\ 0.0060105\\ 0.0042817\end{array}$	$0.0120970 \\ 0.0087409 \\ 0.0057103$	0.4009120 0.2989461 0.2594475	$ \begin{array}{c} 0.8550\\ 0.8365\\ 0.8547\end{array} $	$0.0205943 \\ 0.0037214 \\ 0.0036744$	$\begin{array}{c} 0.0112613\\ 0.0061568\\ 0.0045092 \end{array}$	0.3958068 0.2706639 0.2436179	
⊟	$\sigma \prec Q$	0.0209807 0.0042777 0.0038342	$\begin{array}{c} 0.0115173\\ 0.0068583\\ 0.0048250\\ \end{array}$	$0.3977284 \\ 0.2788200 \\ 0.2480514 \\ 0.2480514$	$\begin{array}{c} 0.9321 \\ 0.9025 \\ 0.9204 \end{array}$	$0.0216161 \\ 0.0052663 \\ 0.0041052$	$\begin{array}{c} 0.0119158\\ 0.0080231\\ 0.0053606 \end{array}$	0.4003236 0.2919459 0.2552895	$\begin{array}{c} 0.8847 \\ 0.8606 \\ 0.8784 \end{array}$	$\begin{array}{c} 0.0205925 \\ 0.0037034 \\ 0.0036721 \end{array}$	$\begin{array}{c} 0.0112645\\ 0.0061412\\ 0.0045035\end{array}$	0.3959309 0.2706679 0.2436402	~ ~ ~ ~
(20,12) I	0×0	$\begin{array}{c} 0.0087177 \\ 0.0013225 \\ 0.0015284 \end{array}$	$\begin{array}{c} 0.0047014 \\ 0.0023063 \\ 0.0018131 \end{array}$	$\begin{array}{c} 0.2629534 \\ 0.1771143 \\ 0.1610290 \end{array}$	$\begin{array}{c} 0.9581 \\ 0.9366 \\ 0.9468 \end{array}$	$\begin{array}{c} 0.0087840\\ 0.0013595\\ 0.0015491\end{array}$	$\begin{array}{c} 0.0047528 \\ 0.0023659 \\ 0.0018471 \end{array}$	$\begin{array}{c} 0.2643301 \\ 0.1792302 \\ 0.1624516 \end{array}$	$\begin{array}{c} 0.9586 \\ 0.9378 \\ 0.9501 \end{array}$	0.0087725 0.0013638 0.0015469	$\begin{array}{c} 0.0047429\\ 0.0023688\\ 0.0018457\end{array}$	$\begin{array}{c} 0.2639170 \\ 0.1789095 \\ 0.1621582 \end{array}$	
Π	<i>∝</i>	$\begin{array}{c} 0.0088030\\ 0.0014689\\ 0.0015693 \end{array}$	$\begin{array}{c} 0.0047607 \\ 0.0025097 \\ 0.0019000 \end{array}$	$0.2630584 \\ 0.1803549 \\ 0.1624282 \\ 0.162482 \\ 0.1624282 \\ 0.1624282 \\ 0.162482 \\ 0.1624282 \\ 0.1624282 \\ 0.162482 \\ 0.1624282 \\ 0.162482 \\ 0.1624282 \\ 0.1624282 \\ 0.1624282 \\ 0.1624282 \\ 0.162428$	$\begin{array}{c} 0.9066\\ 0.8916\\ 0.9019\end{array}$	$\begin{array}{c} 0.0089899\\ 0.0016846\\ 0.0016409\end{array}$	$0.0048874 \\ 0.0027998 \\ 0.0020359$	0.2652340 0.1865002 0.1659389	$\begin{array}{c} 0.8671 \\ 0.8635 \\ 0.8681 \end{array}$	$0.0087714 \\ 0.0013631 \\ 0.0015467 \\ 0.0015667 \\ 0.001567 \\ 0.0015$	$\begin{array}{c} 0.0047423\\ 0.0023682\\ 0.0018453\end{array}$	0.2638882 0.1788853 0.1621351	
Ξ	$\sigma \prec Q$	0.0087607 0.0014015 0.0015500	$\begin{array}{c} 0.0047318\\ 0.0024170\\ 0.0018598\end{array}$	0.2629068 0.1788053 0.1617125	$\begin{array}{c} 0.9296 \\ 0.9101 \\ 0.9212 \end{array}$	0.0088787 0.0015093 0.0015919	$\begin{array}{c} 0.0048168 \\ 0.0025711 \\ 0.0019359 \end{array}$	0.2647038 0.1826563 0.1640500	$\begin{array}{c} 0.9138 \\ 0.8998 \\ 0.9104 \end{array}$	$\begin{array}{c} 0.0087717\\ 0.0013643\\ 0.0015469\end{array}$	$\begin{array}{c} 0.0047425\\ 0.0023698\\ 0.0018459\end{array}$	0.263876 0.1788991 0.1621361	
(30,10) I	<i>ح</i> × ۵	$\begin{array}{c} 0.0108072 \\ 0.0017069 \\ 0.0019047 \end{array}$	$\begin{array}{c} 0.0058486 \\ 0.0029477 \\ 0.0022784 \end{array}$	0.2918114 0.1975957 0.1790819	$\begin{array}{c} 0.9573 \\ 0.9351 \\ 0.9464 \end{array}$	$\begin{array}{c} 0.0108460\\ 0.0017285\\ 0.0019173\end{array}$	$\begin{array}{c} 0.0058805 \\ 0.0029846 \\ 0.0022996 \end{array}$	$\begin{array}{c} 0.2925129\\ 0.1987612\\ 0.1798359\end{array}$	$\begin{array}{c} 0.9566 \\ 0.9328 \\ 0.9454 \end{array}$	0.0108278 0.0017314 0.001913	$\begin{array}{c} 0.0058635\\ 0.0029823\\ 0.0022944\end{array}$	$\begin{array}{c} 0.292003 \\ 0.198237 \\ 0.1794276 \end{array}$	
П	$\sigma \prec \Delta$	0.0110940 0.0021555 0.0020313	0.0060344 0.0035330 0.0025364	$\begin{array}{c} 0.2930754 \\ 0.2065013 \\ 0.1834888 \end{array}$	$\begin{array}{c} 0.8743 \\ 0.8667 \\ 0.8755 \end{array}$	0.0114405 0.0027091 0.0021795	0.0062340 0.0041899 0.0028319	0.2948357 0.2164828 0.1888169	$\begin{array}{c} 0.8025 \\ 0.8059 \\ 0.8111 \end{array}$	0.0108311 0.0017322 0.0019135	$\begin{array}{c} 0.0058652 \\ 0.0029829 \\ 0.0022950 \end{array}$	0.2920933 0.1982940 0.1794895	
Η	$\sigma \prec Q$	0.0110366 0.0020618 0.002060	$\begin{array}{c} 0.0059998 \\ 0.0034161 \\ 0.0024849 \end{array}$	0.2928498 0.2047811 0.1826192	$\begin{array}{c} 0.8918 \\ 0.8808 \\ 0.8909 \end{array}$	0.0112961 0.0024410 0.0021141	$\begin{array}{c} 0.0061617 \\ 0.0038930 \\ 0.0026990 \end{array}$	0.2945406 0.2124531 0.1867192	$\begin{array}{c} 0.8355 \\ 0.8344 \\ 0.8405 \end{array}$	0.0108336 0.0017359 0.0019146	$\begin{array}{c} 0.0058669 \\ 0.0029879 \\ 0.0022972 \end{array}$	$\begin{array}{c} 0.292107 \\ 0.198373 \\ 0.1795289 \end{array}$	
(30,20) I	٥٢٩	$\begin{array}{c} 0.0049963 \\ 0.0007305 \\ 0.0008773 \end{array}$	$\begin{array}{c} 0.0026944 \\ 0.0012907 \\ 0.0010347 \end{array}$	0.2008537 0.1356726 0.1233741	$\begin{array}{c} 0.9530 \\ 0.9418 \\ 0.9486 \end{array}$	0.0050091 0.0007368 0.0008812	$\begin{array}{c} 0.0027043 \\ 0.0013009 \\ 0.0010409 \end{array}$	0.2012285 0.1362098 0.1237461	$\begin{array}{c} 0.9568 \\ 0.9412 \\ 0.9479 \end{array}$	$\begin{array}{c} 0.0049993 \\ 0.0007356 \\ 0.0008787 \end{array}$	$\begin{array}{c} 0.0026963\\ 0.0012978\\ 0.0010376\end{array}$	$\begin{array}{c} 0.2008613\\ 0.1358169\\ 0.1234365\end{array}$	
П	$\sigma \prec \Delta$	$\begin{array}{c} 0.0050569\\ 0.0008146\\ 0.0009035 \end{array}$	$\begin{array}{c} 0.002737 \\ 0.0014107 \\ 0.0010879 \end{array}$	0.2013936 0.1385952 0.1247962	$\begin{array}{c} 0.8813 \\ 0.8796 \\ 0.8821 \end{array}$	$\begin{array}{c} 0.0051037\\ 0.0008716\\ 0.0009225 \end{array}$	0.0027703 0.0014925 0.0011253	0.2019908 0.1407890 0.1259452	$\begin{array}{c} 0.8383 \\ 0.8438 \\ 0.8428 \\ 0.8422 \end{array}$	$\begin{array}{c} 0.0050112 \\ 0.0007416 \\ 0.0008823 \end{array}$	$\begin{array}{c} 0.0027055\\ 0.0013075\\ 0.0010435\end{array}$	0.2012031 0.1363206 0.1237812	
Ш	0 K K	0.0050294 0.0007751 0.0008015	0.0027181 0.0013552 0.0010634	0.2011708 0.1372771 0.1341592	0.9112 0.9078 0.9121	0.0050539 0.0007988 0.0009007	0.0027364 0.0013906 0.0010807	0.2016124 0.1384018 0.1247977	0.9020 0.8998 0.9019	0.0050119 0.0007423 0.000826	0.0027061 0.0013086 0.001044	0.2012168 0.1363543 0.1238005	

$0.7, \lambda =$	1
robability (<i>Cov</i>), when $R = 0.2$, $\rho = 0.7$, λ	$T_3 = X_{[m]} + 2$
mean squared error (MSE) & coverage probabili	$T_2 = X \begin{bmatrix} \frac{4 \times m}{5} \end{bmatrix}$
te value of bias ($ Bias $), length L ,	$T_1 = X_{\left\lceil \frac{m}{4} \right\rceil}$
Table 8. Taylor approximation: absolu 0.5 and $\Delta = 0.42$	(n,m) Scheme

$T_3 = X_{[m]} + 2$	MSE L Cov	0.0277758 0.6073368 0.8934 0.0529338 0.8437433 0.8841 0.0302843 0.6613138 0.9464	0.0277748 0.6073331 0.8928 0.0529451 0.8438204 0.8842 0.0302890 0.6613547 0.9472	0.6070221 0.8433706 0.6613315	0.0115810 0.4091421 0.9186 0.0236937 0.5886158 0.9131 0.0132440 0.4446240 0.9474	0.4090123 0.5882696 0.4444832	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0143384 0.4518647 0.9126 0.0288592 0.6455685 0.9107 0.0162590 0.4912166 0.9524	0.0143361 0.4518109 0.9127 0.0288556 0.6452906 0.9090 0.0162602 0.4912212 0.9509	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0065797 0.3125814 0.9281 0.0139288 0.4567110 0.9257 0.0076491 0.3399362 0.9480	0.0065758 0.3124737 0.9268 0.0139253 0.4566162 0.9230 0.0076530 0.3399978 0.9466	$\begin{array}{rrrr} 0.0065743 & 0.3124328 & 0.9262 \\ 0.0139230 & 0.4565661 & 0.9227 \\ 0.0076540 & 0.3400100 & 0.9462 \end{array}$
	Bias	0.0560135 0.0 0.0576224 0.0 0.0176330 0.0	0.0560201 0.0 0.0576422 0.0 0.0176267 0.0		0.0246138 0.0 0.0254732 0.0 0.0077443 0.0			0.0302023 0.0 0.0312122 0.0 0.0095077 0.0	0.030202 0.0 0.0312165 0.0 0.0095086 0.0	0.0301996 0.0 0.0312256 0.0 0.0095146 0.0	0.0142053 0.0 0.0147478 0.0 0.0044586 0.0	0.0142081 0.0 0.0147625 0.0 0.0044610 0.0	0.0142086 0.0 0.0147667 0.0 0.0044616 0.0
	Cov	$\begin{array}{c} 0.8962 \\ 0.8917 \\ 0.9554 \end{array}$	$\begin{array}{c} 0.7559 \\ 0.7311 \\ 0.854 \end{array}$	$\begin{array}{c} 0.7877 \\ 0.7664 \\ 0.8783 \end{array}$	$\begin{array}{c} 0.9210 \\ 0.9184 \\ 0.9547 \end{array}$	$\begin{array}{c} 0.8155\\ 0.8008\\ 0.8579\end{array}$	$\begin{array}{c} 0.8660 \\ 0.8573 \\ 0.9064 \end{array}$	$\begin{array}{c} 0.9124 \\ 0.9069 \\ 0.9493 \end{array}$	$\begin{array}{c} 0.7289 \\ 0.7122 \\ 0.7924 \end{array}$	$\begin{array}{c} 0.7689 \\ 0.7486 \\ 0.8248 \end{array}$	$\begin{array}{c} 0.9329 \\ 0.9296 \\ 0.9525 \end{array}$	$\begin{array}{c} 0.8027 \\ 0.7905 \\ 0.8316 \end{array}$	$\begin{array}{c} 0.8652 \\ 0.8624 \\ 0.8969 \end{array}$
$\left[\frac{\times m}{2}\right]$	Г	$\begin{array}{c} 0.6095261 \\ 0.8498966 \\ 0.6642145 \end{array}$	0.5614885 0.7711955 0.6587618	0.5725892 0.7894182 0.6604199	0.4096383 0.5901636 0.4453584	0.3943589 0.5633911 0.4431762	0.4021534 0.5769389 0.4441580	$\begin{array}{c} 0.4519526\\ 0.6466351\\ 0.4919347\end{array}$	0.4174843 0.5867516 0.4875954	0.4252073 0.6004719 0.4889469	$\begin{array}{c} 0.312850\\ 0.4573885\\ 0.3401326\end{array}$	0.3035824 0.4414508 0.3390990	$\begin{array}{c} 0.3084448\\ 0.4498979\\ 0.3396659\end{array}$
$T_2 = X_{\left[\frac{4 \times m}{5}\right]}$	MSE	0.0279526 0.0535296 0.0304703	0.0248601 0.0478430 0.0311928	0.0255823 0.0491827 0.0310488	0.0116055 0.0237927 0.0132766	$\begin{array}{c} 0.0109262 \\ 0.0222394 \\ 0.0133772 \end{array}$	$\begin{array}{c} 0.0112636 \\ 0.0230039 \\ 0.0133203 \end{array}$	$\begin{array}{c} 0.0143413\\ 0.0289823\\ 0.0163083 \end{array}$	$0.0127279 \\ 0.0253604 \\ 0.0165870$	0.0130783 0.0261755 0.0165474	$\begin{array}{c} 0.0065896 \\ 0.0139656 \\ 0.0076547 \end{array}$	0.0062578 0.0131940 0.0077137	$\begin{array}{c} 0.0064280\\ 0.0135981\\ 0.0076848\end{array}$
	Bias	0.0563402 0.0580894 0.0177717	0.0545089 0.0601761 0.0169592	0.0551381 0.0600976 0.0174013	0.0246633 0.0255470 0.0077600	0.0243939 0.0262467 0.007842	$0.0245334 \\ 0.0259084 \\ 0.0078031$	$\begin{array}{c} 0.0302716\\ 0.0313821\\ 0.0095446\end{array}$	0.0294606 0.0326978 0.0094726	0.0297202 0.0325932 0.0095955	0.0142166 0.0147562 0.0044607	$\begin{array}{c} 0.0141288\\ 0.0151948\\ 0.0045205 \end{array}$	$\begin{array}{c} 0.0141802 \\ 0.0149845 \\ 0.0044898 \end{array}$
	Cov	$\begin{array}{c} 0.9062 \\ 0.9002 \\ 0.9563 \end{array}$	$\begin{array}{c} 0.8470 \\ 0.8284 \\ 0.9166 \end{array}$	$\begin{array}{c} 0.8540 \\ 0.8398 \\ 0.9234 \end{array}$	$\begin{array}{c} 0.9293\\ 0.9230\\ 0.9230\\ 0.9515 \end{array}$	$\begin{array}{c} 0.8647 \\ 0.8553 \\ 0.8997 \end{array}$	0.8945 0.8815 0.9221	0.9191 0.9123 0.9516	$\begin{array}{c} 0.8204 \\ 0.8050 \\ 0.8659 \end{array}$	$\begin{array}{c} 0.8369 \\ 0.8227 \\ 0.8832 \end{array}$	$\begin{array}{c} 0.9349 \\ 0.9299 \\ 0.9500 \end{array}$	$\begin{array}{c} 0.8484 \\ 0.8438 \\ 0.8762 \end{array}$	$\begin{array}{c} 0.8851 \\ 0.8789 \\ 0.9072 \end{array}$
$\left[\frac{m}{4}\right]$	Г	0.6115175 0.8504819 0.6617900	0.5913676 0.8177863 0.6607184	0.5936547 0.8217347 0.6611364	0.4103973 0.5891432 0.4432914	0.4023571 0.5747403 0.4415097	0.4058208 0.5807898 0.4420965	$\begin{array}{c} 0.4526093\\ 0.6464249\\ 0.4909534\end{array}$	0.4346217 0.6153402 0.4887660	0.4380814 0.6213760 0.4891926	0.3129512 0.4569044 0.3395444	0.3072105 0.4471119 0.3390108	$\begin{array}{c} 0.3098565\\ 0.4516897\\ 0.3392947\end{array}$
$T_1 = X_{\left[\frac{m}{4}\right]}$	MSE	$\begin{array}{c} 0.0280601 \\ 0.0534306 \\ 0.0302162 \end{array}$	0.0267589 0.0510490 0.0306001	0.0269050 0.0513384 0.0305805	0.0116356 0.023698 0.0131518	$\begin{array}{c} 0.0112616\\ 0.0228468\\ 0.0131776\end{array}$	$\begin{array}{c} 0.0114191\\ 0.0231984\\ 0.0131575\end{array}$	$\begin{array}{c} 0.0143751\\ 0.0289369\\ 0.0162334\end{array}$	$\begin{array}{c} 0.0135034 \\ 0.0270155 \\ 0.0163886 \end{array}$	$\begin{array}{c} 0.0136619 \\ 0.0273708 \\ 0.0163613 \end{array}$	$\begin{array}{c} 0.0065927 \\ 0.0139374 \\ 0.0076292 \end{array}$	$\begin{array}{c} 0.0063857 \\ 0.0134595 \\ 0.0076699 \end{array}$	$\begin{array}{c} 0.0064795 \\ 0.0136805 \\ 0.0076532 \end{array}$
	Bias	$\begin{array}{c} 0.0561336\\ 0.0573248\\ 0.0176496\end{array}$	0.055609 0.0587323 0.0176000	0.0557011 0.0586537 0.0176341	$\begin{array}{c} 0.0245337 \\ 0.0251655 \\ 0.0076864 \end{array}$	0.0243795 0.0255312 0.0077342	$\begin{array}{c} 0.0244384 \\ 0.0253610 \\ 0.0077099 \end{array}$	$\begin{array}{c} 0.0301952 \\ 0.0311222 \\ 0.0094986 \end{array}$	0.0298487 0.0320305 0.0095784	$\begin{array}{c} 0.0299264 \\ 0.0318978 \\ 0.0095903 \end{array}$	$\begin{array}{c} 0.0141883\\ 0.0146809\\ 0.0044467\end{array}$	$\begin{array}{c} 0.0141395 \\ 0.0149681 \\ 0.0044860 \end{array}$	$\begin{array}{c} 0.0141656\\ 0.0148472\\ 0.0044688\end{array}$
	Estimate	৽৴ঀ	<i>٩</i> ۲ ۵	0×0	0 X D	٩٢₫	0×1	0~ ۲	0×0	<i>ح</i> ×۵	محم	0×0	$\sigma \prec \Delta$
Scheme		г	П	Ш	I	Π	Η	г	п	Ξ	Г	п	Ξ
(u,m)		(20,6)			(20,12)			(30,10)			(30,20)		

0.98,)	
$\beta, \rho =$	
= 0.8	
hen R	
ov), w	
lity (C	
obabil	
age pr	
covel	
(SE) & c	
arror $(M$	
red err	
n squa	
J, mea	
ingth L	
<i>us</i>), le	
s(Bia	
of bia	
s value	
osolute	
ion: al	
roximation	
	: 0.85
. Taylc	and $\Delta = 0.85$
Table 9).96 an
r .	\cup

(n,m) Sc	Scheme			$T_1 = X$	$X[\frac{m}{4}]$			$T_2 = X_{[\frac{1}{2}]}$	$X_{\left[\frac{4 \times m}{5}\right]}$			$T_3 = X_{[m]} + 2$	$n_{]}+2$	
		Estimate	Bias	MSE	L	Cov	Bias	MSE	L	Cov	Bias	MSE	L	Cov
(20,6)	I	0×0	0.0628599 0.1099254 0.0149958	$0.0132117 \\ 0.0417299 \\ 0.0569762$	$\begin{array}{c} 0.3163052\\ 0.5767550\\ 0.9219693\end{array}$	$\begin{array}{c} 0.7579 \\ 0.7556 \\ 0.9796 \end{array}$	0.0622613 0.1087742 0.0141448	$\begin{array}{c} 0.0131673 \\ 0.0415122 \\ 0.0569572 \end{array}$	$\begin{array}{c} 0.3153199\\ 0.5742898\\ 0.9217030\end{array}$	$\begin{array}{c} 0.7513 \\ 0.7483 \\ 0.9773 \end{array}$	$\begin{array}{c} 0.0620232 \\ 0.1077835 \\ 0.0139956 \end{array}$	$\begin{array}{c} 0.0134395\\ 0.0420299\\ 0.0566481 \end{array}$	$\begin{array}{c} 0.3218799 \\ 0.5840120 \\ 0.9189326 \end{array}$	$\begin{array}{c} 0.7623\\ 0.7579\\ 0.9734\end{array}$
	п	<i>ح</i> × ۵	0.0590036 0.1001853 0.0111262	0.0142943 0.0434441 0.0555355	0.3427446 0.6129014 0.9087240	$\begin{array}{c} 0.7781 \\ 0.7702 \\ 0.9542 \end{array}$	0.0529279 0.0857503 0.0057311	0.0156013 0.0446047 0.0532156	$\begin{array}{c} 0.3736531\\ 0.6464507\\ 0.8862410\\ \end{array}$	$\begin{array}{c} 0.7893 \\ 0.7615 \\ 0.9001 \end{array}$	0.0620124 0.1077610 0.0139709	0.0134358 0.0420120 0.0566482	0.3217695 0.5837770 0.9189291	$\begin{array}{c} 0.7613 \\ 0.7559 \\ 0.9728 \end{array}$
	Π	$\sigma \prec \Delta$	$\begin{array}{c} 0.0594170 \\ 0.1012420 \\ 0.0113792 \end{array}$	$\begin{array}{c} 0.0141703 \\ 0.0432653 \\ 0.0557139 \end{array}$	0.3401905 0.6098925 0.9103978	$\begin{array}{c} 0.7814 \\ 0.7732 \\ 0.9581 \end{array}$	0.0552299 0.0912217 0.0076706	$\begin{array}{c} 0.0150335\\ 0.0439973\\ 0.0541806\end{array}$	0.3604461 0.6316049 0.8956163	$\begin{array}{c} 0.7826 \\ 0.7596 \\ 0.9214 \end{array}$	$\begin{array}{c} 0.0619422 \\ 0.1075778 \\ 0.0138572 \end{array}$	$\begin{array}{c} 0.0134522\\ 0.0420270\\ 0.0566228\\ \end{array}$	0.3221124 0.5841566 0.9186953	$\begin{array}{c} 0.7609 \\ 0.7562 \\ 0.9720 \end{array}$
(20,12)	-	$\sigma \prec \Delta$	$\begin{array}{c} 0.0274156\\ 0.0505603\\ 0.0068623\end{array}$	$\begin{array}{c} 0.0032256\\ 0.0111200\\ 0.0246272 \end{array}$	$\begin{array}{c} 0.1626660\\ 0.3080009\\ 0.6114814\end{array}$	$\begin{array}{c} 0.7719\\ 0.7708\\ 0.9769\end{array}$	$\begin{array}{c} 0.0272011\\ 0.0502064\\ 0.0074449 \end{array}$	0.0031841 0.0110021 0.0246558	$\begin{array}{c} 0.1617597 \\ 0.3066167 \\ 0.6118408 \end{array}$	$\begin{array}{c} 0.7752 \\ 0.7747 \\ 0.9780 \end{array}$	$\begin{array}{c} 0.0271755\\ 0.0500570\\ 0.0074233 \end{array}$	$\begin{array}{c} 0.0032359\\ 0.0111324\\ 0.0246113 \end{array}$	$\begin{array}{c} 0.1627422\\ 0.3078386\\ 0.6112521 \end{array}$	$\begin{array}{c} 0.7655 \\ 0.7647 \\ 0.9744 \end{array}$
	п	<i>٩۲</i> ۵	0.0264531 0.0477822 0.0062699	$\begin{array}{c} 0.0036779 \\ 0.0122304 \\ 0.0242145 \end{array}$	$0.1785982 \\ 0.3330539 \\ 0.6059324$	$\begin{array}{c} 0.7887 \\ 0.7829 \\ 0.9451 \end{array}$	0.0253864 0.0451727 0.0047812	0.0039738 0.0129317 0.0239243	$\begin{array}{c} 0.1893665\\ 0.3496698\\ 0.6019526\end{array}$	$\begin{array}{c} 0.7982 \\ 0.7876 \\ 0.9229 \end{array}$	0.0271650 0.0500126 0.0073837	$\begin{array}{c} 0.0032481 \\ 0.0111626 \\ 0.0246009 \end{array}$	0.1631904 0.3085644 0.6111155	$\begin{array}{c} 0.7647 \\ 0.7641 \\ 0.9729 \end{array}$
	Η	$\sigma \prec \Delta$	$\begin{array}{c} 0.0268702 \\ 0.0489531 \\ 0.0068694 \end{array}$	$\begin{array}{c} 0.0034961 \\ 0.0117937 \\ 0.0243852 \end{array}$	0.1720771 0.3228657 0.6082447	0.7796 0.7767 0.9602	$0.0263060 \\ 0.0476755 \\ 0.0061624$	0.0035932 0.0120354 0.0242910	0.1764825 0.3301333 0.6069576	$\begin{array}{c} 0.7905 \\ 0.7859 \\ 0.9520 \end{array}$	$\begin{array}{c} 0.0271569 \\ 0.0499862 \\ 0.0073839 \end{array}$	$\begin{array}{c} 0.0032536\\ 0.0111769\\ 0.0245963\end{array}$	$\begin{array}{c} 0.1633889\\ 0.3088877\\ 0.6110542 \end{array}$	$\begin{array}{c} 0.7644 \\ 0.7639 \\ 0.9727 \end{array}$
(30,10)	-	0×0	$\begin{array}{c} 0.0335102 \\ 0.0610859 \\ 0.0090110 \end{array}$	$\begin{array}{c} 0.0045755\\ 0.0154592\\ 0.0302981 \end{array}$	$\begin{array}{c} 0.1924975\\ 0.3615524\\ 0.6772082 \end{array}$	$\begin{array}{c} 0.7734 \\ 0.7728 \\ 0.9751 \end{array}$	$\begin{array}{c} 0.0333348\\ 0.0607331\\ 0.0086157\end{array}$	0.0045632 0.0153957 0.0302944	$\begin{array}{c} 0.1919662 \\ 0.3603460 \\ 0.6771284 \end{array}$	$\begin{array}{c} 0.7677 \\ 0.7662 \\ 0.9748 \end{array}$	$\begin{array}{c} 0.0333986 \\ 0.0608079 \\ 0.0087616 \end{array}$	$\begin{array}{c} 0.0046140\\ 0.0155952\\ 0.0302733\end{array}$	$\begin{array}{c} 0.1942514\\ 0.3648422\\ 0.6769275\end{array}$	$\begin{array}{c} 0.7739\\ 0.7725\\ 0.9763\end{array}$
	п	<i>٩</i> ٢٩	0.0311298 0.0546173 0.0057684	$\begin{array}{c} 0.0055325\\ 0.0176528\\ 0.0293545\end{array}$	0.2223317 0.4068264 0.6656364	$\begin{array}{c} 0.7963 \\ 0.7855 \\ 0.9297 \end{array}$	$\begin{array}{c} 0.0288354 \\ 0.0488433 \\ 0.0036912 \end{array}$	0.0062805 0.0191104 0.0284750	$\begin{array}{c} 0.2453153\\ 0.4385988\\ 0.6543745\end{array}$	$\begin{array}{c} 0.8032 \\ 0.7823 \\ 0.8711 \end{array}$	$0.0333909 \\ 0.0607893 \\ 0.0087961$	$\begin{array}{c} 0.0046157\\ 0.0155965\\ 0.0302709\end{array}$	$\begin{array}{c} 0.1942493 \\ 0.3647908 \\ 0.6768965 \end{array}$	$\begin{array}{c} 0.7756 \\ 0.7738 \\ 0.9762 \end{array}$
	Η	$\sigma \prec Q$	$\begin{array}{c} 0.0315705 \\ 0.0557841 \\ 0.0062017 \end{array}$	$\begin{array}{c} 0.0053644 \\ 0.0172952 \\ 0.0295326 \end{array}$	0.2173951 0.3997688 0.6678581	$\begin{array}{c} 0.7944 \\ 0.7862 \\ 0.9380 \end{array}$	0.0298371 0.0514101 0.0045549	0.0059134 0.0183925 0.0289090	$0.2341346 \\ 0.4232141 \\ 0.6599558 \\ 0.6599558 \\ 0.6599558 \\ 0.6599558 \\ 0.6599558 \\ 0.6599558 \\ 0.6599558 \\ 0.6599558 \\ 0.6599558 \\ 0.65958 \\ 0.659558 \\ 0.659558 \\ 0.659558 \\$	$\begin{array}{c} 0.8021 \\ 0.7837 \\ 0.8994 \end{array}$	0.033701 0.0607329 0.0087616	$\begin{array}{c} 0.0046236 \\ 0.0156134 \\ 0.0302630 \end{array}$	$0.1944414 \\ 0.3650473 \\ 0.6767998 \\ 0.67998 \\ 0.676798 \\ 0.67678 \\ 0.67678 \\ 0$	$\begin{array}{c} 0.773 \\ 0.7715 \\ 0.9756 \end{array}$
(30,20)	-	0~~ 0	$\begin{array}{c} 0.0156684 \\ 0.0296295 \\ 0.0040049 \end{array}$	$\begin{array}{c} 0.0012409\\ 0.0044721\\ 0.0141436\end{array}$	0.1027082 0.1978643 0.4646368	$\begin{array}{c} 0.7702 \\ 0.7696 \\ 0.9767 \end{array}$	$\begin{array}{c} 0.0156328\\ 0.0295816\\ 0.0050797 \end{array}$	0.0012284 0.0044371 0.0141531	$\begin{array}{c} 0.1019473\\ 0.1965359\\ 0.4648012 \end{array}$	$\begin{array}{c} 0.7635 \\ 0.7637 \\ 0.7637 \\ 0.9771 \end{array}$	$\begin{array}{c} 0.0156163 \\ 0.0295166 \\ 0.0050690 \end{array}$	0.0012471 0.0044971 0.0141403	$\begin{array}{c} 0.1032183\\ 0.1988627\\ 0.4645835\end{array}$	$\begin{array}{c} 0.7707\\ 0.7705\\ 0.9760\end{array}$
	Ξ	٩٢٩	0.0151228 0.0280672 0.0039334	$\begin{array}{c} 0.0015051 \\ 0.0052412 \\ 0.0139402 \end{array}$	0.1161561 0.2207643 0.4611026	$\begin{array}{c} 0.7863 \\ 0.7813 \\ 0.9363 \end{array}$	0.0147613 0.0270887 0.0031630	0.0016487 0.0056358 0.0138211	$\begin{array}{c} 0.1233158\\ 0.2326061\\ 0.4589962 \end{array}$	$\begin{array}{c} 0.7941 \\ 0.7862 \\ 0.9158 \end{array}$	0.0156023 0.0294835 0.0050644	0.0012498 0.0045034 0.0141379	$\begin{array}{c} 0.1032498\\ 0.1988692\\ 0.4645403 \end{array}$	$\begin{array}{c} 0.7697 \\ 0.7695 \\ 0.9748 \end{array}$
	Η	<i>٩</i> ٢٩	$\begin{array}{c} 0.0153690 \\ 0.0287705 \\ 0.0044002 \end{array}$	$\begin{array}{c} 0.0013854 \\ 0.0048985 \\ 0.0140340 \end{array}$	0.1101935 0.2107182 0.4627395	$\begin{array}{c} 0.7794 \\ 0.7772 \\ 0.9533 \end{array}$	$\begin{array}{c} 0.0152084 \\ 0.0283568 \\ 0.0039987 \end{array}$	0.0014355 0.0050407 0.0139938	$\begin{array}{c} 0.1128121 \\ 0.2151519 \\ 0.4620353 \end{array}$	$\begin{array}{c} 0.7860 \\ 0.7816 \\ 0.9470 \end{array}$	0.0155975 0.0294714 0.0050458	$\begin{array}{c} 0.0012512 \\ 0.0045073 \\ 0.0141367 \end{array}$	$\begin{array}{c} 0.1033053\\ 0.1989563\\ 0.4645204 \end{array}$	$\begin{array}{c} 0.7694 \\ 0.7692 \\ 0.9747 \end{array}$

(n,m) Scheme	Estimate	(20,6) I ρ	Ω	n A ≻ A	(20,12) I ρ	σ ≺ Δ	n م م ل	$\begin{array}{ccc} (30,10) & \mathrm{I} & \rho \\ \lambda & \lambda \\ \Delta \end{array}$	Ω	n ¢∠∆	$\begin{array}{c c} (30,20) & \mathrm{I} & \rho \\ \lambda & \lambda \\ \Delta \end{array}$	μ
	tte Bias	0.0046081 0.0024443 0.0026371	0.0066111 0.0037282 0.0038863	$\begin{array}{c} 0.0063645 \\ 0.0035624 \\ 0.0037297 \end{array}$	0.0022029 0.0010644 0.0012076		$\begin{array}{c} 0.0027804 \\ 0.0013812 \\ 0.0015463 \end{array}$	0.0027715 0.0013514 0.0015242	$\begin{array}{c} 0.0049823 \\ 0.0026255 \\ 0.002837 \end{array}$	0.0045327 0.0023509 0.0025624	0.0013903 0.0006215 0.0007261	
$T_1 = X_{[}$	MSE	$\begin{array}{c} 0.0013357 \\ 0.0001274 \\ 0.0001966 \end{array}$	$\begin{array}{c} 0.0019649 \\ 0.0002337 \\ 0.0003249 \end{array}$	$\begin{array}{c} 0.0018742 \\ 0.0002147 \\ 0.0003040 \end{array}$	$\begin{array}{c} 0.0005905\\ 0.0000420\\ 0.0000739\end{array}$	$\begin{array}{c} 0.0009558\\ 0.0000820\\ 0.0001325 \end{array}$	$\begin{array}{c} 0.0007984 \\ 0.0000633 \\ 0.0001060 \end{array}$	$\begin{array}{c} 0.0007079\\ 0.0000527\\ 0.0000907\end{array}$	0.0013278 0.0001328 0.0002005	$\begin{array}{c} 0.0011971 \\ 0.0001127 \\ 0.0001747 \end{array}$	0.0002981 0.0000176 0.0000335	0.0005192 0.0000355
$X[\frac{m}{4}]$	Г	$0.1347898 \\ 0.0388790 \\ 0.0494241$	0.1648653 0.0521711 0.0633862	0.1615085 0.0506244 0.0617960	0.0902794 0.0227563 0.0308529	$\begin{array}{c} 0.1110832 \\ 0.0297519 \\ 0.0391451 \end{array}$	$\begin{array}{c} 0.1022750 \\ 0.0266740 \\ 0.0355571 \end{array}$	0.1005795 0.0259418 0.0347748	0.1395441 0.0405729 0.0513863	$\begin{array}{c} 0.1321595\\ 0.0375232\\ 0.0480636\end{array}$	$\begin{array}{c} 0.0685802 \\ 0.0162309 \\ 0.0226553 \end{array}$	0.0888002 0.0220238
	Cov	$\begin{array}{c} 0.937 \\ 0.937 \\ 0.937 \end{array}$	$\begin{array}{c} 0.945 \\ 0.945 \\ 0.945 \end{array}$	$\begin{array}{c} 0.944 \\ 0.944 \\ 0.944 \end{array}$	$\begin{array}{c} 0.952 \\ 0.952 \\ 0.952 \end{array}$	$\begin{array}{c} 0.934 \\ 0.934 \\ 0.934 \end{array}$	$\begin{array}{c} 0.933 \\ 0.933 \\ 0.933 \end{array}$	$\begin{array}{c} 0.946 \\ 0.946 \\ 0.946 \end{array}$	$\begin{array}{c} 0.954 \\ 0.954 \\ 0.954 \end{array}$	$\begin{array}{c} 0.950 \\ 0.950 \\ 0.950 \end{array}$	$\begin{array}{c} 0.954 \\ 0.954 \\ 0.954 \end{array}$	0.946 0.946
	Bias	$\begin{array}{c} 0.0048502 \\ 0.0026011 \\ 0.0027893 \end{array}$	0.0106885 0.0068181 0.0066419	$\begin{array}{c} 0.0089978 \\ 0.0054750 \\ 0.005468 \end{array}$	$\begin{array}{c} 0.0023185\\ 0.0011107\\ 0.0012622\end{array}$	$\begin{array}{c} 0.0043640 \\ 0.0022711 \\ 0.0024721 \end{array}$	$\begin{array}{c} 0.0032695 \\ 0.0016383 \\ 0.0018210 \end{array}$	$\begin{array}{c} 0.0028034 \\ 0.0013681 \\ 0.0015427 \end{array}$	$0.0073802 \\ 0.0042404 \\ 0.0043752$	$\begin{array}{c} 0.0061363 \\ 0.0033952 \\ 0.0035796 \end{array}$	0.0013630 0.0006247 0.0007248	0.0028454 0.0014135
$T_2 = X_{\left[\frac{4 \times m}{5}\right]}$	MSE	0.0014364 0.0001456 0.0002179	$\begin{array}{c} 0.0038318 \\ 0.0007349 \\ 0.000823 \end{array}$	$\begin{array}{c} 0.0030300\\ 0.0004896\\ 0.0005939\end{array}$	0.0006114 0.0000466 0.0000794	$\begin{array}{c} 0.0012504 \\ 0.0001257 \\ 0.0001886 \end{array}$	$\begin{array}{c} 0.0009230 \\ 0.0000806 \\ 0.0001292 \end{array}$	$\begin{array}{c} 0.0006851\\ 0.0000543\\ 0.0000911\end{array}$	$\begin{array}{c} 0.0022008 \\ 0.0002984 \\ 0.0003918 \end{array}$	$\begin{array}{c} 0.0017654 \\ 0.0002120 \\ 0.0002942 \end{array}$	0.0002931 0.0000176 0.0000334	0.0007552 0.0000603
2]	Г	$\begin{array}{c} 0.1386855\\ 0.0406242\\ 0.0512655 \end{array}$	$\begin{array}{c} 0.2182345 \\ 0.0832756 \\ 0.0924787 \end{array}$	$\begin{array}{c} 0.1966780\\ 0.0698516\\ 0.0802618\end{array}$	0.0911821 0.0230267 0.0311767	$\begin{array}{c} 0.1293809\\ 0.0365059\\ 0.0468364\end{array}$	$\begin{array}{c} 0.1105440\\ 0.0295029\\ 0.0388831\\ \end{array}$	0.1018061 0.0262638 0.0351963	$0.1753712 \\ 0.0572204 \\ 0.0684057$	$\begin{array}{c} 0.1576577\\ 0.0484930\\ 0.0596582\end{array}$	$\begin{array}{c} 0.0692894 \\ 0.0165015 \\ 0.0229861 \end{array}$	0.1031100 0.0269832
	Cov	$\begin{array}{c} 0.938 \\ 0.938 \\ 0.938 \\ 0.938 \end{array}$	$\begin{array}{c} 0.947 \\ 0.947 \\ 0.947 \end{array}$	$\begin{array}{c} 0.939 \\ 0.939 \\ 0.939 \end{array}$	0.945 0.945 0.945	$\begin{array}{c} 0.948 \\ 0.948 \\ 0.948 \\ 0.948 \end{array}$	$\begin{array}{c} 0.940 \\ 0.940 \\ 0.940 \end{array}$	0.960 0.960 0.960	$0.956 \\ 0.956 \\ 0.956 \\ 0.956$	$0.954 \\ 0.954 \\ 0.954 \\ 0.954$	0.955 0.955 0.955	0.945 0.945
	Bias	0.0050730 0.0027037 0.0029017	0.0050844 0.0027126 0.0029099	$\begin{array}{c} 0.0051217 \\ 0.002739 \\ 0.0029349 \end{array}$	$\begin{array}{c} 0.0023881 \\ 0.0011548 \\ 0.0013090 \end{array}$	0.0024064 0.0011642 0.0013196	$\begin{array}{c} 0.0024179 \\ 0.0011702 \\ 0.0013262 \end{array}$	$\begin{array}{c} 0.0028967 \\ 0.0014200 \\ 0.0015975 \end{array}$	$\begin{array}{c} 0.0029007 \\ 0.0014219 \\ 0.0015999 \end{array}$	$\begin{array}{c} 0.0029140 \\ 0.0014292 \\ 0.0016078 \end{array}$	0.0013926 0.0006387 0.0007412	0.0014108 0.0006473
$T_3 = X_{[m]} + 2$	MSE	0.0015668 0.0002213 0.0002768	$\begin{array}{c} 0.0015695 \\ 0.0002202 \\ 0.0002767 \end{array}$	$\begin{array}{c} 0.0015745 \\ 0.0002168 \\ 0.0002756 \end{array}$	$\begin{array}{c} 0.0006159 \\ 0.0000464 \\ 0.0000797 \end{array}$	$\begin{array}{c} 0.0006184 \\ 0.0000464 \\ 0.0000799 \end{array}$	$\begin{array}{c} 0.0006211\\ 0.0000467\\ 0.0000803 \end{array}$	$\begin{array}{c} 0.0007269 \\ 0.0000556 \\ 0.0000948 \end{array}$	$\begin{array}{c} 0.0007259\\ 0.0000555\\ 0.0000946 \end{array}$	$\begin{array}{c} 0.0007261 \\ 0.0000555 \\ 0.0000946 \end{array}$	$\begin{array}{c} 0.0003145\\ 0.0000187\\ 0.0000356\end{array}$	0.0003169 0.0000190
₁]+2	Г	$\begin{array}{c} 0.1410920\\ 0.0415232\\ 0.0521720 \end{array}$	$\begin{array}{c} 0.1412640\\ 0.0415943\\ 0.0522521\\ \end{array}$	$\begin{array}{c} 0.1420107\\ 0.0419165\\ 0.0526018\end{array}$	0.0938341 0.0238634 0.0322213	0.0941866 0.0239735 0.0323546	0.0944156 0.0240477 0.0324445	$\begin{array}{c} 0.1038537\\ 0.0270144\\ 0.0360749 \end{array}$	0.1039106 0.0270205 0.0360859	0.1041405 0.0270846 0.0361662	$\begin{array}{c} 0.0701542 \\ 0.0167115 \\ 0.0232667 \end{array}$	0.0705761 0.0168242
	Cov	$\begin{array}{c} 0.950 \\ 0.950 \\ 0.950 \end{array}$	$\begin{array}{c} 0.949 \\ 0.949 \\ 0.949 \end{array}$	$\begin{array}{c} 0.948 \\ 0.948 \\ 0.948 \\ 0.948 \end{array}$	$\begin{array}{c} 0.942 \\ 0.942 \\ 0.942 \\ 0.942 \end{array}$	$\begin{array}{c} 0.941 \\ 0.941 \\ 0.941 \\ 0.941 \end{array}$	$\begin{array}{c} 0.943 \\ 0.943 \\ 0.943 \\ 0.943 \end{array}$	$\begin{array}{c} 0.955\\ 0.955\\ 0.955\\ 0.955\end{array}$	0.955 0.955 0.955	0.955 0.955 0.955	$\begin{array}{c} 0.949\\ 0.949\\ 0.949\end{array}$	0.952

Table 10. Bootstrap: absolute value of bias (|Bias|), length L, mean squared error (MSE) & coverage probability (Cov), when R = 0.003, $\rho = 0.1$, $\lambda = 0.01$ and $\Delta = 0.02$

рц	
J1 ar	
$\Lambda = 0.0$	
\sim	
$\rho = 0.1$	
•	
0.03	
R = (
/hen	
v), W	
(Coil	
ility	
babi	
e prc	
erag	
cov	
SE) &	
Z	
iror (
er er	
quare	
an sc	
, me	
th L	
leng	
as),	
(Bia	
bias	
e of l	
value	
lute	
abso	
rap:	
ootsti	
1. Bo	0.02
ole 1	= 0.0
Tab	Ā

(n,m) Scheme	ne		$T_1 = X_{\left[\frac{m}{4}\right]}$	<u>[4</u>]			$T_2 = X_{\left[\frac{4 \times m}{5}\right]}$	$\left[\frac{\times}{5}m\right]$			$T_3 = X_{[m]} + 2$	₁]+2	
	Estimate	Bias	MSE	Г	Cov	Bias	MSE	Г	Cov	Bias	MSE	Г	Cov
(20,6) I	$\sigma \prec \phi$	0.0097409 0.0157744 0.0107146	0.0096547 0.0071669 0.0047671	0.3643612 0.2956564 0.2481810	$\begin{array}{c} 0.937 \\ 0.937 \\ 0.937 \end{array}$	0.0100960 0.0165164 0.0112363	0.0101931 0.0077681 0.0051350	0.3729073 0.3049557 0.2556039	$\begin{array}{c} 0.938 \\ 0.938 \\ 0.938 \end{array}$	0.0107014 0.0171821 0.0118111	$\begin{array}{c} 0.0101712 \\ 0.0082555 \\ 0.0054922 \end{array}$	$\begin{array}{c} 0.3786757 \\ 0.3075351 \\ 0.2588454 \end{array}$	$0.950 \\ 0.95$
П	$\sigma \prec Q$	0.0130639 0.0218570 0.0150728	$\begin{array}{c} 0.0131683\\ 0.0108950\\ 0.0070880 \end{array}$	$0.4303414 \\ 0.3652007 \\ 0.3040826$	$\begin{array}{c} 0.945 \\ 0.945 \\ 0.945 \end{array}$	0.0194634 0.0325285 0.0230899	0.0207306 0.0209561 0.013537	0.5233829 0.4751116 0.3977712	$\begin{array}{c} 0.947 \\ 0.947 \\ 0.947 \end{array}$	$\begin{array}{c} 0.0107160 \\ 0.0172182 \\ 0.0118327 \end{array}$	$\begin{array}{c} 0.0101948\\ 0.0083005\\ 0.0055154 \end{array}$	0.3790738 0.3080081 0.2592159	$0.949 \\ 0.949 \\ 0.949 \\ 0.949$
⊟	$\sigma \prec Q$	$\begin{array}{c} 0.0126663 \\ 0.0211553 \\ 0.0145537 \end{array}$	$\begin{array}{c} 0.0127265\\ 0.0103708\\ 0.0067556\end{array}$	0.4231908 0.3576306 0.2979062	$\begin{array}{c} 0.944 \\ 0.944 \\ 0.944 \end{array}$	0.0169307 0.0280569 0.0198414	$\begin{array}{c} 0.0177783\\ 0.0170965\\ 0.0109869\end{array}$	$\begin{array}{c} 0.4882753\\ 0.4327783\\ 0.3611974\end{array}$	$\begin{array}{c} 0.939 \\ 0.939 \\ 0.939 \\ 0.939 \end{array}$	0.0107747 0.0173395 0.0119055	$\begin{array}{c} 0.0102624 \\ 0.0083791 \\ 0.0055579 \end{array}$	0.3807421 0.3099261 0.2607006	$\begin{array}{c} 0.948 \\ 0.948 \\ 0.948 \\ 0.948 \end{array}$
(20,12) I	$\sigma \prec \Delta$	$\begin{array}{c} 0.0050751 \\ 0.0077441 \\ 0.0052270 \end{array}$	$\begin{array}{c} 0.0046399\\ 0.0028468\\ 0.0020369\end{array}$	$\begin{array}{c} 0.2545171 \\ 0.1902737 \\ 0.1647237 \end{array}$	$\begin{array}{c} 0.952 \\ 0.952 \\ 0.952 \end{array}$	$\begin{array}{c} 0.0053370\\ 0.0080666\\ 0.0054769\end{array}$	$\begin{array}{c} 0.0047259\\ 0.0030179\\ 0.0021262\end{array}$	$\begin{array}{c} 0.2568724 \\ 0.1919660 \\ 0.1662718 \end{array}$	$\begin{array}{c} 0.945 \\ 0.945 \\ 0.945 \end{array}$	$\begin{array}{c} 0.0055021 \\ 0.0083638 \\ 0.0056569 \end{array}$	$\begin{array}{c} 0.0047718\\ 0.0030523\\ 0.0021467\end{array}$	$\begin{array}{c} 0.2638985\\ 0.1984353\\ 0.1713866\end{array}$	$\begin{array}{c} 0.942 \\ 0.942 \\ 0.942 \end{array}$
П	¢≺∆	0.0071497 0.0112822 0.0076362	0.0071456 0.0049409 0.0033675	0.3075101 0.2381870 0.2032795	$\begin{array}{c} 0.934 \\ 0.934 \\ 0.934 \end{array}$	0.0093346 0.0149129 0.0101643	0.0089167 0.0067326 0.0044713	$\begin{array}{c} 0.3521897 \\ 0.2809415 \\ 0.2374336 \end{array}$	$\begin{array}{c} 0.948 \\ 0.948 \\ 0.948 \\ 0.948 \end{array}$	$\begin{array}{c} 0.0055424 \\ 0.0084294 \\ 0.0057024 \end{array}$	$\begin{array}{c} 0.0047947 \\ 0.0030595 \\ 0.0021539 \end{array}$	0.2648175 0.1992133 0.1720209	0.941 0.941 0.941
⊟	0×0	$\begin{array}{c} 0.0062459 \\ 0.0097434 \\ 0.0065842 \end{array}$	$\begin{array}{c} 0.0061019\\ 0.0040170\\ 0.0027889 \end{array}$	$\begin{array}{c} 0.2854485 \\ 0.2177584 \\ 0.1869087 \end{array}$	$\begin{array}{c} 0.933 \\ 0.933 \\ 0.933 \end{array}$	$\begin{array}{c} 0.0072450 \\ 0.0113276 \\ 0.0076879 \end{array}$	$\begin{array}{c} 0.0068705 \\ 0.0048034 \\ 0.0032635 \end{array}$	0.3063514 0.2367405 0.2022491	$\begin{array}{c} 0.940 \\ 0.940 \\ 0.940 \\ 0.940 \end{array}$	$\begin{array}{c} 0.0055660 \\ 0.0084690 \\ 0.0057294 \end{array}$	$\begin{array}{c} 0.0048139 \\ 0.0030744 \\ 0.0021637 \end{array}$	$\begin{array}{c} 0.2654118\\ 0.1997453\\ 0.1724481\\ 0.1724481 \end{array}$	$\begin{array}{c} 0.943 \\ 0.943 \\ 0.943 \\ 0.943 \end{array}$
(30,10) I	<i>ح</i> × ۵	$\begin{array}{c} 0.0062923 \\ 0.0096741 \\ 0.0065480 \end{array}$	$\begin{array}{c} 0.0054996 \\ 0.0034699 \\ 0.0024496 \end{array}$	0.2816658 0.2136271 0.1837223	$\begin{array}{c} 0.946 \\ 0.946 \\ 0.946 \end{array}$	$\begin{array}{c} 0.0063826\\ 0.0097855\\ 0.0066299\end{array}$	$\begin{array}{c} 0.0052381 \\ 0.0034603 \\ 0.0024024 \end{array}$	$\begin{array}{c} 0.2850578 \\ 0.2160206 \\ 0.1859244 \end{array}$	0.960 0.960 0.960	$\begin{array}{c} 0.0065560 \\ 0.0101101 \\ 0.0068403 \end{array}$	$\begin{array}{c} 0.0056060\\ 0.0036185\\ 0.0025314\end{array}$	$\begin{array}{c} 0.2901491 \\ 0.2213451 \\ 0.1899111 \end{array}$	0.955 0.955 0.955
П	$\sigma \prec \Delta$	0.0105237 0.0169646 0.0115521	0.0094612 0.0072106 0.0047639	$\begin{array}{c} 0.3762042 \\ 0.3066002 \\ 0.2571019 \end{array}$	$\begin{array}{c} 0.954 \\ 0.954 \\ 0.954 \end{array}$	0.0145124 0.0240152 0.0167405	$\begin{array}{c} 0.0139783 \\ 0.0124375 \\ 0.0080101 \end{array}$	$\begin{array}{c} 0.4518406\\ 0.3862158\\ 0.3226124\end{array}$	0.956 0.956 0.956	$\begin{array}{c} 0.0065638\\ 0.0101250\\ 0.0068511 \end{array}$	$\begin{array}{c} 0.0055991 \\ 0.0036119 \\ 0.0025272 \end{array}$	$\begin{array}{c} 0.2903254 \\ 0.2213976 \\ 0.1899854 \end{array}$	0.955 0.955 0.955
Ξ	$\sigma \prec Q$	0.0097041 0.0155328 0.0105519	$\begin{array}{c} 0.0087018 \\ 0.0063887 \\ 0.0042661 \end{array}$	$\begin{array}{c} 0.3592105\\ 0.2889073\\ 0.2431543\end{array}$	$\begin{array}{c} 0.950 \\ 0.950 \\ 0.950 \end{array}$	0.0124666 0.0204876 0.0141183	$\begin{array}{c} 0.0117858 \\ 0.0098838 \\ 0.0064061 \end{array}$	$\begin{array}{c} 0.4159667\\ 0.3465038\\ 0.2900977\\ \end{array}$	$\begin{array}{c} 0.954 \\ 0.954 \\ 0.954 \end{array}$	0.0065894 0.0101738 0.0068846	$\begin{array}{c} 0.0056006 \\ 0.0036124 \\ 0.0025276 \end{array}$	$\begin{array}{c} 0.2909445 \\ 0.2218581 \\ 0.1903848 \end{array}$	$\begin{array}{c} 0.955 \\ 0.955 \\ 0.955 \end{array}$
(30,20) I	<i>ح</i> × ۵	$\begin{array}{c} 0.0033985\\ 0.0047609\\ 0.0032634\end{array}$	$\begin{array}{c} 0.0024416 \\ 0.0013002 \\ 0.0009929 \end{array}$	$\begin{array}{c} 0.1964889\\ 0.1404614\\ 0.1242022 \end{array}$	$\begin{array}{c} 0.954 \\ 0.954 \\ 0.954 \end{array}$	$\begin{array}{c} 0.0033022\\ 0.0047548\\ 0.0032296\end{array}$	$\begin{array}{c} 0.0023922\\ 0.0012991\\ 0.0009845 \end{array}$	0.1982941 0.1426166 0.1257738	0.955 0.955 0.955	$\begin{array}{c} 0.0033627 \\ 0.0048595 \\ 0.0033015 \end{array}$	$\begin{array}{c} 0.0025711\\ 0.0013826\\ 0.0010514\end{array}$	0.2007221 0.1442947 0.1272548	$\begin{array}{c} 0.949\\ 0.949\\ 0.949\end{array}$
п	0×0	$\begin{array}{c} 0.0052820 \\ 0.0078083 \\ 0.0053209 \end{array}$	$\begin{array}{c} 0.0041207 \\ 0.0024337 \\ 0.0017678 \end{array}$	$\begin{array}{c} 0.2513358\\ 0.1855100\\ 0.1614796\\ \end{array}$	$\begin{array}{c} 0.946 \\ 0.946 \\ 0.946 \end{array}$	0.0063673 0.0100001 0.0067428	$\begin{array}{c} 0.0057614 \\ 0.0038241 \\ 0.0026481 \end{array}$	0.2876432 0.2204385 0.1888532	$\begin{array}{c} 0.945 \\ 0.945 \\ 0.945 \end{array}$	$\begin{array}{c} 0.0034032 \\ 0.0049241 \\ 0.0033466 \end{array}$	$\begin{array}{c} 0.0025882\\ 0.0013972\\ 0.0010606 \end{array}$	$\begin{array}{c} 0.2018945\\ 0.1452183\\ 0.1280348\\ 0.1280348\end{array}$	$\begin{array}{c} 0.952 \\ 0.952 \\ 0.952 \\ 0.952 \end{array}$
Ξ	¢ ≺ 4	0.0044118 0.0063848 0.0043622	$0.003312 \\ 0.0018689 \\ 0.0013869 \\ 0.0013869$	0.2270663 0.1649277 0.1446639	$\begin{array}{c} 0.944 \\ 0.944 \\ 0.944 \end{array}$	0.0047611 0.0072477 0.0048885	0.0040067 0.0024095 0.0017393	0.2450832 0.1820473 0.1580778	0.951 0.951 0.951	$\begin{array}{c} 0.0034171 \\ 0.0049460 \\ 0.0033615 \end{array}$	0.0025996 0.0014049 0.0010659	$0.2023344 \\ 0.1455689 \\ 0.1283288 \\ 0.128328 \\ $	0.951 0.951 0.951

0.5	
0	
.7, X	
0	
$= 0.2, \rho = 0.7$	
n R	
whe	
(vo)	
$\mathbf{V}(C)$	
abilit	
prob	
age p	
overag	
s S	
SE) & ci	
Ν	
error (
ired o	
squa	
lean	
L, m	
igth L	
), len	
ias	
(B)	
bias (
l o el	
valı	
olute	
abse	
ults:	
p res	
tstra	
Boo	0.42
e 12.	and $\Delta = 0.42$
Tablé	7 pue
Γ.	

	$I_1 = \Lambda \left[\frac{m}{4}\right]$	<u>4</u>]			$I_2 = A \left[\frac{4 \times m}{5} \right]$	5 J			$13 = X_{[m]} + 2$	n]+7	
Bias	MSE	L	Cov	Bias	MSE	L	Cov	Bias	MSE	L	Cov
0.014139/ 0.0248150 0.020677	t 0.0173213 0 0.0327084 0 0.0239120	0.4851841 0.6737593 0.5957980	$\begin{array}{c} 0.936 \\ 0.936 \\ 0.936 \\ 0.936 \end{array}$	$\begin{array}{c} 0.0145958 \\ 0.0252386 \\ 0.0208736 \end{array}$	0.0168466 0.0316914 0.0232406	0.4907228 0.6822360 0.6052197	$\begin{array}{c} 0.945 \\ 0.945 \\ 0.945 \\ 0.945 \end{array}$	0.0154351 0.0258206 0.0205663	0.0168592 0.0312920 0.0227013	0.5030400 0.6968440 0.6204231	0.960 0.960 0.960
0.02125420.0375534		0.5397494 0.7306063 0.6580472	$\begin{array}{c} 0.975 \\ 0.975 \\ 0.975 \\ 0.975 \end{array}$	$0.0317404 \\ 0.0545288 \\ 0.0461813$	0.0240698 0.0388452 0.0284703	0.5926571 0.7811766 0.7165494	$\begin{array}{c} 0.976 \\ 0.976 \\ 0.976 \end{array}$	0.0154326 0.0258696 0.0206154	0.0168694 0.0313106 0.0227084	0.5032963 0.6969537 0.6202409	0.961 0.961 0.961
0.016780; 0.0294620 0.022930		0.499659 0.6898956 0.6168704	$\begin{array}{c} 0.951 \\ 0.951 \\ 0.951 \end{array}$	$\begin{array}{c} 0.0285407 \\ 0.0491613 \\ 0.0410265 \end{array}$	0.022935 0.0380757 0.0279932	0.5770888 0.7677236 0.7015736	$\begin{array}{c} 0.975 \\ 0.975 \\ 0.975 \\ 0.975 \end{array}$	$\begin{array}{c} 0.0155263\\ 0.0261829\\ 0.0208371 \end{array}$	$\begin{array}{c} 0.0169781\\ 0.0314877\\ 0.0228436\end{array}$	0.5040291 0.6974452 0.6205804	$\begin{array}{c} 0.964 \\ 0.964 \\ 0.964 \end{array}$
0.006252200.011169200003952	0.0100786 0.0211436 0.0142180	$\begin{array}{c} 0.3784570\\ 0.5469973\\ 0.4550504\end{array}$	$\begin{array}{c} 0.947 \\ 0.947 \\ 0.947 \end{array}$	0.0064308 0.0115208 0.0098415	0.0091113 0.0195308 0.0133135	$\begin{array}{c} 0.3839179\\ 0.5550169\\ 0.4608642\end{array}$	0.957 0.957 0.957	0.0067700 0.0121018 0.0101267	$\begin{array}{c} 0.0102060\\ 0.0214703\\ 0.0146796\end{array}$	0.3896721 0.5625002 0.4707832	$0.955 \\ 0.955 \\ 0.955 \\ 0.955$
0.0102894 0.0182029 0.0147740	t 0.0132533 0.0269432 0.0193593	0.4431201 0.6297215 0.5468504	$0.952 \\ 0.952 \\ 0.952$	$\begin{array}{c} 0.0141285 \\ 0.0247680 \\ 0.0201619 \end{array}$	0.0153531 0.0296295 0.0216598	0.4867802 0.6781844 0.5976450	$\begin{array}{c} 0.958 \\ 0.958 \\ 0.958 \\ 0.958 \end{array}$	0.0067968 0.0121632 0.0101707	$\begin{array}{c} 0.0102199\\ 0.0214814\\ 0.0146867 \end{array}$	0.3905714 0.5634463 0.4715560	0.955 0.955 0.955
0.0070010 0.012018 0.009923	0.0109277 0.0228443 0.0157058	0.3837849 0.5528494 0.4621617	$\begin{array}{c} 0.933 \\ 0.933 \\ 0.933 \end{array}$	$\begin{array}{c} 0.0106113\\ 0.0185282\\ 0.0153227\end{array}$	$\begin{array}{c} 0.0128473\\ 0.0258794\\ 0.0185765\end{array}$	0.4498006 0.6361695 0.549465	$0.956 \\ 0.956 \\ 0.956$	0.0068356 0.0122382 0.0102173	$\begin{array}{c} 0.0102462\\ 0.0215189\\ 0.0147184\end{array}$	0.3913009 0.5642711 0.4723755	$0.955 \\ 0.955 \\ 0.955 \\ 0.955$
0.0063859 0.0114118 0.0095755	0.0102970 0.0215415 0.0145333	0.3811191 0.5503783 0.4587801	$\begin{array}{c} 0.946 \\ 0.946 \\ 0.946 \\ 0.946 \end{array}$	$\begin{array}{c} 0.0065258\\ 0.0117229\\ 0.0099746 \end{array}$	$\begin{array}{c} 0.0092576\\ 0.0198060\\ 0.0135339\end{array}$	0.3864415 0.5582560 0.4643317	0.960 0.960 0.960	0.0067700 0.0121018 0.0101267	$\begin{array}{c} 0.0102060\\ 0.0214703\\ 0.0146796\end{array}$	$\begin{array}{c} 0.3896721 \\ 0.5625002 \\ 0.4707832 \end{array}$	0.955 0.955 0.955
0.01214090.021477	0.0145562 0.0290525 0.0212052	0.4640182 0.6541411 0.5749933	$\begin{array}{c} 0.954 \\ 0.954 \\ 0.954 \end{array}$	0.0193504 0.0337041 0.0271128	$\begin{array}{c} 0.0183464 \\ 0.0333715 \\ 0.0245698 \end{array}$	0.5289440 0.7223986 0.6482635	$\begin{array}{c} 0.975 \\ 0.975 \\ 0.975 \\ 0.975 \end{array}$	0.0067787 0.0121252 0.0101429	$\begin{array}{c} 0.0102024 \\ 0.0214542 \\ 0.0146647 \end{array}$	0.3901201 0.5629440 0.4710832	0.955 0.955 0.955
0.0109690 0.019437 0.0156113	5 0.0139877 7 0.0281156 8 0.0203021	0.4505301 0.6378461 0.5563984	$\begin{array}{c} 0.950 \\ 0.950 \\ 0.950 \end{array}$	0.0159464 0.0278609 0.0225508	$\begin{array}{c} 0.0165252\\ 0.0312857\\ 0.0229354\\ 0.0229354\end{array}$	0.5018451 0.6940647 0.6162352	$\begin{array}{c} 0.962 \\ 0.962 \\ 0.962 \end{array}$	$0.0068184 \\ 0.0121964 \\ 0.0101831$	$\begin{array}{c} 0.0102117\\ 0.0214546\\ 0.01146654\\ 0.0146654\end{array}$	0.3909943 0.5639524 0.4719769	$0.955 \\ 0.955 \\ 0.955 \\ 0.955$
0.0032899 0.005810 0.005343	0.0053282 0.0114351 0.0068492	0.2867375 0.4219052 0.3288784	$\begin{array}{c} 0.953\\ 0.953\\ 0.953\end{array}$	$\begin{array}{c} 0.0033912 \\ 0.0055839 \\ 0.0051606 \end{array}$	$\begin{array}{c} 0.0050746\\ 0.0111278\\ 0.0067049 \end{array}$	$\begin{array}{c} 0.2872892 \\ 0.4246590 \\ 0.3318073 \end{array}$	0.955 0.955 0.955	$\begin{array}{c} 0.0035233\\ 0.0059573\\ 0.0052665\end{array}$	$\begin{array}{c} 0.0055372 \\ 0.0119694 \\ 0.0072067 \end{array}$	$\begin{array}{c} 0.2909235\\ 0.4288250\\ 0.3357459\end{array}$	$\begin{array}{c} 0.949 \\ 0.949 \\ 0.949 \\ 0.949 \end{array}$
0.0050797 0.0091040 0.008174	7 0.0082811 6 0.0173277 6 0.0111856	$\begin{array}{c} 0.3523053\\ 0.5117599\\ 0.4155083\end{array}$	$\begin{array}{c} 0.946 \\ 0.946 \\ 0.946 \end{array}$	0.0067238 0.0117173 0.0100717	0.0101398 0.0215014 0.0148207	0.3842908 0.5568929 0.4668933	$\begin{array}{c} 0.945 \\ 0.945 \\ 0.945 \end{array}$	0.0035242 0.0059851 0.0053283	0.0055508 0.0120183 0.0072512	0.2924221 0.4310227 0.3376696	$\begin{array}{c} 0.952 \\ 0.952 \\ 0.952 \end{array}$
0.004193		0.3248072 0.4743576 0.3778483	$\begin{array}{c} 0.944 \\ 0.944 \\ 0.944 \end{array}$	$0.0049234 \\ 0.0081987 \\ 0.0072995$	$0.0077694 \\ 0.0167407 \\ 0.010885$	0.3408670 0.4991944 0.4052772	0.951 0.951 0.951	0.0035335 0.0060020 0.0053489	0.0055702 0.0120601 0.072820	0.2929728 0.4318050 0.3383823	0.951
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Bias MS Bias MS 0.0141394 0.017 0.0248150 0.0325 0.0226772 0.0325 0.0226772 0.0325 0.0215545 0.0256 0.0215554 0.0366 0.0215554 0.0366 0.02294620 0.0167 0.02294620 0.0167 0.02294620 0.0167 0.02294620 0.0167 0.02294620 0.0167 0.02294620 0.0167 0.02294620 0.0167 0.02294620 0.0167 0.0111692 0.0125 0.0111692 0.0125 0.0111692 0.0125 0.01141692 0.0125 0.01120188 0.0125 0.01120188 0.0125 0.01120188 0.0125 0.0114118 0.0125 0.01120188 0.0125 0.01120188 0.0126 0.01120188 0.0126 0.01127 0.01126 <t< td=""><td>Bias MSE 0.0141394 0.0173213 0.02348150 0.0239123 0.02348150 0.0239123 0.02348150 0.0239123 0.02348150 0.0239123 0.02348150 0.0239123 0.02348150 0.0239123 0.02348150 0.0239123 0.0375534 0.026497 0.0375534 0.036497 0.0375534 0.036497 0.0375534 0.036497 0.0375534 0.036497 0.0167805 0.0347652 0.0394505 0.0347652 0.0111692 0.0111346 0.0147740 0.0133533 0.0182094 0.01325435 0.0147740 0.0193593 0.0147740 0.0193593 0.01231472 0.0193593 0.01321472 0.0133593 0.0099236 0.0145313 0.0099236 0.0145333 0.0099235 0.0145333 0.0099236 0.0145333 0.00992355 0.0145333 <</td><td>Bias MSE L 0.0141394 0.0173213 0.4851841 0.0141394 0.0173213 0.4851841 0.0237084 0.02377084 0.6737593 0.0226772 0.02371084 0.6737593 0.0226772 0.0237084 0.6737593 0.0221542 0.0236497 0.6584779 0.0375534 0.0363193 0.7306663 0.0375534 0.0363193 0.73066647 0.0375534 0.0363193 0.73066647 0.0375534 0.0364977 0.65884772 0.02294620 0.0184186 0.3784570 0.00111692 0.0144186 0.45510647 0.001023924 0.0132333 0.4431201 0.01023944 0.0132383 0.4431201 0.01011692 0.0147140 0.0192377 0.3378494 0.0010128944 0.01229353 0.4431201 0.01027708 0.02544570 0.00294765 0.01127949 0.01229352 0.643972 <</td><td>Bias MSE L Cov 0.0141394 0.0173213 0.4851841 0.936 0.0248150 0.0323084 0.6737593 0.936 0.02248150 0.03239120 0.5557980 0.936 0.0212542 0.03239120 0.5557980 0.936 0.02239120 0.5557980 0.935 0.935 0.0225442 0.0266497 0.6580172 0.936 0.0327655 0.0365497 0.6580172 0.975 0.0375534 0.0266497 0.6580172 0.975 0.0374655 0.0388956 0.951 0.947 0.0254761 0.6168704 0.947 0.947 0.0294505 0.034652 0.6889956 0.947 0.0294805 0.0254497 0.947 0.947 0.0111692 0.0147140 0.01323533 0.4431201 0.952 0.0147740 0.01323533 0.4431201 0.952 0.946 0.0111692 0.01132333 0.4431201 0.952 0.944 0.01147740</td></t<> <td>Bias MSE L Cov Bias 0.0141394 0.0173213 0.4851841 0.936 0.0145958 0.0 0.0206750 0.0327084 0.6737593 0.935 0.0145958 0.0145958 0.0145958 0.0145958 0.0145958 0.0145958 0.0145958 0.0145958 0.0145958 0.0145958 0.0145958 0.0145958 0.0145958 0.0145958 0.0145958 0.0145958 0.0145958 0.0145191 0.00147191 0.00147519 0.02385497 0.031754491 0.014518 0.014518 0.014518 0.014518 0.014518 0.014518 0.014518 0.014518 0.014518 0.01115208 0.01115208 0.01115208 0.01115208 0.01115208 0.01115208 0.0102113 0.00102113 0.00102113 0.00102112 0.001115208 0.01115208 0.01115208 0.01115208 0.01115208 0.01115208 0.01115208 0.01115208 0.01012112 0.010111712 0.0101115208 0.011117229 0.01011112128 0.01011112128 0.0111112218 0.0111112229 0.01114118 0.011231210</td> <td>Bias MSE L Cov Bias MSE 0.0141394 0.0173213 0.4851841 0.936 0.0145958 0.0168466 0.0206752 0.0327084 0.5737593 0.9356 0.0145958 0.0168466 0.0206772 0.0239120 0.5597980 0.9356 0.0207732 0.0206737534 0.001473213 0.485168 0.0208757 0.0167806 0.0217466 0.02124695 0.00186198 0.001375534 0.001375534 0.001375534 0.00237534 0.00137536 0.00186198 0.001375534 0.00237535 0.003375534 0.003375534 0.00237536 0.00137536 0.00237536 0.00188466 0.02376666 0.02376666 0.02376666 0.02376666 0.023766666 0.023766666 0.023766666 0.023766666 $0.0237666666666666666666666666666666666666$</td> <td>Bias MSE L Cov Bias MSE L 00141394 00173213 0.4851841 0.336 0.014936 0.490728 00141394 00173213 0.4851841 0.336 0.014936 0.490723 00121542 0.0237084 0.673793 0.336 0.03165193 0.752366 0.03163193 0.752366 0.03163193 0.75726665 0.0317484 0.682397 0.0225326 0.0186198 0.499659 0.951 0.0384736 0.75726666 0.75726666 0.7572656666667736 $0.75726566666773266666773266$ 0.003117404 0.02254761 $0.7572666667736666767676676767667667667676667676667676$</td> <td>Bias MSE L Cov Bias MSE L Cov 0.0141394 0.0137084 0.936 0.014598 0.016914 0.937528 0.945 0.0248150 0.0237084 0.936 0.0237388 0.0137783 0.945 0.945 0.02148150 0.0237081 0.975 0.02167193 0.935 0.014599 0.945 0.02148150 0.0237634 0.037683 0.0371634 0.935 0.945 0.945 0.0217534 0.0207637 0.936 0.951 0.976 0.945 0.975 0.0217534 0.0208956 0.951 0.975 0.0461813 0.0238757 0.977 0.975 0.0124750 0.037663 0.951 0.976 0.977 0.977 0.977 0.024620 0.017686 0.443120 0.947 0.0023476 0.975 0.977 0.0214620 0.0176944 0.77736 0.97736 0.77736 0.975 0.0204700 0.0137677 0.443120 0.952</td> <td>Bits MSE L Cov Bits MSE L Cov Bits 00234150 00237084 00357084 0035508 00131404 00852360 0045563 001258206 0020246152 00229120 02357084 00311404 0035563 0015565 00258563 0015663 00155663 00155663 00155663 00155663 00155663 00155663 00155663 00155663 00155663 00155663 00155663 00155663 00155663 00155663 00155563 00155663 00155563 00155763 00155763 00155763 00155763 00155763 00155763 00155763 00155763 00155763 00155763 00155763 001567663 001567663 00</td> <td>Bits MSE L Cov Bits MSE L Cov Bits MSE 0.0141380 0.0173213 0.4851841 0.3955 0.0153246 0.49728 0.0143351 0.0143359 0.014359 0.0212647: 0.0315219 0.3955 0.0134283 0.014358 0.014358 0.014359 0.014559 0.0212647: 0.031505 0.337966 0.335 0.023546 0.0145350 0.0355 0.0145595 0.0112547: 0.016505 0.337460 0.955 0.0145786 0.0355 0.0166781 0.01166781 0.0112547: 0.0166191 0.023525 0.0146780 0.0166781 0.01166781 0.01166781 0.01167805 0.01186194 0.577548 0.025541 0.957 0.01166781 0.0116796 0.0116796 0.01166781 0.0017806 0.023464 0.345120 0.353 0.0116796 0.0116796 0.0116796 0.0116796 0.0116796 0.0121994 0.0121994 0.011266 0.01146766 0.01266666 0.0112669</td>	Bias MSE 0.0141394 0.0173213 0.02348150 0.0239123 0.02348150 0.0239123 0.02348150 0.0239123 0.02348150 0.0239123 0.02348150 0.0239123 0.02348150 0.0239123 0.02348150 0.0239123 0.0375534 0.026497 0.0375534 0.036497 0.0375534 0.036497 0.0375534 0.036497 0.0375534 0.036497 0.0167805 0.0347652 0.0394505 0.0347652 0.0111692 0.0111346 0.0147740 0.0133533 0.0182094 0.01325435 0.0147740 0.0193593 0.0147740 0.0193593 0.01231472 0.0193593 0.01321472 0.0133593 0.0099236 0.0145313 0.0099236 0.0145333 0.0099235 0.0145333 0.0099236 0.0145333 0.00992355 0.0145333 <	Bias MSE L 0.0141394 0.0173213 0.4851841 0.0141394 0.0173213 0.4851841 0.0237084 0.02377084 0.6737593 0.0226772 0.02371084 0.6737593 0.0226772 0.0237084 0.6737593 0.0221542 0.0236497 0.6584779 0.0375534 0.0363193 0.7306663 0.0375534 0.0363193 0.73066647 0.0375534 0.0363193 0.73066647 0.0375534 0.0364977 0.65884772 0.02294620 0.0184186 0.3784570 0.00111692 0.0144186 0.45510647 0.001023924 0.0132333 0.4431201 0.01023944 0.0132383 0.4431201 0.01011692 0.0147140 0.0192377 0.3378494 0.0010128944 0.01229353 0.4431201 0.01027708 0.02544570 0.00294765 0.01127949 0.01229352 0.643972 <	Bias MSE L Cov 0.0141394 0.0173213 0.4851841 0.936 0.0248150 0.0323084 0.6737593 0.936 0.02248150 0.03239120 0.5557980 0.936 0.0212542 0.03239120 0.5557980 0.936 0.02239120 0.5557980 0.935 0.935 0.0225442 0.0266497 0.6580172 0.936 0.0327655 0.0365497 0.6580172 0.975 0.0375534 0.0266497 0.6580172 0.975 0.0374655 0.0388956 0.951 0.947 0.0254761 0.6168704 0.947 0.947 0.0294505 0.034652 0.6889956 0.947 0.0294805 0.0254497 0.947 0.947 0.0111692 0.0147140 0.01323533 0.4431201 0.952 0.0147740 0.01323533 0.4431201 0.952 0.946 0.0111692 0.01132333 0.4431201 0.952 0.944 0.01147740	Bias MSE L Cov Bias 0.0141394 0.0173213 0.4851841 0.936 0.0145958 0.0 0.0206750 0.0327084 0.6737593 0.935 0.0145958 0.0145958 0.0145958 0.0145958 0.0145958 0.0145958 0.0145958 0.0145958 0.0145958 0.0145958 0.0145958 0.0145958 0.0145958 0.0145958 0.0145958 0.0145958 0.0145958 0.0145191 0.00147191 0.00147519 0.02385497 0.031754491 0.014518 0.014518 0.014518 0.014518 0.014518 0.014518 0.014518 0.014518 0.014518 0.01115208 0.01115208 0.01115208 0.01115208 0.01115208 0.01115208 0.0102113 0.00102113 0.00102113 0.00102112 0.001115208 0.01115208 0.01115208 0.01115208 0.01115208 0.01115208 0.01115208 0.01115208 0.01012112 0.010111712 0.0101115208 0.011117229 0.01011112128 0.01011112128 0.0111112218 0.0111112229 0.01114118 0.011231210	Bias MSE L Cov Bias MSE 0.0141394 0.0173213 0.4851841 0.936 0.0145958 0.0168466 0.0206752 0.0327084 0.5737593 0.9356 0.0145958 0.0168466 0.0206772 0.0239120 0.5597980 0.9356 0.0207732 0.0206737534 0.001473213 0.485168 0.0208757 0.0167806 0.0217466 0.02124695 0.00186198 0.001375534 0.001375534 0.001375534 0.00237534 0.00137536 0.00186198 0.001375534 0.00237535 0.003375534 0.003375534 0.00237536 0.00137536 0.00237536 0.00188466 0.02376666 0.02376666 0.02376666 0.02376666 0.023766666 0.023766666 0.023766666 0.023766666 $0.0237666666666666666666666666666666666666$	Bias MSE L Cov Bias MSE L 00141394 00173213 0.4851841 0.336 0.014936 0.490728 00141394 00173213 0.4851841 0.336 0.014936 0.490723 00121542 0.0237084 0.673793 0.336 0.03165193 0.752366 0.03163193 0.752366 0.03163193 0.75726665 0.0317484 0.682397 0.0225326 0.0186198 0.499659 0.951 0.0384736 0.75726666 0.75726666 0.7572656666667736 $0.75726566666773266666773266$ 0.003117404 0.02254761 $0.7572666667736666767676676767667667667676667676667676$	Bias MSE L Cov Bias MSE L Cov 0.0141394 0.0137084 0.936 0.014598 0.016914 0.937528 0.945 0.0248150 0.0237084 0.936 0.0237388 0.0137783 0.945 0.945 0.02148150 0.0237081 0.975 0.02167193 0.935 0.014599 0.945 0.02148150 0.0237634 0.037683 0.0371634 0.935 0.945 0.945 0.0217534 0.0207637 0.936 0.951 0.976 0.945 0.975 0.0217534 0.0208956 0.951 0.975 0.0461813 0.0238757 0.977 0.975 0.0124750 0.037663 0.951 0.976 0.977 0.977 0.977 0.024620 0.017686 0.443120 0.947 0.0023476 0.975 0.977 0.0214620 0.0176944 0.77736 0.97736 0.77736 0.975 0.0204700 0.0137677 0.443120 0.952	Bits MSE L Cov Bits MSE L Cov Bits 00234150 00237084 00357084 0035508 00131404 00852360 0045563 001258206 0020246152 00229120 02357084 00311404 0035563 0015565 00258563 0015663 00155663 00155663 00155663 00155663 00155663 00155663 00155663 00155663 00155663 00155663 00155663 00155663 00155663 00155663 00155563 00155663 00155563 00155763 00155763 00155763 00155763 00155763 00155763 00155763 00155763 00155763 00155763 00155763 001567663 001567663 00	Bits MSE L Cov Bits MSE L Cov Bits MSE 0.0141380 0.0173213 0.4851841 0.3955 0.0153246 0.49728 0.0143351 0.0143359 0.014359 0.0212647: 0.0315219 0.3955 0.0134283 0.014358 0.014358 0.014359 0.014559 0.0212647: 0.031505 0.337966 0.335 0.023546 0.0145350 0.0355 0.0145595 0.0112547: 0.016505 0.337460 0.955 0.0145786 0.0355 0.0166781 0.01166781 0.0112547: 0.0166191 0.023525 0.0146780 0.0166781 0.01166781 0.01166781 0.01167805 0.01186194 0.577548 0.025541 0.957 0.01166781 0.0116796 0.0116796 0.01166781 0.0017806 0.023464 0.345120 0.353 0.0116796 0.0116796 0.0116796 0.0116796 0.0116796 0.0121994 0.0121994 0.011266 0.01146766 0.01266666 0.0112669

(n,m) So		(20,6)			(20,12)					(30,10)				(30,20)				
Scheme		I	п	Ш	Ц		Π	Ш		-	п	Ш		-		II		Ш
	Bias	$\begin{array}{ccc} \rho & 0.0256331 \\ \lambda & 0.0418709 \\ \Delta & 0.0401992 \end{array}$	$\begin{array}{ccc} \rho & 0.0345148 \\ \lambda & 0.0560001 \\ \Delta & 0.0538555 \end{array}$		p 0.0137872		ρ 0.0192864 λ 0.0314269		Δ 0.0245232 Δ 0.0245232	ρ 0.0165870 λ 0.0268764 Δ 0.0237060					∠ 0.0086141	ρ 0.0134685		0 0111650
$T_1 = T_1$	MSE	331 0.0092335 709 0.0234674 992 0.0170452	148 0.0137594 001 0.0326848 555 0.0215869	000		903 0.0118252	864 0.0067740 269 0.0182382 135 0.0146430		232 0.0135349 232 0.0135349	870 0.0053597 764 0.0149466 760 0.0131300	000		276 0.0157217		141 0.0087570	885 0.0042626 885 0.0122635	00	550 0 0034057
$=X_{\left[rac{m}{4} ight]}$	Г	5 0.3190778 1 0.5198999 2 0.5551702	t 0.3814834 8 0.5982563 9 0.6141477			-	0.2735534 0.4581346 0.5040036	-	0.4806442	7 0.2477558 5 0.4214594 0.4755201			0.5501774		0.3795276	5 0.2243817 0 3876430	_	7 0 2039765
	Cov	8 0.972 9 0.972 2 0.972	4 0.968 3 0.968 7 0.968				4 0.967 0.967		2 0.968	8 0.972 4 0.972 1 0.972					0.966 0.966	0.971		0 0 0 70
	Bias	$\begin{array}{c} 0.0268439\\ 0.0441155\\ 0.0418672\end{array}$	0.0484404 0.0776273 0.0745706	0.0428451 0.0689110 0.0663987	0.0166589	0.0234981	0.0303645 0.0488903 0.0450728	0.0245736	0.0361879	0.0169271 0.0273922 0.0238892	0.0379352 0.0607604 0.0571185	0.0330044	0.0496806	0.0088860	0.0091197	0.0173353	0.0251954	0.0130330
$T_2 = X_{\left[\frac{4 \times m}{5}\right]}$	MSE	0.0101879 0.0250764 0.0178359	0.0208063 0.0457035 0.0281688	0.0170800 0.0386669 0.0241874	0.0044808	0.0114650	0.0102381 0.0253840 0.077404		0.0199333 0.0146676	0.0045830 0.0129815 0.0115883	0.0141299 0.0332310 0.0212488	0.0115788	0.0187254	0.0022436	0.0083647	0.0051381	0.0124804	0.0036929
5 <u></u>]	Г	0.3246501 0.5267932 0.5612405	0.4699428 0.6994106 0.6929044	$\begin{array}{c} 0.4347689\\ 0.6618134\\ 0.6648531\end{array}$	0.2488951	0.4802916	0.3531977 0.5656754 0.5010784	0.3120757	0.5504559	0.2511586 0.4281182 0.4830445	0.4061639 0.6297802 0.6403437	0.3721305	0.609433	0.1745364	0.3792337	0.2477537	0.4788383	0 21 22456
	Cov	$\begin{array}{c} 0.963 \\ 0.963 \\ 0.963 \end{array}$	$\begin{array}{c} 0.978 \\ 0.978 \\ 0.978 \end{array}$	$\begin{array}{c} 0.974 \\ 0.974 \\ 0.974 \end{array}$	0.983	0.983	0.981 0.981 0.981	0.985	0.985	0.985 0.985 0.985	0.980	0.985	0.985	0.973	0.973	0.975	0.975	0 975
	Bias	0.0275662 0.0446518 0.0438236	0.0276257 0.0447455 0.0439522	$0.0278334 \\ 0.0450844 \\ 0.0442911$	0.0172531	0.0247607	0.0173158 0.0280648 0.0248231	0.0173914	0.0248841	0.0172531 0.0279873 0.0247607	0.0172769 0.0280079 0.0247848	0.0173590	0.0248733	0.0089539	0.0098799	0.0090524	0.0098893	0 0000894
$T_3 = X_{[m]} + 2$	MSE	$\begin{array}{c} 0.0101138\\ 0.0252833\\ 0.0178230\\ \end{array}$	$\begin{array}{c} 0.0100530\\ 0.0251461\\ 0.0177296\end{array}$	0.0100581 0.0251302 0.0176947	0.0052693	0.0126795	0.0052887 0.0146780	0.0053153	0.014/411	0.0052693 0.0146244 0.0126795	0.0052730 0.0146385 0.0126762	0.0052915	0.0126816	0.002556	0.009058	0.0025514	0.0090471	0 0025600
$n_{]}+2$	Г	$\begin{array}{c} 0.3362773\\ 0.5428017\\ 0.5725074\end{array}$	0.3363941 0.5430846 0.5728792	$\begin{array}{c} 0.3370045\\ 0.5438824\\ 0.5736903\end{array}$	0.2538862	0.4849411	0.2549676 0.4327294 0.4861427	0.2557385	0.4870471	$\begin{array}{c} 0.2538862 \\ 0.4311325 \\ 0.4849411 \end{array}$	0.2544561 0.4319803 0.4854938	0.2553454	0.4867085	0.1781497	0.3827891	0.1790548	0.3843949	0 1794043
	Cov	$\begin{array}{c} 0.975 \\ 0.975 \\ 0.975 \\ 0.975 \end{array}$	$0.974 \\ 0.974 \\ 0.974 \\ 0.974$	$\begin{array}{c} 0.973 \\ 0.973 \\ 0.973 \\ 0.973 \end{array}$	0.979	0.979	0.981 0.981 0.981	0.980	0.980 0.980	0.979 0.979 0.979	0.981	0.981	0.981	0.973	0.973	0.974	0.974	0.974

Table 13. Bootstrap results: absolute value of bias (|Bias|), length L, mean squared error (MSE) & coverage probability (Cov), when R = 0.8, $\rho = 0.98$, $\lambda = 0.96$ and $\Delta = 0.85$

REFERENCES

- Abuelamayem, O. (2024). Reliability estimation of a multicomponent stress-strength model based on copula function under progressive first failure censoring. Statistics, Optimization & Information Computing.
- Alhamidah, A., Qmi, M. N., & Kiapour, A. (2023). Comparison of E-Bayesian estimators in Burr XII model using E-PMSE based on record values. Statistics, Optimization & Information Computing, 11(3), 709-718.
- Alslman, M., & Helu, A. (2023). Reliability Estimation for the Inverse Weibull Distribution Under Adaptive Type-II Progressive Hybrid Censoring: Comparative Study. Statistics, Optimization & Information Computing, 11(2), 216-242.
- Alotaibi, R., Nassar, M., & Elshahhat, A. (2022). Computational Analysis of XLindley Parameters Using Adaptive Type-II Progressive Hybrid Censoring with Applications in Chemical Engineering. Mathematics, 10(18), 3355.
- Asadi, S., Panahi, H., Swarup, C., & Lone, S. A. (2022). Inference on adaptive progressive hybrid censored accelerated life test for Gompertz distribution and its evaluation for virus-containing micro droplets data. Alexandria Engineering Journal, 61(12), 10071-10084.
- Balakrishnan, N., & Cramer, E. (2014). The art of progressive censoring. Statistics for industry and technology.
- Cramer, E., & Iliopoulos, G. (2010). Adaptive progressive Type-II censoring. Test, 19, 342-358.
- Dyer, D. D., & Whisenand, C. W. (1973). Best linear unbiased estimator of the parameter of the Rayleigh distribution-Part I: Small sample theory for censored order statistics. IEEE Transactions on Reliability, 22(1), 27-34.
- Dixon, P. M. (1993). The bootstrap and the jackknife: Describing the precision of ecological indices. In Scheiner, S. M., & Gurevitch, J. (Eds.), Design and analysis of ecological experiments. London: Chapman & Hall.
- Efron, B. (1992). Bootstrap methods: another look at the jackknife. In Breakthroughs in statistics: Methodology and distribution (pp. 569-593). New York, NY: Springer New York.
- Gastwirth, J. L. (1975). Statistical measures of earnings differentials. The American Statistician, 29(1), 32-35.
- Gehan, E. A. (1965). A generalized Wilcoxon test for comparing arbitrarily singly-censored samples. Biometrika, 52(1-2), 203-224.
- Ferrario, V. F., Sforza, C., Colombo, A., & Ciusa, V. (2000). An electromyographic investigation of masticatory muscles symmetry in normo-occlusion subjects. Journal of oral rehabilitation, 27(1), 33-40.
- Freireich, E. (1963). The effect of 6-mercaptopurine on the duration of steroid induced remission in acute leukemia. Blood, 21, 699-716.
- Hassan, A., Elshaarawy, R., & Nagy, H. (2023). Reliability Analysis of Exponentiated Exponential Distribution for Neoteric and Ranked Sampling Designs with Applications. Statistics, Optimization & Information Computing, 11(3), 580-594.
- Helu, A. (2024). Overlap Analysis in Progressive Hybrid Censoring: A Focus on Adaptive Type-II and Lomax Distribution. Statistics, Optimization & Information Computing.
- Helu, A., & Samawi, H. (2011). On inference of overlapping coefficients in two lomax populations using different sampling methods. Journal of Statistical Theory and Practice, 5(4), 683-696.
- Helu, A., & Samawi, H. (2021). Statistical analysis based on adaptive progressive hybrid censored data from Lomax distribution. Statistics, Optimization & Information Computing, 9(4), 789.

- Kazempoor, J., Habibirad, A., Nadi, A. A., & Borzadaran, G. R. M. (2023). Statistical inferences for the Weibull distribution under adaptive progressive type-II censoring plan and their application in wind speed data analysis. Statistics, Optimization & Information Computing, 11(4), 829-852.
- Khan, M. I. (2024). Moments of Generalized Order Statistics from Doubly Truncated Power Linear Hazard Rate Distribution. Statistics, Optimization & Information Computing, 12(4), 841-850.
- Khalil, M. G., Aidi, K., Ali, M. M., Butt, N. S., Ibrahim, M., & Yousof, H. M. (2024). Modified Bagdonavicius-Nikulin Goodness-of-fit Test Statistic for the Compound Topp Leone Burr XII Model with Various Censored Applications. Statistics, Optimization & Information Computing, 12(4), 851-868.
- Kundu, D., & Joarder, A. (2006). Analysis of Type-II progressively hybrid censored data. Computational Statistics & Data Analysis, 50(10), 2509-2528.
- Lu, R. P., Smith, E. P., & Good, I. J. (1989). Multivariate measures of similarity and niche overlap. Theoretical Population Biology, 35(1), 1-21.
- Martinez-Camblor, P. (2022). About the use of the overlap coefficient in the binary classification context. Communications in Statistics-Theory and Methods, 1-11.
- Matusita, K. (1955). Decision rules, based on the distance, for problems of fit, two samples, and estimation. The Annals of Mathematical Statistics, 631-640.
- Miller, K. S., & Sackrowitz, H. (1967). Relationships between biased and unbiased Rayleigh distributions. SIAM journal on applied Mathematics, 15(6), 1490-1495.
- Mishra, S. N., Shah, A. K., & Lefante, J. J. (1986). Overlapping coefficient: the generalized t approach. Communications in Statistics-Theory and Methods, 15(1), 123-128.
- Mizuno, S., Yamaguchi, T., Fukushima, A., Matsuyama, Y., & Ohashi, Y.(2005). Overlap coefficient for assessing the similarity of pharmacokinetic data between ethnically different populations. Clinical Trials, 2(2), 174-181.
- Morisita, M. (1959). Measuring of interspecific association and similarity between communities. Memoirs of the Faculty of Science of Kyushu University Series E Bilogy, 3:65-80.
- Muhammed, H. (2023). Analysis of Dependent Variables Following Marshal-Olkin Bivariate Distributions in the Presence of Progressive Type II Censoring. Statistics, Optimization & Information Computing, 11(3), 694-708.
- Muhammed, H. Z., & Muhammed, E. (2024). Bayesian and Non-Bayesian Estimation for The Parameter of Inverted Topp-Leone Distribution Based on Progressive Type I Censoring. Statistics, Optimization & Information Computing, 12(4), 1184-1209.
- Mulekar, M. S., & Mishra, S. N. (1994). Overlap coefficients of two normal densities: equal means case. Journal of the Japan Statistical Society, Japanese Issue, 24(2), 169-180.
- Mulekar, M. S., & Mishra, S. N. (2000). Confidence interval estimation of overlap: equal means case. Computational statistics & data analysis, 34(2), 121-137.
- Ng, H. K. T., Kundu, D., & Chan, P. S. (2009). Statistical analysis of exponential lifetimes under an adaptive type-II progressive censoring scheme. Naval Research Logistics (NRL), 56(8), 687-698.
- Polovko, A. M. (1968). Fundamentals of Reliability Theory. Academic Press.
- Piriaei, H., & Babanezhad, M. (2022). E-Bayesian estimations and its E-MSE for compound Rayleigh progressive Type-II censored data. Statistics, Optimization & Information Computing, 10(4), 1056-1071.

- Pushkarna, N., Saran, J., & Verma, K. (2020). Progressively Type-II right censored order statistics from Hjorth distribution and related inference. Statistics, Optimization & Information Computing, 8(2), 481-498.
- Samawi, H. M., Yin, J., Rochani, H., & Panchal, V. (2017). Notes on the overlap measure as an alternative to the Youden index: how are they related?. Statistics in medicine, 36(26), 4230-4240.
- Siddiqui, M. M. (1962). Some problems connected with Rayleigh distributions. Journal of Research of the National Bureau of Standards D, 66, 167-174.
- Smith, E. P. (1982). Niche breadth, resource availability, and inference. Ecology, 63(6), 1675-1681.
- Viveros, R., & Balakrishnan, N. (1994). Interval estimation of parameters of life from progressively censored data. Technometrics, 36(1), 84-91.
- Wang, D., & Tian, L. (2017). Parametric methods for confidence interval estimation of overlap coefficients. Computational Statistics & Data Analysis, 106, 12-26.
- Weitzman, M. S. (1970). Measures of overlap of income distributions of white and Negro families in the United States (Vol. 22). US Bureau of the Census.