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Abstract The Kappa distribution, pioneered by researchers such as Hosking, stands as a widely applied continuous model
in diverse scientific fields. This study delves into its practical utility, with a specific focus on amalgamating Gamma and
Log-Normal distributions. The vital distributional parameters (α, β, θ) are subject to estimation through both Maximum
Likelihood (MLE) and LQ-moment methods. Across a spectrum of sample sizes (25, 50,100, and 150), the LQ-moment
method consistently exhibits superior performance compared to MLE.Additionally, the research introduces two essential
reliability metrics: Mean Inactivity Time (MIT) and Stress-Strength Reliability (SSR). MIT, influenced by distribution
parameters, provides insights into the temporal behavior of the random variable. SSR evaluates system reliability by
accounting for the probability of component failure under stress conditions. The paper concludes with a comparative analysis
of parameter estimation methods, emphasizing the enhanced accuracy of the LQ-moment approach, particularly noticeable
in smaller sample sizes (50 and 100).
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1. Introduction

In many significant real-life applications, extreme values of a random sample hold substantial importance. For
instance, in ecological studies, the occurrence of high levels of pollutants such as ozone, acid rain, or sulfur
dioxide in the air is of critical concern [1]. Accurate modeling of such extreme events is essential for effective
environmental monitoring and decision-making. The Kappa distribution, introduced by Mielke and Johnson, has
emerged as a powerful tool for representing data with positive skewness, particularly in cases where traditional
distributions may fall short [2]. This distribution belongs to a broader family of probability distributions that have
been developed to capture the complexities of asymmetric data in various fields.

The Kappa distribution is characterized by its flexibility in modeling skewed data, making it applicable
in diverse domains, including hydrology, environmental science, and finance. Despite its potential, the Kappa
distribution remains less familiar to those outside specialized areas of statistics. Therefore, this study seeks to
provide a comprehensive introduction to the Kappa distribution, exploring its properties, estimation methods, and
applications, thereby bridging the gap for a broader audience.
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2. Literature Review

The development and refinement of probability distributions have been central to statistical modeling, particularly
in capturing the behavior of extreme values. The Kappa distribution is part of a lineage of distributions that have
been extended and generalized to better accommodate data complexities. A significant advancement in this area was
made by Gupta et al. [3], who generalized the standard exponential distribution by introducing an exponentiation
parameter, giving rise to the exponentiated exponential family. This innovation paved the way for further extensions
of well-known distributions.

Building on this foundation, Nadarajah (2005) [4] applied the generalization to the Gumbel distribution, creating
an exponentiated version that enhances its flexibility in modeling extreme values. Similarly, Nadarajah and Gupta
(2007) [5]extended the gamma distribution by exponentiation, demonstrating the versatility of this approach across
different types of data. These developments underscore the importance of generalizing existing distributions to
create more adaptable models for various applications. In 2006, Ani and Jemain[6] introduced the LQ-moments
method, which has shown promise in outperforming traditional estimation methods, such as L-moments and
maximum likelihood estimation (MLE), particularly in the context of small sample sizes. Their simulation studies
demonstrated that the LQ-moments method consistently provides more accurate parameter estimates.

Research on parameter estimation for the Kappa distribution has been extensive. Samir et al. [7] investigated the
use of MLE for the three-parameter Kappa distribution under Type II censored samples, deriving the asymptotic
variance-covariance matrix. Their work highlighted the challenges and intricacies involved in parameter estimation
for complex distributions. The practical utility of the Kappa distribution and its estimation methods has also been
explored in hydrological studies. For example,Wan Zin et al. (2009) [8]applied both L-moment and LQ-moment
methods to determine the best-fitting distribution for annual maximum rainfall data in Peninsular Malaysia. Their
findings underscore the value of the Kappa distribution in real-world scenarios where accurate modeling of extreme
events is essential. Further contributions to the estimation of Kappa distribution parameters were made by Hassun
et al.(2014) [9],who introduced three approaches: maximum likelihood, maximum entropy, and L-moments. These
methods offer different advantages depending on the nature of the data and the specific requirements of the analysis.

Phaphan and Ibrahim (2023) [10]developed two maximum likelihood estimation methods the expectation-
maximization (EM) algorithm and the simulated annealing algorithm for estimating the three parameters of
the weighted mixture generalized gamma (WMGG) distribution, aiming to improve the accuracy of parameter
estimation for this distribution. The goal of the present study is to further advance the understanding and
application of the Kappa distribution by developing two estimation methods—maximum likelihood and LQ-
moments—specifically for the three-parameter Kappa distribution. Additionally, this study derives the rth central
moment about the origin for the Kappa distribution, providing new insights into its distributional properties. These
methods are then applied to analyze rainfall data in Duhok, with the aim of accurately estimating the parameters
of the three-parameter Kappa distribution (α, β, θ). The findings of this study contribute to the broader field of
probability distributions, offering practical tools for researchers and practitioners dealing with asymmetric and
extreme data.

3. Methodology

The Kappa distribution is characterized by its advantageous features, including flexibility, skewness, and a heavy
tail. These attributes make it a valuable tool, particularly due to its explicit formulations for percentiles and
moments. The distribution functionF (x) of the Kappa distribution is defined as follows:

F (x) =


[

( x
β )αθ

α+( x
β )αθ

] 1
α

if X > 0

0 if X ≤ 0

 (1)
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Accompanying this, the corresponding quantile function (X(F )) is given by:

X(F ) = β

(
αF (x)α

1− F (x)α

) 1
αθ

(2)

Furthermore, the probability density function f(x) takes the form:

f(x) =

 αθ
β ( xβ )

θ−1
(
α+ ( xβ )

αθ
)−(α+1

α )

if X > 0

0 if X ≤ 0

 (3)

In this context, the shape parametersθ and α exclusively influence the right tail, while β impacts both tails. Figure
(1) visually represents various shapes of the Kappa density function for different parameter choices, illustrating its
versatility in capturing diverse distributional forms.
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Figure 1. various parameter choices and the shape of the Kappa density function.

3.1. Interpretation of Parameters

The three-parameter Kappa distribution parameter θ, α, andβhave critical implications in various real-world
scenarios:

Shape Parameter α: Controls the distribution’s tail behavior, particularly its skewness and the weight of extreme
values. A higherα enhances the right tail’s prominence, making it suitable for modeling extreme phenomena such
as rare but severe weather events, catastrophic insurance losses, or financial risks. In contrast, a lower α results in
a more symmetric distribution.

Scale Parameter β: Influences the spread or dispersion of the data. A larger β results in a broader range of values,
providing flexibility in modeling data that spans a wide range, such as environmental pollutants or market price
changes. Conversely, a smallerβ concentrates values around a central point, making it suitable for tightly clustered
data.

Shape Parameter θ: Adjusts the decay rate of the tail, impacting the likelihood of extreme values. In contexts
such as risk management or environmental studies, this parameter dictates how rapidly the probability of extreme
occurrences diminishes. A lower θ suggests a slower decay rate, implying a higher risk or frequency of extreme
events.
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3.2. Analysis of Reliability

The Survival Function, also known as the complementary cumulative distribution function, for the Kappa
distribution can be expressed as follows: The Survival Function, denoted as S(x), represents the likelihood that
a random variable X from the Kappa distribution is greater than a specific value x. Figure (2) depicts the reliability
function for various (α,β,θ) values.
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Figure 2. The survival analysis (Reliability Function) of the Kappa Distribution

S(x) = 1− F (x) (4)

Here, F (x) is the cumulative distribution function as given in Equation 1.

3.3. Hazard Rate Function

The Hazard Rate Function for the Kappa distribution, represented as h(x), is defined as the instantaneous rate of
failure at time x. It is calculated as the ratio of the probability density function to the survival function:

h(x) =
f(x)

S(x)
(5)

In this equation, f(x) is the probability density function as provided in Equation 3. Now, let’s formulate the
equations for the Survival Function and Hazard Function of the Kappa distribution: Survival Function:

S(x) = 1−

[
( xβ )

αθ

α+ ( xβ )
αθ

] 1
α

(6)
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Hazard Function:

h(x) =

αθ
β ( xβ )

θ−1
(
α+ ( xβ )

αθ
)−(α+1

α )

1−
[

( x
β )αθ

α+( x
β )αθ

] 1
α

(7)

Figure (3) llustrates the Hazard Rate Function of the Kappa distribution with specified values for the parameters θ,
β, and α.
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Figure 3. The Hazard Rate Function of the Kappa Distribution

3.4. Reversed Hazard Rate Function

The reversed hazard rate function (RHRF) of the Kappa distribution, denoted as λ∗(x), can be expressed as the
reciprocal of the distribution function’s derivative with respect to x. Mathematically, it is defined as [11]:

λ∗(x) =
f(x)

F (x)

where f(x) is the probability density function (PDF) and F (x) is the distribution function of the Kappa distribution
provided in equations (1) and (3). Therefore, substituting the expressions from equations (1) and (3) into the
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reversed hazard rate function, we get:

λ∗(x) =

αθ
β ( xβ )

θ−1
(
α+ ( xβ )

αθ
)−(α+1

α )

[
( x
β )αθ

α+( x
β )αθ

] 1
α

(8)

The Reversed Hazard Rate Function, illustrated in Figure (4), varies based on the values of the parameters (α,β,θ)

0.00

0.05

0.10

0.15

0 1 2 3 4 5

x

λ*
(x

)

α=2, β=1, θ=2

α=2, β=2, θ=3

α=3, β=2, θ=4

Reversed Hazard Rate Function

Figure 4. The Reversed Hazard Rate Function for the Kappa Distribution varies with the parameters (α,β,θ)

3.5. Mean Residual Life (MRL)

The Mean Residual Life (MRL) for the Kappa distribution is a crucial measure in survival analysis and reliability
theory. It is defined as follows[12]:

MRL(t) = E(X − t |X > t)

The analytical expression for the Mean Residual Life, denoted as MRL(t, θ, α, β), is given by:

MRL(t, θ, α, β) =
1

R(t)

∫ ∞

t

xf(x) dx− t (9)

where:

• t > 0 is a specific time point for which the MRL is calculated.
• θ, α, β are the parameters of the Kappa distribution.
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• R(t) is the survival function, representing the probability that X is greater than or equal to t with the given
parameters.

• x is a variable representing time to failure.

The MRL provides valuable insights into the expected remaining lifetime of a system or process at a given time,
considering its survival history. It is a fundamental concept in reliability engineering for assessing the longevity and
performance of systems modeled by the Kappa distribution.The Mean Residual Life (MRL), illustrated in Figure
(5), varies based on the values of the parameters (α,β,θ)
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Figure 5. Mean Residual Life (MRL) for the Kappa Distribution varies with the parameters (α,β,θ)

3.6. Mean Inactivity time

The Mean Inactivity Time (MIT) for a lifetime random variable x is defined as[13]:

MIT (x) = t− (
1

F (t)

∫ ∞

t

xf(x)) dx t > 0 (10)

where F(x) is the distribution function of the Kappa distribution. The Mean Inactivity time, illustrated in Figure
(6), varies based on the values of the parameters (α,β,θ)

3.7. Stress-Strength Reliability

Based on the given distribution functions, the equation for Stress-Strength Reliability (SSR) can be expressed
as[14, 15]:

SSR =

∫ ∞

0

f1(t) · [F2(t)] dt (11)
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Figure 6. Mean Inactivity Time for the Kappa Distribution varies with the parameters (α,β,θ)

where:
f1(t) is the probability density function (PDF) of X with parameters (α1, β1, θ1).

F2(t) is the cumulative distribution function (CDF) of Z with parameters (α2, β2, θ2).

This integral represents the probability that the strength X is greater than the stress Z,
indicating the reliability of the component. It considers the failure occurring when X > Z.

L(α1, β1, θ1, α2, β2, θ2) =

n∏
i=1

f1(xi;α1, β1, θ1) · [F2(xi;α2, β2, θ2)] (12)

To maximize the likelihood, we typically take the logarithm (log-likelihood) and solve for the parameters:

logL(α1, β1, θ1, α2, β2, θ2) =

n∑
i=1

log f1(xi;α1, β1, θ1) + log[F2(xi;α2, β2, θ2)] (13)

To find the maximum likelihood estimates of the parameters, we take the derivative of the log-likelihood function
with respect to each parameter, set them equal to zero, and solve for the parameters. This usually involves numerical
methods as the solution often does not have a closed-form.

∂

∂α1
logL = 0, ,

∂

∂β1
logL = 0, ,

∂

∂θ1
logL = 0, ,

∂

∂α2
logL = 0, ,

∂

∂β2
logL = 0,

∂

∂θ2
logL = 0

These equations represent the conditions for finding the maximum likelihood estimates (MLE) of the parameters.
The derivatives are taken with respect to each parameter, and then each derivative is set to zero to find the critical
points. Due to the complexity of the distribution functions, numerical methods such as optimization algorithms are
often used to find the MLE.
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Figure 7. Stress-Strength Reliability Kappa Distribution varies with the parameters (α,β,θ)

the Table (1) compares the Mean Squared Error (MSE) of parameter estimates from two methods, LQM and
MLE, at sample sizes 50 and 100.The MLE method appears to have a higher Mean Squared Error (MSE) than
the LQM method for both sample sizes (50 and 100), suggesting that the LQM method provides more accurate
estimates.

The Kappa distribution’s rth central moment has the following formula:

E(x)r = µ́r =

∫ ∞

0

xr(
αθ

β
)(
x

β
)θ−1

(
α+ (

x

β
)αθ
)−(α+1

α )

dx (14)

let u =
x

β
=⇒ X = uβ =⇒ dx = βdu

=

∫ ∞

0

(uβ)r(
αθ

β
)uθ−1

(
α+ uαθ

)−(α+1
α )

β du

let Z = uαθ =⇒ u = Z
1
αθ

= βr

∫ ∞

0

Z
r+θ
αθ − 1

αθαθ (α+ Z)
−(α+1

α ) 1

αθ
Z

1
αθ−1 dz

= βrα−(α+1
α )

∫ ∞

0

Z
r
αθ+

1
α−1

(
1 +

Z

α

)−(α+1
α )

dz
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Table 1. MSE of the parameter estimations and a comparison of the two methods of estimation at the sample sizes (50,100)
For the initial value set (α1 = 1, β1 = 1, θ1 = 1, α2 = 1, β2 = 1, θ2 = 1).

methods Sample size Parametes estimate AIC BIC MSE
α1 1.00268

LQM β1 0.26348
θ1 0.74396

50 α2 0.85766 12.23520 23.70733 0.075250
β2 1.90169
θ2 1.43216
α1 1.32350

MLE β1 2.09971
θ1 1.45640

50 α2 0.44394 -210.976 -199.504 7.338912
β2 0.00034
θ2 0.26265
α1 0.95941

LQM β1 0.51882
θ1 0.71163

100 α2 0.87835 12.16747 27.79849 0.068774
β2 1.74434
θ2 1.33885
α1 1.12350

MLE β1 1.9971
θ1 1.05640

100 α2 0.34394 -208.796 -192.414 7.016811
β2 0.00144
θ2 0.17143

let y = Z
α =⇒ Z = αy =⇒ dz = αdy

= βrα−(α+1
α )

∫ ∞

0

(αy)
r
αθ+

1
α−1 (1 + y)

−(α+1
α )

αdy

= βrα
r
αθ−1

∫ ∞

0

(y)
r
αθ+

1
α−1

(1 + y)
−(α+1

α )
dy

comparison with the second Beta distribution formula

β(α, β) =

∫ ∞

0

xα−1

(1 + x)α+β
dx =

Γ(α)Γ(β)

Γ(α+ β)

The two parameters’ values are as follows.

α =
r

αθ
+

1

α
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β = (α+ β)− αβ =
r

αθ
+

1

α
− 1

αθ

After replacing (α, β) values, we obtain rth Centeral Moment about Origin for Kappa distribution

E(x)r = βrα
r
αθ−1Γ

(
r
αθ + 1

α

)
Γ
(
1− r

αθ

)
Γ
(
1 + 1

α

) (15)

When solving equation (15) for the mean, we assume that (r = 1).

E(x) = µ = βα
1
αθ−1Γ

(
1
αθ + 1

α

)
Γ
(
1− 1

αθ

)
Γ
(
1 + 1

α

) (16)

Furthermore, the variance, skewness and kurtosis are obtained as follows:

E(x− µ)r =

∫ ∞

0

(x− µ)rf(x) dx (17)

E(x− µ)r =

∫ ∞

0

(x− µ)r(
αθ

β
)(
x

β
)θ−1

(
α+ (

x

β
)αθ
)−(α+1

α )

dx

let u =
x

β
=⇒ X = uβ =⇒ dx = βdu

=

∫ ∞

0

(uβ − µ)r(
αθ

β
)uθ−1

(
α+ uαθ

)−(α+1
α )

β du

similar to what was stated earlier, we obtain

E(x− µ)r =

r∑
j=0

Cr
j β

jα
j
αθ−1(−µ)r−j

(
Γ( j

αθ + 1
α )Γ(1−

j
αθ )

Γ(1 + 1
α )

)
(18)

The variance is also obtained in the manner described below:

var(x) =

{
β2α−3+( 2

αθ )

(
Γ( 1+θ

αθ )Γ(αθ−1
αθ )

Γ(α+1
α )

)2(
Γ( 1

α )

Γ(1 + 1
α )

)
− 2β2α−2+( 2

αθ )

(
Γ2( 1+θ

αθ )Γ2(αθ−1
αθ )

Γ(α+1
α )

)

+ β2α−1+( 2
αθ )

(
Γ( 2

αθ + 1
α )Γ(1−

2
αθ )

Γ(1 + 1
α )

)}
(19)

The following is the coefficient of skewness.

C.S =
E(x− µ)3

σ3
(20)

where

E(x− µ)3 = βjα
j
αθ−1

3∑
j=0

C3
j (−µ)3−j

(
Γ( j

αθ + 1
α )Γ(1−

j
αθ )

Γ(1 + 1
α )

)
and

σ3 =

{
β2α−3+( 2

αθ )

(
Γ( 1+θ

αθ )Γ(αθ−1
αθ )

Γ(α+1
α )

)2(
Γ( 1

α )

Γ(1 + 1
α )

)
− 2β2α−2+( 2

αθ )

(
Γ2( 1+θ

αθ )Γ2(αθ−1
αθ )

Γ(α+1
α )

)

+ β2α−1+( 2
αθ )

(
Γ( 2

αθ + 1
α )Γ(1−

2
αθαθ)

Γ(1 + 1
α )

)}3

(21)
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The kurtosis coefficient is as follows.

C.k =
E(x− µ)4

σ4
(22)

Equation (18) is used to obtain E(x− µ)4 by substituting r=4 and squaring equation (21) to obtain σ4.

The coefficient of variation is one of the measures of relative dispersion. It is defined as the ratio between The
standard deviation of a given distribution to the mean of that distribution can be calculated according to following
formula:

C.v =

√
σ2

E(x)
× 100 (23)

The value of the coefficient of variation is the product of dividing the variance extracted in equation (19) On the
expectation extracted in equation (16)

4. Various Estimation Techniques

Numerous estimating methods within the classical paradigm are documented in the statistical literature. However,
we will only provide two of these techniques here: maximum likelihood and LQ-moment.

4.1. Maximum Likelihood Estimator

This section explains how to derive MLEs from a Kappa (α, β, θ) distribution’s unknown parameters. Consider
a sample of size n from a Kappa(α, β, theta) distribution as X = (X1, X2, ..., Xn) [16, 17, 18]. The likelihood
function can be given as follows based on the observation:

Lf(xi, α, β, θ) =

n∏
i=1

αθ

β
(
x

β
)θ−1

(
α+ (

x

β
)αθ
)−(α+1

α )

(24)

The log-likelihood function in formula (24) can then be expressed as follows:

logLf(xi, α, β, θ) ={n logα+ n log θ − n log β + (θ − 1)

n∑
i=1

log(
xi

β
)

− (
α+ 1

α
)

n∑
i=1

log(α+ (
xi

β
)αθ)}

(25)

In this case, we suppose that the parameters α, β and θ are unknown . We partially differentiate equation (25) with
respect to α, β and θ and equal to zero as follows to obtain the normal equations for the unknown parameters:

∂Lf(xi, α, β, θ)

∂α
=

{
n

α
+

1

α2

n∑
i=1

log(α+ (
x

β
)αθ − α+ 1

α

n∑
i=1

1 + θ( xβ )
αθ log( xβ )

α+ ( xβ )
αθ

}
= 0 (26)

α̂MLE =
n{

− 1
α2

∑n
i=1 log(α+ ( xβ )

αθ + α+1
α

∑n
i=1

1+θ( x
β )αθ log( x

β )

α+( x
β )αθ

} (27)

∂Lf(xi, α, β, θ)

∂β
= −nθ

β
+

(α+ 1)θ

β

n∑
i=1

( xβ )
αθ

α+ ( xβ )
αθ

= 0 (28)

β̂MLE =
nθ

(α+1)θ
β

∑n
i=1

( x
β )αθ

α+( x
β )αθ

(29)

Stat., Optim. Inf. Comput. Vol. x, Month 202x



12 ESTIMATING KAPPA DISTRIBUTION PARAMETERS

∂Lf(xi, α, β, θ)

∂θ
=

n

θ
− n log β +

n∑
i=1

log(x)− (α+ 1)

n∑
i=1

( xβ )
αθ log( xβ )

α+ ( xβ )
αθ

= 0 (30)

θ̂MLE =
n

n log β −
∑n

i=1 log(x) + (α+ 1)
∑n

i=1

( x
β )αθ log( x

β )

α+( x
β )αθ

(31)

It has been noted that closed-form solutions for these estimations are not possible, hence the nonlinear equations
must be solved numerically. Although the Newton-Raphson approach works well for calculating maximum
likelihoods, it has problems with convergence, especially when dealing with complex likelihood functions like
the Kappa distribution’s. Due to its great sensitivity to initial values, if the initial values are not chosen correctly,
this approach may result in sluggish convergence or divergence. Additionally, it could get stuck in saddle points
or local minima. Strategies to improve convergence include regularisation to handle singular Hessians, global
optimisation approaches, and well-chosen initial values. Furthermore, high-precision arithmetic and the use of line
search techniques to modify step sizes can enhance numerical stability and accuracy in parameter estimation.

4.2. Linear Quantile Moment method (L-Q)

Let X1, X2, ..., Xn be a random sample from a continuous distribution function F(x) with quantile [19] function

Q(F ) = β

(
αF (x)α

1− F (x)α

) 1
αθ

(32)

and let X(1:n) ≤ .X(2:n) ≤, ..., X(n:n) ≤ denote the order statistics. where (ϵr) represents the Linear Quantile
Moment of the random variable τ with two parameters (p,m) specified by Muolkar and Hutson [20] . Suppose
that the Linear Quantile Moment for a sample of size n from a Kappa (α, β, θ) distribution is as follows[14]:

ϵ̂r =
1

r

r−1∑
k=0

(−1)k
(

r − 1
k

)
τ̂p,m(Xr−k:r), r = 1, 2, .. (33)

if

τ̂p,m(Xr−k:r) = pQ̂r−k:r(m) + (1− 2p)Q̂r−k:r

(
1

2

)
+ pQ̂r−k:r(1−m) (34)

= pQ̂[B−1
r−k:r(m)] + (1− 2p)Q̂[B−1

r−k:r

(
1

2

)
] + pQ̂[B−1

r−k:r(1−m)] (35)

Assume that the sample is aware of Q̂(u) as follows.

Q̂(u) =

n∑
i=1

[
(n)−1kh

[
i∑

j=1

wj,n − u

]]
(Xi,n), 0 < u < ∞ (36)

when k is a random variable for parameter h at the estimator (.)

wi,n =


1
2 (1−

[
n−2√
n(n−1)

]
) i = 1, n

1√
n(n−1)

i = 1, 2, ..., n− 1

 (37)

k(t) = (2π)−
1
2 exp(− t2

2
)

h = (
uv

n
)

1
2

v = 1− u
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For the sample, the first four quantitative moments of the Moment-LQ method are specified as follows:

ϵ̂1 = τ̂p,m(X) (38)

ϵ̂2 =
1

2
[τ̂p,m(X2:2)− τ̂p,m(X1:2] (39)

ϵ̂3 =
1

3
[τ̂p,m(X3:3)− 2τ̂p,m(X2:3 + τ̂p,m(X1:3)] (40)

ϵ̂4 =
1

4
[τ̂p,m(X4:4)− 3τ̂p,m(X3:4 + 3τ̂p,m(X2:4) + τ̂p,m(X1:4)] (41)

LQ- Skewnes and LQ- Kurtosis of a sample are defined:

LQ− Skewnes = η̂3 =
ϵ̂3
ϵ̂2

LQ−Kurtosis = η̂4 =
ϵ̂4
ϵ̂2

LQ technique is used to produce estimates with the desired accuracy. To determine the values of the three
parameters, implicit equations are solved using a simple iteration in the R software program.

5. Application and Analysis

In this section, we evaluate the correctness and dependability of the Kappa distribution model in describing the
phenomenon under study using an experimental technique. Well-designed experiments are frequently necessary
for scientific advancement, and simulation is a popular technique for producing precise and reliable results. This
study uses simulation as a reasonable and useful approach to assess the Kappa distribution model’s performance.

Simulation Settings: The simulation experiment was conducted using six distinct sample sizes:( 10, 25, 50,
100, 150, and 500). Data for random variables following the three-parameter Kappa distribution were generated
using formula (3). The process began by producing random values from a continuous uniform distribution defined
over the interval (0,1). These uniform random values were then transformed using the cumulative distribution
function (CDF) of the Kappa model, as defined by equation (1). Subsequently, the inverse of this CDF was used
to generate random variables corresponding to the Kappa distribution. The parameters were systematically varied
within the following ranges:α-[2,2,3], β=[2,1,2], and θ=[2,2,4] . These ranges were selected to represent different
distribution shapes and scales, including variations in skewness and kurtosis, commonly observed in environmental
and reliability studies.

Simulation Procedure: Each simulation scenario was repeated 1000 times for every combination of sample
size and parameter set to ensure statistical robustness. The simulation was performed using the [ R version 4.3.3
], which provided the necessary tools for random number generation, parameter estimation, and goodness-of-fit
testing.

Performance Evaluation: The performance of the maximum likelihood estimators (MLEs) and LQ-moments
estimators was evaluated by calculating the mean squared error (MSE) for each scenario. Lower MSE values
indicate better estimator performance. The results, summarized in Tables 2, 3, and 4, demonstrate that the LQ-
moments estimator generally achieved a lower MSE compared to the MLE, particularly for smaller sample sizes.
This suggests that the LQ-moments estimator provides greater robustness in estimating the parameters of the Kappa
distribution.The non-linear equations for the maximum likelihood estimation (MLE) of the Kappa distribution
parameters were solved using the Newton-Raphson method. Although this approach is popular because, in ideal
circumstances, it converges quickly, it is dependent on the initial values selected. The selection of initial values in
this study was done with great care, taking into account plausible estimates from the data and exploratory analysis.
However, when the likelihood surface is flat close to the optimum or when the starting points are excessively remote
from the genuine parameter values, convergence problems may occur.
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Table 2. MSE of the parameter estimations and a comparison of the two methods of estimation at the sample sizes
(10,25,50,100,150,500) For the initial value set (α = 2, β = 2, θ = 3).

MSE
Sample size Parametes methods Performance

MLE LQ-moment MLE LQ-moment
α 133.8760 0.1026561

10 β 0.8962 0.0040 0.0053 4.97E-05
θ 0.7421 0.0032
α 131.1876 0.0035

25 β 0.6296 0.0029 0.0027 4.76E-05
θ 0.6041 0.0028
α 5.4511 0.0032

50 β 0.3192 0.0022 0.0012 6.37E-05
θ 0.1072 0.0040
α 0.6119 0.0027

100 β 0.1055 0.0031 0.0006 5.36E-05
θ 0.0886 0.0032
α 0.3439 0.0029

150 β 0.0513 0.0032 0.00027 5.45E-05
θ 0.0474 0.0033
α 0.07589 0.004811

500 β 0.002420 0.00481 0.000264 5.05E-05
θ 0.0440898 1.121779

Table (2) shows that the (LQM) method is the best for estimating the general model of distribution. When
the three parameters are (α̂ = 2.552177, β̂ = 3.045866, θ̂ = 1.542476) and the sample size is (n=25), the mean
squared error was (MSE =4.76E-05).

Table (3) shows that the (LQM) method is the best for estimating the general model of distribution. When the
three parameters are (α̂ = 3.047708, β̂ = 4.036641, θ̂ = 2.05011) and the sample size is (n=25), the mean squared
error was (MSE =3.65E-05 ).

Table (4) shows that the (LQM) method is the best for estimating the general model of distribution. When
the three parameters are (α̂ = 4.057929, β̂ = 4.043308, θ̂ = 2.045325) and the sample size is (n=50), the mean
squared error was (MSE =3.68E-05 ).
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Table 3. MSE of the parameter estimations and a comparison of the two methods of estimation at the sample sizes
(10,25,50,100,150,500) For the initial value set (α = 2, β = 1, θ = 2).

MSE
Sample size Parametes methods Performance

MLE LQ-moment MLE LQ-moment
α 48.20388 3.43402720

10 β 0.1063615 0.9496205 0.876588 1.804576
θ 25.78638 3.43402720
α 41.5401 0.0034

25 β 0.6248 0.0035 0.0034 3.65E-05
θ 5.4029 0.0035
α 6.8975 0.0026

50 β 0.2552 0.0037 0.0012 3.90E-05
θ 0.1691 0.0035
α 1.9765 0.0039

100 β 0.0700 0.0033 0.0004 3.70E-05
θ 0.067 0.0032
α 1.2172 0.0037

150 β 0.0779 0.0039 0.0004 3.70E-0
θ 0.0566 0.0029
α 0.0545205 0.0061150

500 β 0.0008436005 0.0062 0.0001266398 9834E-4
θ 0.02185435 0.03819039
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Figure 8. mse of (α, β, θ) for table 3,table 4 and table 5 .
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Table 4. MSE of the parameter estimations and a comparison of the two methods of estimation at the sample sizes
(10,25,50,100,150,500) For the initial value set (α = 3, β = 2, θ = 4).

MSE
Sample size Parametes methods Performance

MLE LQ-moment MLE LQ-moment
α 21.34852 7.7732061

10 β 0.0669413 3.813840 0.3190029 4.86E-05
θ 9.566965 3.7325726
α 139.9068 0.0032

25 β 0.2850 0.0029 0.0031 4.66E-05
θ 1.5244 0.0036
α 29.5004 0.0041

50 β 0.1857 0.0026 0.0016 3.68E-05
θ 0.3887 0.0028
α 1.0751 0.3037

100 β 0.0657 0.0039 0.00061 4.43E-05
θ 0.0672 0.0026
α 1.0912 0.0035

150 β 0.04298 0.0038 0.00041 4.70E-05
θ 0.0496 0.0030
α 0.0545205 0.4124429

500 β 0.0008436 2.696877 0.0003974 3.642217E-05
θ 0.02185 0.1280085

The second case data set represents the monthly average of rainfall in Duhok meteorological station -Iraq,
from 1993 to 2006. The null hypothesis (H0) for the Chi-Square test aims to assess the goodness-of-fit of the
Kappa distribution to the observed rainfall data. In this context, the null hypothesis typically states that there is
no significant difference between the observed rainfall data and the Kappa distribution with specified parameters
(α = 2, β = 2, θ = 3). The alternative hypothesis (Ha) would suggest that there is a significant difference. Table
(5) presents the results of estimating the three parameters using the Chi-Square criterion. The methods employed
for parameter estimation include Maximum Likelihood Estimate (MLE) and the Method of Quantile L-Moments
(MQL). The estimated parameters (α, β, θ) for both methods are reported, along with the corresponding Chi-Square
statistic, p-value, and Mean Squared Error (MSE).

For MLE, the estimated parameters are α = 1.625983, β = 0.144314, and θ = 5.01906. The associated Chi-
Square statistic is 163.68 with a p-value of 0.004161, indicating a rejection of the null hypothesis at a significance
level of 0.05. The MSE is reported as 2.498371.

For MQL, the estimated parameters are α = 1.687656, β = 1.084304, and θ = 1.616303. The Chi-Square
statistic is 173.44 with a p-value of 0.0008383, again leading to the rejection of the null hypothesis. The MSE
for MQL is reported as 1.130276. These results suggest that both MLE and MQL provide parameter estimates that
significantly differ from the assumed Kappa distribution parameters based on the Chi-Square criterion.

The cumulative distribution function for rainfall data is shown in Figure (9).

Table(5) displays the results of best estimating the three parameters of real data using the Square-Chi criterion.
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Figure 9. cumulative distribution function for the rainfall data.

Table 5. results of best estimating the three parameters (α, β, θ) of rainfall data using the Chi-Square.

Method parameters chi-square MSE
α β θ static p-value

MLE 1.625983 0.144314 5.01906 163.68 0.004161 2.498371
MQL 1.687656 1.084304 1.616303 173.44 0.0008383 1.130276

The use of LQ-moments, a skewness measure known as the LQ-skewnes. The two measures were calculated for
LQ-skewnes and LQ-kurtosis, and the results were 0.2135066 and -2.961426, respectively. Figure (10) shows the
probability distribution function for the rainfall data using LQM.

6. Conclusion

The maximum likelihood and LQ-moments methods were used to derive estimators of the three-parameter Kappa
distribution’s parameters and quantiles. The results obtained using maximum likelihood are compared to those
obtained using the LQ-moments method. Because of the importance of its applications, its parameters must be
evaluated precisely, accurately, and efficiently. We investigate the performance of these estimators using two data
sets from the simulation case and from the monthly average of rainfall in Duhok, Iraq. The results demonstrate
that the LQ-moments and maximum likelihood methods are comparable and that the three-parameter kappa
distribution fits the data well. For the three simulated cases using the two methods, the LQ-moments performed
better than the MLE for all cases in simulation for Estimating the general model parameters according to the
MSE criterion and selecting sample sizes at all default values. As a result, the researcher used them for estimating
the real data. When comparing the p-value, For the criterion χ2 with 0.05 then the fit of Goodness test is used
on the real data according to the null hypothesis, i.e. the real data is distributed the kappa distribution. Future
studies should investigate ways to improve convergence reliability, such as employing hybrid approaches that
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Figure 10. probability distribution function for the rainfall data using LQM method.

combine grid search with Newton-Raphson for starting values or alternative optimisation algorithms like the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) technique. Furthermore, robustness may be increased by using
multi-start approaches, which evaluate various initial values, particularly in situations with small sample sizes or
highly skewed data.
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