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Abstract Morocco’s insurance sector, particularly auto insurance, is experiencing significant growth despite economic
challenges. To remain competitive, companies must innovate and adjust their pricing to meet customer expectations and
strengthen their market position. Traditionally, actuaries have used the linear model to assess the impact of explanatory
variables on the frequency and severity of claims. However, this model has limitations that do not always accurately reflect
the reality of claims or costs, especially in auto insurance. Our study adopted the generalized linear model (GLM) to address
these shortcomings, enabling a more precise statistical analysis that better aligns with market realities. This paper examines
the application of GLM to model the total claim burden of an automobile portfolio and establish an optimal rate. The steps
include data processing and analysis, segmentation of rating variables, and selecting appropriate distributions using statistical
tests such as the Wald test and the deviance test, all performed using SAS software.
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1. Introduction

Traditional linear regression models assume that the dependent variable follows a normal distribution and that the
relationship between the dependent variable and the independent variables is linear. However, these assumptions
are not suitable for many types of data, such as binary results or counts. Generalized Linear Models (GLMs)
were developed to overcome these limitations by accommodating different types of distribution (e.g., Binomial,
Poisson) and incorporating a link function that relates the mean of the dependent variable to the linear predictors,
thereby transforming a non-linear relationship into a linear one. The concept of GLM was initially proposed by
John Nelder and Robert Wedderburn in their seminal paper ”Generalized Linear Models” [1]. Their work extended
the linear modeling framework to encompass a variety of distributions beyond the normal distribution, which was
the primary focus of classical linear regression. GLMs have been widely used in various fields such as economics
[2, 3, 4], medicine [5, 6, 7], social sciences [7, 8, 9], biology [7, 10], and engineering [7, 11, 12], due to their
flexibility.

Insurance is a mechanism through which the insurer commits to paying a benefit in the event of a predefined
uncertain event, in exchange for a premium paid by the insured, as seen in automobile insurance. Insurance and
reinsurance companies must be subject to specific oversight to ensure their social impact and preserve their crucial
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role in the financing of the economy [13, 14, 15, 16, 17]. In Morocco, this responsibility lies with the Insurance and
Social Welfare Authority (ACAPS = Autorité de contrôle des assurances et de la prévoyance sociale) [18], which
regulates the issuance of licenses for market entry and ensures continuous supervision. According to its annual
statistics, in 2021, the premiums issued by insurance and reinsurance companies reached significant amounts, with
22.9 billion dirhams for life premiums, including acceptances, and 27.3 billion dirhams for non-life premiums.
Such data highlight the central role played by insurance companies. Their impact extends beyond the social realm,
contributing to well-being and compensating for third-party losses. They also emerge as essential contributors to
the country’s economic growth [19].

In insurance, the production cycle operates in reverse: the premium (the contribution from the insured) is
collected upfront, while the indemnity payment (obligation of the insurer) occurs later. Consequently, the exact cost
cannot be determined in advance. To address this, the insurer must take specific steps: selecting risks to minimize
exposure to unfavorable outcomes, distributing risks through co-insurance and reinsurance to protect against
significant losses, and pricing risks based on historical experience, employing statistical methods, probability
calculations, and financial mathematics to ensure fair allocation of costs among insured [20, 21, 22, 23, 24]. To
achieve these objectives, insurers increasingly rely on GLMs as a powerful risk assessment and pricing tool. GLMs
allow insurers to model the relationship between various risk factors such as age, driving history, vehicle type,
and the probability of claims, allowing more accurate predictions of expected losses. Using GLMs, insurers can
refine their risk selection process, ensuring that premiums are closely aligned with the actual risk profile of each
policyholder. Moreover, GLMs improve the ability to price risks in a manner that is both fair and financially
sustainable, as they account for the complex, non-linear interactions between different variables. This statistical
approach helps set fair premiums and supports the strategic management of risk distribution through co-insurance
and reinsurance, ultimately contributing to the insurer’s financial stability [7, 25, 26, 27].

Generalized Linear Models have recently attracted significant attention, particularly within the insurance sector,
where researchers have extensively explored their applications in risk assessment, pricing, and maintaining
insurance stability. In 2014, Kafková, S. et al. [28] utilized GLMs to predict annual vehicle insurance claim
frequency based on data from 57,410 vehicles. Their approach involved evaluating models by comparing predictor
variables through deviance analysis and the Akaike Information Criterion (AIC) with R software computations.
Afterward, in 2015, David, M. [29] provided an overview of GLM techniques for calculating the pure premium
based on observable policyholder characteristics. This work included a numerical illustration using a French auto
insurance portfolio performed with SAS statistical software.

Subsequent studies further demonstrated the versatility of GLMs in the insurance industry. In 2018, Xie, S. et al.
[30] offered general guidelines for applying predictive modeling to regulate insurance rates, highlighting GLMs’
effectiveness in reviewing auto insurance rate filings. Following this, in 2019, Erik Šoltés et al. [31] published a
paper focusing on claim severity analysis in motor third-party liability insurance using GLM based on anonymized
data from a Slovak insurance company. Continuing this trajectory, in 2022, E. Seyam et al. [32] proposed alternative
tariff systems for estimating pure premiums for Misr Insurance Company by employing GLM, Generalized Linear
Mixed Models (GLMM), and Generalized Additive Models (GAM), using Gamma and Poisson distributions on a
dataset comprising 576,381 insurance contracts from 2013 to 2016.

The application of GLMs in insurance has seen further refinement in recent years. In 2023, R Oktavia et al.
[33] assessed Poisson and Negative Binomial GLM models for estimating auto insurance claim frequencies using
R software. They discovered that while both models performed well for the Swedish dataset (dataOhlsson), they
were unsuitable for the Australian dataset (ausprivauto0405). Most recently, in 2024, Esmeralda Brati [34] utilized
GLM and Generalized Additive Models for Location, Scale, and Shape (GAMLSS) to estimate claim amounts,
analyzing data from 229 Automobile Bodily Injury Claims provided by an Albanian insurance company. This
study also explored the effects of various explanatory variables on claim amounts, further emphasizing the broad
applicability of GLMs in the insurance sector.

Our research applies GLMs to model the total claim burden of an automobile insurance portfolio, providing a
structured approach to overcoming limitations in traditional pricing methods. Automobile insurance plays a vital
role in the Moroccan insurance market, accounting for 26.1% of non-life premiums in 2021. Traditional approaches
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often struggle to capture the intricate relationships in claims data, whereas GLMs offer the flexibility to model non-
linear interactions and accommodate diverse data distributions.
This paper makes several key contributions, including developing a practical framework for calculating fair and
sustainable premiums. It employs advanced segmentation techniques to create homogeneous risk classes and
selects optimal statistical distributions for modeling claim frequency and severity. The methodology integrates
thorough data cleaning, exploratory analysis, and rigorous statistical testing, utilizing the Negative Binomial and
Gamma distributions. By leveraging real-world data from the Moroccan market, our study delivers actionable
insights for insurers seeking to enhance pricing accuracy, ensure regulatory compliance, and strengthen competitive
positioning. In addition to demonstrating the value of GLMs in modern actuarial science, this work lays the
groundwork for future innovations in data-driven risk management and premium optimization.

The remainder of this paper is structured as follows. First, the structure and evolution of premiums and market
shares in the Moroccan insurance market from 2019 to 2021 are discussed. Next, the theoretical framework for
automobile insurance pricing, emphasizing GLM methods, is presented. Following this, the application of these
theoretical concepts is detailed, along with a discussion of the resulting findings.

2. Global market vision

Tables 1 and 2 show the distribution of premiums issued in 2021 and the market shares of the leading companies,
respectively. Figure 1 depicts the evolution of premiums issued from 2019 to 2021, differentiating between non-life
insurance and life insurance & capitalization.

Table 1. The structure of premiums issued for the year 2021 and the contribution of each branch on the Moroccan insurance
market [35].

Branches Primes Contribution
Life Insurance and Capitalization 22 942,30 46,1%

Automobile 12 988,70 26,1%
Personal Accidents 4 772,80 9,6%

Worker’s Compensation 2 319,60 4,7%
Fire 2 053,60 4,1%

Assistance 1 513,90 3,0%
Other Non-Life Policies 888,20 1,8%

Transport 706,40 1,4%
General Third-Party Liability 604,40 1,2%

Guarantee against the consequences of catastrophic events 521,80 1,0%
Technical Risks 276,10 0,6%

Reinsurance Acceptance 221,70 0,4%
Total (in millions of dirhams) 49 809,50 100,0%

Remark 2.1
Table 1 highlights the following points:

• In 2021, life insurance & capitalization accounted for 46.1% of premiums issued, while other insurance
branches represented 53.9%.

• Auto insurance dominated the non-life insurance market with an annual turnover of 12.99 billion dirhams
in 2021, followed by personal accident insurance with 4.77 billion dirhams, and worker’s compensation
insurance with 2.32 billion dirhams.

• The prominence of auto insurance is largely attributed to mandatory civil liability insurance and the tendency
of cautious policyholders to seek extensive protection against common risks.
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Table 2. The evolution and market shares of the main companies [35].

Compagnie 2019 2020 2021 Evolution 2020/2021 Market Share
Wafa Assurance 8 853,0 8 374,2 9 088,9 8,5% 18,2%

RMA 6 816,0 6 876,0 7 680,7 11,7% 15,4%
Mutuelle Taamine Chaabi 5 123,2 5 787,3 6 308,4 9,0% 12,7%

Sanlam Assurance 5 422,4 5 126,0 5 621,1 9,7% 11,3%
Axa Assurance Maroc 4 645,2 4 871,7 5 567,4 14,3% 11,2%

Atlanta Sanad 4 840,8 4 937,6 5 400,8 9,4% 10,8%
Marocaine Vie 2 267,6 2 158,2 2 339,1 8,4% 4,7%

MCMA 1 541,2 1 798,0 2 067,0 15,0% 4,1%
Allianz Assurance Maroc 1 479,9 1 572,3 1 426,8 -9,3% 2,9%

MAMDA 1 034,6 1 092,5 1 172,1 7,3% 2,4%
CAT 693,0 694,1 779,8 12,3% 1,6%

MATU 416,6 525,7 714,1 35,8% 1,4%
Maroc Assistance Internationale 568,1 561,5 620,9 10,6% 1,2%

Africa First Assist 471,7 325,8 322,0 -1,2% 0,6%
Wafa Ima Assistance 281,4 258,3 281,6 9,0% 0,6%

Euler Hermes ACMAR 144,9 136,3 134,2 -1,5% 0,3%
RMA Assistance 113,1 109,2 123,0 12,6% 0,2%

Coface Maroc 62,7 81,1 71,2 -12,2% 0,1%
AXA Assistance Maroc 86,9 47,0 55,8 18,7% 0,1%

Smaex 39,9 27,6 34,8 26,1% 0,1%
Total (in millions of dirhams) 44 902,2 45 360,4 49 809,7 9,8% 100,0%

Figure 1. Evolution of premiums issued 2019-2021 [35].

Remark 2.2

1. Table 2 shows that the top six companies hold 79.6% of the life and non-life insurance market. Wafa
Assurance leads with 18.2%, followed by RMA (15.4%), Mutuelle Taamine Chaabi (12.7%), Sanlam
Assurance (11.3%), Axa Assurance Maroc (11.2%), and Atlanta Sanad (10.8%).

2. Figure 1 indicates a modest 1% increase in premiums issued in 2020 compared to 2019, reflecting resilience
amidst the COVID-19 pandemic despite a generally slow growth period. In 2021, there was a significant
recovery, with premiums rising by nearly 10%, driven by renewed activity in both non-life and life insurance
sectors. In the automobile sector, premiums saw a slight increase of 0.1% in 2020, followed by a more
substantial rise of 8.6% in 2021.
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3. Materials and methods

3.1. Principles of Pricing for Civil Liability Insurance

In the insurance market, insurers work to maintain profitability and competitiveness by regularly introducing new
products to meet evolving market demands. The product development process encompasses several stages that
require close coordination among different departments and stakeholders. One critical stage is pricing, handled by
the actuarial department, which involves determining the appropriate premium levels for policyholders.

3.1.1. The frequency-cost theory of claims
The insurance operation involves transferring the risk, either fully or partially, from the insured to the insurer.

The primary challenge for insurers is to accurately evaluate and control the associated risks. This process includes
estimating the expected claims burden, known as the pure premium, which is the amount needed to cover claims
without accounting for administrative costs. The pure premium reflects the inherent risk to the insurer. In a priori
pricing, the goal is to set a premium that closely matches this expected claims burden. For a given policy and
period, the desired premium is the pure premium, determined by minimizing the deviation from the anticipated
claims: min

P>0
d(P, S) := E(S − P )2. After a simple calculation, we find that P = E(S). Therefore, pricing consists

of modeling the claims.
In insurance, costs for a portfolio of individual risks can be modeled using different approaches, primarily
categorized into individual risk models and collective risk models. We will focus on the collective risk model,
which is essential in auto insurance. In this model, the total claims burden S follows a compound distribution,

defined by S =

N∑
i=1

Ci, with:

• N represents the number or frequency of claims observed during the insurance period.
• Ci are independent and identically distributed random variables representing the amounts or costs of the i-th

claim, without considering the specific insured individual.
• N and Ci are independent (Cost-Frequency independence).

Remark 3.1
The collective model reveals that two essential factors influence the distribution of S: the frequency of claims
and their costs. In other words, it is more relevant to model the frequency and costs of claims separately rather
than modeling the total burden directly. Under the assumption of independence between N and Ci, the following
property arises from the collective model: E(S) = E(N)× E(C). This equation shows that the desired pure
premium equals the average claim frequency multiplied by the average cost per claim.

Remark 3.1 highlights that the pure premium formula depends on a mathematical expectation, which requires
a large portfolio to estimate the average claims burden with precision. In auto insurance, this condition is
usually fulfilled due to mandatory liability coverage, allowing for pricing based on the Law of Large Numbers.
Nevertheless, due to the heterogeneous nature of risks, the Law of Large Numbers does not apply directly to an
insured portfolio. Consequently, insurers must divide the portfolio into homogeneous classes, ensuring that each
class is sufficiently large to validate the model.
In summary, when setting rates, insurers must consider two key factors:

• A sufficient number of insured persons: Maintaining a sufficiently large portfolio of insured individuals.
• Homogeneity of risks: Creation of homogeneous classes within the portfolio of insured persons.

Remark 3.2
Based on the above, we will use conditional expectations to calculate the pure premium for a policyholder in the
homogeneous class X . In other words, we will have the following formula:

E(S|X) = E(N |X)× E(C|X).
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3.1.2. Segmentation
Segmentation entails dividing a portfolio into distinct, homogeneous subgroups, each comprising individuals

with similar behaviors. The principle behind this is that each individual should pay a premium commensurate
with their own risk. This method enables the evaluation and management of the consistency between premiums
and claims within homogeneous risk groups, offering crucial technical insights. As a result, segmentation aids in
implementing technical strategies at all levels, particularly in pricing and underwriting.

Remark 3.3
When performing segmentation, it is crucial to consider the condition of having numerous risks. Indeed, when
aiming for an individual premium rate, the estimation of the pure premium based on the collective model can be
biased, leading to poor results. Since the estimation of the average load will rely on a tariff class that is too narrow,
it fails to leverage the Law of Large Numbers.

3.2. Generalized Linear Model (GLM)

Actuaries have long relied on the linear model to quantify the impact of explanatory variables on claim frequencies
and severities. However, this model presents a series of limitations that do not always align with the reality of
claim numbers or costs. Indeed, the linear model, defined in matrix form as Y = XTβ + ε assumes that the mean
is a linear function of the variables, which is not always the case, particularly in auto insurance. To overcome
these restrictions the model has been expanded to include GLMs, representing a diverse set of statistical methods.
GLMs extend the traditional linear model in two key ways: first, they accommodate a range of distributions, such
as Normal, Poisson, and Gamma, rather than assuming a Normal distribution. Second, GLMs model a monotonic
transformation of the mean as a linear function of the explanatory variables rather than modeling the mean directly.
This approach relaxes both the normality assumption and the linearity requirement of the mean concerning the
explanatory variables. What distinguishes GLM is that, instead of modeling the response variable Y , directly,
a function of the expected value of this variable, known as the link function, is modeled. In other words, a
mathematical transformation is applied to the expected value of the response variable, considering the actual
distribution of errors.

3.2.1. The principle of GLM
A GLM model relates the expectation of Y to the explanatory variables as follows:

g(E(Yi)) = g(µi) =

p∑
j=1

xijβj .

with: i ∈ {1, 2, 3, ..., N}, Yi is a random variable belongs to the exponential family, g is an invertible function,
called a link function, and E(Yi) depends on

∑
xjβj through the link function g.

3.2.2. The exponential family
The exponential family encompasses a set of probability distributions that can be expressed by a single

general formula and share common properties. Distributions such as the normal, binomial, Poisson, and Gamma
distributions all belong to this exponential family.

In all GLM models, we will assume that the response variable Y follows a density of the following form:

f(y|θ, ϕ) = exp

[
yθ − b(θ)

a(ϕ)
+ c(y, ϕ)

]
.

with: a, b and c are known and differentiable functions, ϕ is the dispersion parameter, and θ is the natural
parameter. It is linked to the first two moments of the law.
The following two formulas result from this: E(Y ) = µ = b′(θ) and V ar(Y ) = σ2 = b′′(θ)a(ϕ).

Depending on the type of response variable Y , a density function is selected from those listed in the table 3.
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Table 3. Summary of the main factors of GLM by distribution.

Distribution θi b(θi) a(ϕ) µi

B(1, πi) ln

(
πi

1− πi

)
ln(1 + eθi) 1 πi =

eθi

1 + eθi

NB(n, p) (n constant) ln(p) n ln(1 + eθi) 1 eθi =
n(1− p)

p

Γ(µi, ν) − 1

µi
− ln(−θi)

1

ν
− 1

θi
= µi

Pois(λi) ln(λi) eθi 1 eθi = λi

N (µi, σ
2) µi

θ2i
2

σ2 θi = µi

3.2.3. Link functions
Let g be a monotonic and differentiable link function. This function represents the relationship between the

endogenous variable and the deterministic component. The common link functions are summarized in the table 4.

Table 4. Classic link functions

Identity function g : x −→ x
Logarithm function g : x −→ ln(x)

Inverse function g : x −→ 1

x
Logit function g : x −→ ln

(
x

1− x

)
Probit function g : x −→ ϕ(x)

Where ϕ is the distribution function of the normal distribution N (0, 1).

3.2.4. WALD test
To assess the validity of a GLM, various criteria and tests are employed to ensure the model’s relevance. The

Wald test, in particular, is used to evaluate the significance of the explanatory variables. This test helps identify
which variables should be retained and which ones significantly influence the response variable. Specifically, if a
parameter βj is zero, it suggests that the explanatory variable associated with the coefficient xj does not affect the
response variable Y . Therefore, testing whether a parameter is zero in the population under study is crucial.

The Wald test confronts the following hypotheses:

H0 : βj = 0 (there is no connection between xj and Y )
H1 : βj ̸= 0 (there is a link between xj and Y )

4. Experimental results

4.1. Descriptive study

Before conducting any statistical analysis, it was crucial to thoroughly clean the databases. The collected data were
often inaccurate, inconsistent, or redundant, which could distort the results. Therefore, we first presented the raw
databases and then ensured data consistency by addressing outliers, missing values, and duplicates. This approach
allowed us to perform a precise and reliable descriptive statistical analysis. This study focused on auto liability
insurance contracts for tourism use, utilizing data from two files: a production file and a claims file. We began by
importing the data from these files using the proc import command in SAS. The production file contained 145 367
observations across 9 variables, while the claims file included 65 372 observations across 4 variables.
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Figure 2. Lists of variables and their types from both files (SAS output).

We then analyzed the missing values, which included information either not reported by the insured or not
recorded by the claims managers. Tables 5 and 6 summarize the number of missing values for each variable and
their percentage relative to the entire database.

Table 5. The number of missing values (production file)

Observations Variable name Number of missing values Percentage
1 Exhibition 0 0%
2 Combustion 15 038 10%
3 Fiscal Power 0 0%
4 Sex 10 222 7%
5 Exercise 0 0%
6 Date of birth 1 067 1%
7 Date of entry into circulation 15 038 10%
8 Police number 0 0%
9 Zone 0 0%

Table 6. The number of missing values (claims file)

Observations Variable name Number of missing values Percentage
1 Police number 0 0%
2 Reference year 0 0%
3 Number of claims 0 0%
4 Amount of claims 0 0%

To address the missing values shown in Tables 5 and 6, and given the large size of our dataset, we chose to
remove them. Consequently, we ended up with 125 105 observations in the production file and 65 372 observations
in the claims file. We then moved on to the analysis of outliers. For the production file, we calculated the ages of
drivers and vehicles, removing outliers by excluding vehicles aged less than 0 or greater than 80, as well as drivers
aged less than 18 or greater than 80. After this correction, the production file contained 124 479 observations,
with no other variables showing abnormal values. In the claims file, the analysis of outliers involved calculating
the number of claims and the total amount. After removing negative amounts, the database consisted of 50 676
observations. Finally, we analyzed duplicates by using the SQL query ”select distinct∗” in SAS. This analysis
revealed no duplicates in either file. As a result, the number of observations in the production file remained at 124
479, while the number of observations in the claims file remained at 50 676, and the study relied on a final database,
created by merging the production and claims files.
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Remark 4.1
Our study relied on a final database, created by merging the production and claims files. As a result, each insurance
contract was associated with all relevant variables included in our analysis. In other words, it was essential to
combine the two existing databases.

4.1.1. Distribution of the automobile portfolio
This section categorizes the portfolio into four groups: sex, fiscal power, type of combustion, and circulation

zone.

a- Distribution of automobile portfolio according to the sex of the insured
Sex or gender is a significant variable influencing the frequency of claims in auto insurance. Behavioral

differences between males and females often result in distinct risk profiles. By analyzing the model coefficients
associated with this variable, insurers can quantify these behavioral differences and adjust premiums accordingly to
reflect the relative risk. Such insights are critical for ensuring fair and equitable pricing in auto insurance portfolios.

Figure 3. Proportion of males and females in the portfolio (SAS output).

In the insured population, men outnumber women. Specifically, men comprise 88.30% of the portfolio, while
women represent 11.70%.

Figure 4. Proportion of males and females affected by disasters in the portfolio (SAS output).

Among the insured casualties, there are 11 856 men and 2 705 women. Men constitute 81.42% of the total
casualties. Additionally, the percentage of men who are casualties relative to the total male population is 10.65%
(11856/111300× 100 = 10.65%). In contrast, women who are casualties represent 18.33% of the total female
population (2705/14753× 100 = 18.33%).

These findings suggest that while men represent a larger proportion of the insured population, women experience
a higher casualty rate relative to their total population. This could indicate differences in driving behavior or
exposure to risk between genders, which is an important factor for pricing models in the insurance industry.
By interpreting the model coefficients associated with gender, insurers can better understand how the sex of the
insured influences both claim frequency and severity, allowing for more accurate risk assessments and premium
adjustments.

b- Distribution of the automobile portfolio according to fiscal power
Fiscal power, a key variable associated with the insured vehicle, is a significant determinant in assessing auto

insurance risk. Higher fiscal power often correlates with more powerful and faster vehicles, which can increase the
likelihood of accidents due to higher speeds and performance capabilities. Vehicles with higher fiscal power are
often driven more aggressively, further elevating the risk of claims related to both frequency and severity.
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Figure 5. Distribution of the automobile portfolio according to fiscal power (SAS output).

According to the table in Figure 5, vehicles with less than 10 and more than 7 horsepower represent the majority,
comprising nearly 60% of the portfolio. This finding suggests that the majority of insured vehicles fall within a
mid-range of fiscal power, balancing between performance and potential risk. While these vehicles may not be
as high-risk as those with significantly greater fiscal power, their frequency of claims may still reflect the risk
associated with more powerful vehicles.
By interpreting the model coefficients for fiscal power, insurers can gain valuable insights into how changes in
fiscal power influence risk, allowing for the development of more nuanced pricing models that better account for
the correlation between vehicle performance and accident likelihood.

c- Distribution of the automobile portfolio according to the combustion type
The combustion type of a vehicle—specifically whether it is powered by Diesel or Gasoline—plays a crucial role

in determining auto insurance risk. Diesel vehicles are often associated with higher fuel efficiency and durability,
but they may also carry a higher risk of severe accidents due to their typically larger engine sizes and greater torque.
Gasoline vehicles, on the other hand, are more commonly used in a wider variety of vehicle types and are generally
considered to have lower environmental impact compared to diesel engines, though they can still pose significant
risks depending on the vehicle’s size and performance.

Figure 6. Distribution of the automobile portfolio according to the combustion type (SAS output).

In our portfolio, 87 543 policies cover Diesel vehicles, representing 69.43%, while 38 539 policies cover
Gasoline vehicles, accounting for 30.57%. This suggests that Diesel vehicles dominate our portfolio, likely due
to their suitability for more frequent use and longer distances, despite their higher purchase cost.

Figure 7. Distribution of damaged vehicles according to the combustion type (SAS output).

Among the insured vehicles, 4 018 Gasoline cars were involved in accidents, compared to 10 550 Diesel cars.
The percentage of Gasoline cars involved in accidents relative to the total number of Gasoline vehicles is 10.4%
(4018/38539× 100 = 10.4%). In contrast, the percentage of Diesel vehicles involved in accidents is 12% of the
total Diesel vehicle population (10550/87543× 100 = 12%).
By interpreting the model coefficients for combustion type, insurers can evaluate the influence of fuel type
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on accident frequency and severity, leading to more accurate pricing models that account for the distinct risks
associated with diesel and gasoline vehicles.

d- Distribution of the automobile portfolio according to the circulation zone
The geographical area where a driver resides with their vehicle, referred to as the circulation zone, significantly

impacts the accident rate and, consequently, the cost of auto insurance premiums. Areas with higher population
density, such as urban centers, tend to experience higher traffic volumes, leading to an increased likelihood of
accidents. This elevated risk results in higher insurance premiums for vehicles located in these zones. In contrast,
rural or less populated areas often see fewer accidents, leading to relatively lower premiums.

Figure 8. Distribution of the automobile portfolio according to the circulation zone (SAS output).

Figure 8 shows that the regions of Casablanca-Settat and Rabat-Salé-Kénitra account for approximately 35% of
the insured population.
By analyzing the model coefficients associated with circulation zones, insurers can gain a deeper understanding of
how geographical factors influence claim frequency and severity. This insight enables more precise pricing models
that reflect the risk variation based on the driver’s location.

4.1.2. Mean of variables and correlation analysis
This section outlines the descriptive statistics of the variables and explores their correlations to assess

relationships between the explanatory variables.

Figure 9. Descriptive statistics of the variables (SAS output).
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In our portfolio, the average claims frequency was 0.53, indicating roughly one claim for every two insured
individuals. Additionally, the average driver was 45 years old, and the average vehicle was 12 years old (see Figure
9).

Figure 10. Analysis of correlations between the explanatory variables (SAS output).

Referring to the table in Figure 10, we observe that the frequency of claims is correlated with the variables
age of the driver and age of the vehicle (p-values are below 5%), suggesting that these variables can explain the
frequency and should be retained in our modeling. Additionally, the age of the driver and the age of the vehicle are
not correlated with each other, indicating their independence and confirming that neither variable will be removed.
(As discussed in Article [19], Section IV, alternative methods can be employed to evaluate the relationship between
these variables).

4.1.3. Adjustment of the total claims burden
In this section, we compare the distribution of the total load with several continuous probability distributions,

namely the exponential distribution, the log-normal distribution, the Weibull distribution, and the Gamma
distribution, using a Q-Q plot.

Figure 11. Adjustment the total claims burden to the laws: exponential (left) and log normal (right).

The Q-Q plot diagrams in Figure 11 reveal a significant deviation between the total load distribution and
the exponential distribution and show that the total load curve is quite distant from the line of the log-normal
distribution. This suggests that neither the exponential nor the log-normal distribution fits our data well.
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Figure 12. Adjustment of the total claim burden to the distributions: Weibull (left) and Gamma (right).

From the Q-Q plot above (Figure 12), it appears that the Weibull distribution provides a satisfactory fit to the
total claims load distribution. However, the total load distribution is also quite close to the line of the Gamma
distribution, suggesting that the Gamma distribution might be the most suitable for fitting our data.

4.2. Segmentation

Segmentation divides a portfolio into homogeneous risk classes where individuals with similar behaviors are
grouped and pay the same premium. It ensures fairness for the insured and financial stability for the insurer by
reducing adverse selection risk. To perform this segmentation, we have chosen the software ”SAS Enterprise
Miner”, which assisted us in creating homogeneous classes of insured individuals. According to remark 3.1, two
essential factors were involved: the frequency and the costs of claims.

4.2.1. Segmentation of tariff variables for modeling claims frequencies
We aim to define homogeneous risk classes with similar cost levels. The variables fall into two main categories:

endogenous variables, such as the number of claims, and exogenous variables, which include factors related to the
vehicle (age, fiscal power, etc.) and the driver (sex, age, etc.). Table 7 presents the various classes that have been
created:

Table 7. The different classes built using ”SAS Enterprise Miner”

Variables Classes
< 2.5

Vehicle age (av) between 2.5 and 10.5
between 10.5 and 16.5

> 16.5
< 30.5

Conductor age (ac) between 30.5 and 48.5
> 48.5

’Tanger-Tetouan-Hoceima’,’Rabat-Sale-Kenitra’,’Oriental’,’Guelmim-
Circulation zone (zone) Oued Noun’,’Souss-Massa’

other regions
between 10 and 14

Fiscal power (pf) others fiscals powers
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The tables below (Figure 13) display the number of observations for each class created based on the previously
mentioned variables.

Figure 13. The frequency of observations in class ”vehicle age” (left) and class ”conductor age” (right).

The tables in Figure 13 show that vehicle age has been grouped into four classes with 18 628, 40 550, 22 572,
and 44 332 observations, respectively. Driver age is divided into three classes with 14 904, 62 277, and 48 901
observations, respectively.

Figure 14. The frequency of observations in class ”circulation zone” (left) and in class ”fiscal power” (right).

The tables in Figure 14 show that the zone variable has been grouped into two classes with 46 888 and 79 194
observations, respectively. The fiscal power variable has also been grouped into two classes, with 17 337 and 108
745 observations, respectively.

4.2.2. Segmentation of tariff variables for average cost modeling
Before starting the segmentation of tariff variables explaining the average cost of claims, we analyzed the

database. Using the ”Proc Univariate” procedure in SAS, we obtained the following table.

Figure 15. Descriptive statistics of the average cost base.

Based on the above statistics (Figure 15), the average of the ”average cost” variable was 24 740.8. In other words,
a claim costs an average of 24 740.8. We also noted that the standard deviation of this variable was very high (47
275), which suggested the presence of severe claims. A common issue in non-life insurance is the significant impact
of severe claims. When extreme amounts significantly affect average costs, as seen in the range of observations,
it becomes necessary to cap these claims. This process involves redistributing the burden of claims that exceed
a certain threshold, known as the capping threshold. For this purpose, the 95th percentile of the ’average cost’
variable was used as the reference.
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Figure 16. Quantiles of the average cost base.

According to Figure 16, average costs equal to or greater than 91 150 were classified as severe claims. This
classification enabled us to divide the initial database into two groups: severe claims, comprising 731 observations
(see Figure 17), and standard claims, which include the remaining observations.

Figure 17. Simple statistics of the serious claims database (SAS output).

Using ”SAS Enterprise Miner”, we segmented the standard cost database and recoded the variables according to
the identified classes. Table 8 displays the various classes created.

Table 8. The different classes obtained using ”SAS Enterprise Miner”

Variables Classes
< 5.5

Vehicle age (av) between 5.5 and 13.5
between 13.5 and 20.5

> 20.5

< 20.5
Conductor age (ac) between 20.5 and 22.5

between 22.5 and 41.5
> 41.5

’BeniMellal-Khenifra’, ’Guelmim-Oued Noun’, ’Marrakech-
Circulation zone (zone) Safi’, ’Casablanca-Settat’ , ’Dakhla-Oued Ed Dahab’

other regions
< 10

Fiscal power (pf) other fiscal powers
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The tables in Figures 18 and 19 show the number of observations in each class constructed for the previously
mentioned variables.

Figure 18. The frequency of observations according to the variable ”av” (left) and according to the variable ”ac” (right).

According to the tables in Figure 18, vehicles were categorized into four groups: the first group contained 6 706
vehicles, while the other groups had 3 761, 1 855, and 1 515 vehicles, respectively. Drivers were also classified
into four age groups, with 34, 77, 4 988, and 8 738 individuals in each group, respectively.

Figure 19. The frequency of observations according to the variable ”zone” (left) and according to the variable ”pf” (right).

The circulation zone was divided into two groups: one with 6 235 observations and the other with 7 602
observations. Fiscal power was also divided into two groups: one with 11 660 observations and the other with
2 177 observations.

4.3. Calculation of the pure premium

This section explores how claim frequency and average costs are influenced by relevant legal frameworks.
As highlighted in Remark 3.1, auto insurance models typically address claim frequency and average cost as
separate entities. The pure premium is subsequently determined by multiplying these two factors. In practice,
claim frequency is commonly modeled using distributions such as the Poisson or Negative Binomial models.
For modeling claim costs, the Gamma and log-normal distributions are frequently employed. These continuous
distributions are characterized by their definition over the positive real numbers, allowing for a detailed
representation of variability in both frequency and cost.

4.3.1. Frequency of claims
After performing the segmentation of rating variables, we undertook the task of identifying the most appropriate

distribution to model the frequency of claims, our variable of interest. To evaluate the fit of the proposed models,
we utilized the deviance statistic, which measures the discrepancy in log-likelihood between the saturated model
(which achieves the maximum fit) and the model being assessed. The deviance provides a comparative metric that
helps in determining how well the model captures the underlying data structure.

Assessing model fit is crucial for ensuring reliable statistical inference. A model with a lower deviance relative to
the degrees of freedom indicates a better fit to the data, suggesting that it more accurately represents the variability
in the frequency of claims. Therefore, when comparing models, it is important to favor those with a lower deviance-
to-degrees-of-freedom ratio, as this reflects a more credible and effective model in explaining the observed data.

The deviances of the two distributions are calculated using SAS software.
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Figure 20. The Poisson distribution deviance (left) and the Negative Binomial distribution deviance (right).

Based on the results from Figure 20, we conducted a thorough assessment of the fit quality for both the Poisson
and Negative Binomial distribution models. The key diagnostic metric used was the deviance-to-degrees-of-
freedom ratio, which is commonly employed to assess model fit. For the Poisson distribution, we observed that this
ratio was significantly higher than that of the Negative Binomial model, indicating a poor fit to the data. Specifically,
a higher deviance-to-degrees-of-freedom ratio suggests that the Poisson model is not adequately capturing the
overdispersion present in the claim frequency data, where the variance exceeds the mean—a characteristic of
real-world insurance claim data. In contrast, the Negative Binomial distribution, which is designed to model
overdispersed count data, provided a better fit, as evidenced by its lower deviance-to-degrees-of-freedom ratio.
This suggests that the Negative Binomial distribution was better equipped to account for the heterogeneity and
variability in claim frequency. As a result, we chose to use the Negative Binomial model exclusively for assessing
the significance of the exogenous variables, as it was more appropriate for the structure of the data and provided
more reliable estimates for the relationship between predictors and claim frequency.

Figure 21. Results of WALD significance test for Negative Binomial (SAS output).
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We used the Wald significance test to estimate the parameters of the Negative Binomial distribution model, and
we applied the GLM in SAS using the Genmod procedure, which produced the following results.

As shown in Figure 21, the majority of the included variables significantly contribute to explaining claim
frequency, with p-values below the 5% threshold. However, two variables—”zone” and ”ac2”—were found to be
statistically insignificant, indicating that their inclusion did not meaningfully improve the explanatory power of the
model. These variables were therefore excluded from the final model to enhance its efficiency and interpretability.

The rationale for initially including these variables lies in their theoretical relevance and potential impact on
claim frequency. For example, the ”zone” variable was included to capture potential geographic effects, given that
urban and rural areas may exhibit different risk profiles. Similarly, the ”ac2” variable was hypothesized to contribute
based on its correlation with other key factors. However, the empirical results revealed that these variables did not
significantly affect claim frequency in our dataset.

After removing ”zone” and ”ac2,” we re-estimated the model, and the updated results are presented in Figure
22. This revised model demonstrated improved statistical performance, with no loss in explanatory power, thereby
supporting the decision to exclude these variables.

Figure 22. Results of the Wald significance test for NB without the variables ”zone” and ”ac2” (SAS output).

4.3.2. The average cost of claims
In this section, we aim to identify the most appropriate distribution for accurately modeling the average cost

of claims. Selecting an appropriate statistical distribution is crucial for ensuring that the model provides reliable
predictions and captures the underlying patterns in the data. To achieve this, we employ a rigorous assessment of
model fit, leveraging the deviance as a key evaluation metric. This approach enables us to compare the performance
of different candidate distributions in terms of their ability to represent the observed data.

As in the preceding section, the primary criterion for evaluating the quality of the fit is the ratio of deviance to
degrees of freedom. This metric allows for a standardized comparison of models, taking into account the complexity
of each distribution. A lower deviance-to-degrees-of-freedom ratio indicates a better fit, as it reflects a closer
alignment between the predicted and observed values with minimal overfitting.

For this analysis, we focus on two widely used distributions in the modeling of claim costs: the Gamma
distribution and the log-normal distribution. Both distributions are well-suited for modeling positive continuous
data, making them natural candidates for representing inherently non-negative claim costs.
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Figure 23. The Gamma distribution deviance (left) and the log-normal distribution deviance (right).

Based on the figures above (Figure 23), the goodness-of-fit test confirms that the model with a Gamma
distribution fits our data better than the model with a log-normal distribution. Therefore, we will continue our
analysis by focusing exclusively on the Gamma distribution model to assess the significance of the exogenous
variables, followed by residual tests.

As in the ”frequency” section, we used the WALD significance test to estimate the parameters of the Gamma
distribution model. Similarly, we eliminated variables with p-values greater than 5%, and we obtained the following
results.

Figure 24. Results of WALD significance test for Gamma (SAS output).

To ensure the reliability and robustness of the model, testing the normality of the residuals plays a pivotal
role. Residual analysis is a critical diagnostic tool that helps identify discrepancies between predicted values
and observed data, providing insights into the model’s adequacy and highlighting potential areas of misfit. By
examining residual patterns, it becomes possible to assess whether the underlying assumptions of the model hold
true, thereby enhancing confidence in the results.

In this study, the analysis was performed using the GLM framework in SAS, specifically leveraging the
”proc genmod” procedure. This procedure provides a comprehensive platform for fitting GLMs, offering robust
tools for evaluating residuals, estimating parameters, and testing hypotheses. By employing this approach, we
were able to systematically examine the residuals and assess whether they align with the assumptions of the chosen
model distribution.
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The results of this analysis are summarized in Figure 25. This figure illustrates the distribution of the deviance
residuals, providing a visual representation of their alignment with normality.

Figure 25. Standardized deviance residuals (SAS output).

The residuals are fairly randomly distributed around 0, suggesting that the linearity assumption underlying the
model is acceptable. Additionally, the residuals form a horizontal band around 0, indicating that the errors εi have
constant variance. In practice, for the model to be validated, the residuals should fall within the interval [−2.5, 2.5],
with no more than 5% of the residuals outside this range. In our case, this assumption is confirmed.

5. Discussion

Our study demonstrated that the Negative Binomial distribution and the Gamma distribution are the most
appropriate for modeling frequency and average cost, respectively, using the GLM. The premium for each segment
was calculated as the product of the average cost and frequency. The final models are therefore presented as follows.
frequency = exhibition ∗ exp(−2.1160 + 0.2076 ∗ (Sex in (′F ′))− 0.1193 ∗ (Com in (′G′)) + 0.1964 ∗

(pf in (′10− 14′)) + 0.1475 ∗ (ac < 30.5) + 1.1301 ∗ (av < 2.5) + 0.6966 ∗ (av >= 2.5 and av < 10.5) +
0.2933 ∗ (av >= 10.5 and av < 16.5));

averagecost = exp(10.02332− 0.1429 ∗ (sex in (′F ′))− 0.4384 ∗ (av < 5.5)− 0.3149 ∗ (av >=
5.5 and av < 13.5) + 0.0454 ∗ (ac < 41.5));

The pure premium is given by: PP = Frequency × Average cost + Average cost of serious loss ×Π, with:

• Average cost of serious loss = 176101.25 (see Figure 17).
• Π=number of insured persons who had a serious loss / number of insured persons = 731/126082=0.00579781.

Hence, PP = Frequency × Average cost + 1021.
Example Output (Simulation)

To show an example of the output, assume the following values: ”exhibition = 1”, ”sex = F”, ”com = G”, ”pf = 12”,
”ac = 25”, and ”av = 3”.

1. Frequency calculation:
frequency = 1× exp(−2.1160 + 0.2076× 1− 0.1193× 1 + 0.1964× 1 + 0.1475× 1 + 1.1301× 0 +
0.6966× 1 + 0.2933× 0) = exp(−0.8972) ⋍ 0.4078.
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2. Average cost calculation:
averagecost = exp(10.02332− 0.1429× 1− 0.4384× 0− 0.3149× 0 + 0.0454× 1) = exp(9.92582) ⋍
20501.9036.

Hence, PP = 0.4078× 20501.9036 + 1021 = 9381.6762.

This study provides a robust application of GLMs for insurance pricing; however, it is not without limitations.
A notable constraint is the dataset employed, which, despite being representative, did not include key predictors
such as driving history, vehicle type, and policy characteristics. These variables could potentially enhance the
model’s accuracy and generalizability. Addressing these limitations in future research would require access to
more comprehensive and high-quality data.

Implementing GLMs in the insurance industry also presents practical challenges. Issues such as data
quality, computational demands, and regulatory constraints can impact the model’s effectiveness. Ensuring data
consistency, investing in computational resources, and adhering to regulatory requirements are essential steps to
enhance the reliability and interpretability of GLMs for stakeholders. Furthermore, model validation across diverse
contexts and regions remains critical for assessing their robustness and applicability in various insurance markets.

We acknowledge that validating the models with datasets from other countries or regions would significantly
enhance the generalizability and robustness of our findings. While this aspect was not included in the current study
due to the project’s initial scope, it remains a valuable avenue for future research. Such validation efforts could
provide insights into the adaptability of GLMs across various insurance markets and ensure their reliability in
diverse regulatory and demographic contexts.

Future research should also expand the scope of this study by integrating additional explanatory variables,
including traffic conditions, driving behavior, and macroeconomic indicators, to better capture the factors
influencing claim frequency and severity. The exploration of dynamic pricing strategies, incorporating real-time
data such as telematics and customer-centric metrics, would align with emerging industry trends and provide a
more adaptive approach to pricing optimization.

Moreover, a comparative analysis of GLMs with other advanced modeling techniques, such as machine learning
algorithms and generalized additive models, could offer insights into their relative performance. Such an analysis
would strengthen the case for adopting GLMs or reveal alternative approaches that might outperform them under
specific conditions. This comparison, alongside further exploration of regulatory impacts and industry-specific
constraints, could yield innovative solutions for pricing optimization and risk management in the insurance sector.

6. Conclusion

This study addressed the critical issue of pricing in auto insurance, with a focus on determining an accurate
premium for policyholders to secure coverage against risk. Given the dynamic nature of the insurance sector,
marked by evolving market competition, regulatory changes, and economic conditions, it is crucial to regularly
and precisely review premium calculations. In this paper, we applied GLM to our auto insurance portfolio to
predict claim frequencies and severities by modeling the relationship between various risk factors and the cost of
claims. The implementation process involved several key steps: data processing and cleaning of production and
claims databases, conducting a descriptive analysis of the utilized data, segmenting pricing variables, and selecting
appropriate distributions for the two primary variables: claim frequency and average claim cost. Specifically, the
Negative Binomial distribution was chosen to model claim frequency, while the Gamma distribution was selected
for average claim cost. Each model underwent rigorous statistical testing, including the Wald and deviance tests.
The validation of these models confirmed the accuracy of the estimates. In conclusion, the experimental findings
underscored the significance of GLMs in actuarial science, particularly in refining insurance pricing strategies.
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