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Abstract Multimodal urban transportation offers an efficient and reliable solution for urban mobility. This paper proposes
a novel mathematical formulation, based on Mixed Integer Linear Programming (MILP), specifically addressing the
optimization of formal public transportation modes within urban settings. Unlike existing models, our approach focuses
exclusively on the formal transport sector while incorporating relevant operational constraints. The study begins with a
concise review of the literature on optimization and organizational challenges in multimodal urban transport. Computational
experiments are performed using an optimization solver to evaluate the performance and effectiveness of the proposed model.

Keywords Multimodality, Linear programming, integer programming, urban transportation, Mathematical model,
combinatorial optimization, MILP.

DOI: 10.19139/s50ic-2310-5070-2158

1. Introduction

Multimodal urban transportation, defined as the integration of two or more urban transport modes to facilitate
the movement of passengers or goods from origin to destination [1], has been the subject of significant research
exploring optimization techniques to address transit challenges [2]. This study focuses on proposing a new Mixed
Integer Linear Programming (MILP) formulation tailored exclusively to formal urban transport modes.

Our work specifically targets the urban transport landscape of Abidjan, Cote d’Ivoire, which, like many major
African cities, features a dual transport system composed of formal and informal actors. The formal sector
includes legally established operators such as the Société de Transport Lagunaire (STL), the Compagnie Ivoirienne
de Transport Lagunaire (AQUALINES), and the Société des Transports Abidjanais (SOTRA). These operators
are characterized by predefined parking points and structured routes. In contrast, the informal sector comprises
flexible, unregulated operators using Pinasses on the lagoon and minibuses like Gbaka and Wéré Woré for road
transport, often without fixed parking stops or schedules.

In this study, we aim to minimize user travel time by focusing exclusively on formal urban transport modes.
The exclusion of informal modes allows us to formulate a well-defined, structured optimization problem based on
the characteristics of formal transport systems. Accurate and timely arrival information is pivotal for effective trip
planning, reducing stoppage times, and optimizing route choices. To achieve this, we propose a novel mathematical
model that integrates various formal transport modes into a single framework.

*Correspondence to: EDI Y. F. Aristide (Email: edi.aristide @univ-na.ci). Mathematics and Computer Science Laboratory, Nangui
Abrogoua University. Abidjan, Ivory Coast.

ISSN 2310-5070 (online) ISSN 2311-004X (print)
Copyright © 2025 International Academic Press



EDIY.F. A., KONE O,, EDI K. H. 1

Our approach aligns with existing works on multimodal transport and combinatorial optimization [3, 4, 5].
However, unlike previous studies, which often address both sectors simultaneously or focus predominantly on
informal modes, our contribution lies in the development of a robust MILP formulation that explicitly addresses
the formal urban transport sector.

This model serves as a foundation for a structured and efficient multimodal transport system, paving the way for
future extensions that incorporate the informal sector to deliver a comprehensive urban transport solution.

2. Literature review

A variety of studies have addressed challenges and proposed solutions for multimodal transportation systems,
highlighting different optimization techniques and modeling approaches. Below, we critically analyze some of the
key contributions in this field.

Drummond et al. [6] focus on the organizational challenges in multimodal air freight systems, with an emphasis
on supply and demand dynamics. Their work provides valuable insights into the complexities of coordinating
freight operations, but the scope remains limited to air freight, leaving out broader multimodal systems, such as
those involving urban transport.

Pawel et al. [7] examine supply chain optimization from the perspective of multimodal logistics providers,
employing mixed linear programming. While their study offers a robust mathematical framework for supply chain
optimization, it largely targets industrial logistics, making its direct application to urban passenger transportation
less evident.

Mnif et al. [8] propose a multi-objective formulation for planning multimodal transportation networks. Their
work stands out by integrating multiple objectives into the optimization process, addressing both cost and
operational efficiency. However, the lack of a focus on sector-specific constraints, such as those in urban transport,
limits its applicability in this context.

Behiri et al. [9] introduce a Mixed Integer Linear Programming (MILP) model to minimize waiting time for
daily deliveries via urban rail infrastructure. This contribution is particularly relevant to urban transportation, as
it demonstrates the potential for optimization techniques to improve efficiency in rail-based multimodal systems.
However, the study does not extend its scope to other modes of transport, such as buses or taxis.

Gonzalez et al. [10] propose a data-driven approach for evaluating multimodal public transport systems. Their
methodology highlights the importance of real-time data integration and analysis for system optimization. While
innovative, the study primarily focuses on performance evaluation rather than proposing new mathematical models.

AbuMonshar et al. [11] tackle the vehicle routing problem using a multi-objective optimization approach. Their
work emphasizes route efficiency and cost minimization, offering valuable insights into logistics optimization.
However, the study focuses more on routing problems than on the broader challenges of multimodal urban
transport systems.

Finally, Mfenjou et al. [12] propose an intelligent transport system leveraging telecommunications technologies.
While their approach introduces innovative technological solutions, it lacks a detailed mathematical modeling

perspective, which limits its contribution to operational research methodologies for multimodal transport.

Zhu et al. [14] present an optimization model for ecological multimodal transport, incorporating order
consolidation in a context of uncertainties. An enhanced genetic algorithm is employed to minimize costs and
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carbon emissions, albeit with a slight increase in transportation time. The findings highlight the significant
benefits of consolidation in complex scenarios involving multiple origins and destinations. This approach proves
particularly advantageous for customers sensitive to costs and emissions while enhancing transport efficiency. It
thus contributes to achieving objectives of sustainability and operational effectiveness.

Moshebah et al. [15] propose an approach based on the concept of Max—Min fairness to enhance the performance
of multimodal transportation networks. Drawing on advanced mathematical models, the authors aim to efficiently
balance resources and constraints, thereby ensuring an equitable allocation of capacities across various modes of
transport. The findings demonstrate that this method optimizes overall performance while reducing disparities
among users, thus contributing to the development of a more sustainable and equitable multimodal transportation
system.

While progress has been made in multimodal transportation optimization, significant gaps remain in the
mathematical modeling of formal urban transport systems. Robust Mixed Integer Linear Programming (MILP)
formulations, essential for addressing the complexity and constraints of these systems, are still underexplored.

This study contributes to filling this gap by proposing a novel MILP-based formulation tailored to formal
transport modes, advancing mathematical modeling in this field and addressing operational realities specific to
urban environments.

3. Problem Description

Optimizing multimodal urban transport systems is crucial to addressing the growing mobility challenges in
developing countries. This study focuses specifically on the formal aspect of multimodal urban transport systems,
using the city of Abidjan (Co6te d’Ivoire) as a representative case study. The formal transport sector in Abidjan
comprises structured operators such as the Société de Transport Lagunaire (STL), the Compagnie Ivoirienne de
Transport Lagunaire (AQUALINES), and the Société des Transports Abidjanais (SOTRA). These operators provide
a robust foundation for exploring strategies to enhance transit efficiency and improve the user experience.

In this context, we model a scenario where a user seeks to travel from an origin point O to a destination point D
within an urban transport network. To reach their destination, the user can choose among different transport modes,
categorized into two main groups:

* Road transport: Includes formal terrestrial options such as EXPRESS, NAVETTE, WIBUS, and MONBUS.
* Lagoon transport: Represented by a single option, MONBATO.

The primary objective is to minimize the user’s total travel time from O to D. This involves determining an
optimal combination of transport modes, routes, and transitions at transfer points, while adhering to the operational
constraints of the network.

By focusing exclusively on formal transport modes, this study aims to develop a rigorous and well-structured
mathematical formulation. This approach is particularly suited to the requirements of urban transport systems in
developing contexts, where efficient planning and integration of formal resources are critical priorities.

4. Our Proposal

Our model is based on the principles of Mixed Integer Linear Programming (MILP) to optimize formal public
transportation modes while considering relevant operational constraints.

We begin our modeling process by defining the assumptions that govern the system. We then detail the key
components, parameters, and decision variables used in the formulation. Finally, we present the objective function
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and associated constraints that aim to improve the efficiency and organization of formal multimodal transport in
urban settings.

4.1. Model Assumptions

Here, we outline the key assumptions underlying the proposed model to optimize formal public transportation in a
multimodal urban setting:

1. Users are assumed to opt for multimodal transportation to complete their journeys.

2. At each stop, only one mode of transport and one route can be selected, even if multiple routes and modes

are available.

A mode of transport can be changed only once at a specific stop on a given date.

Each trip consists of traversing a predefined number of stops within a single journey.

5. Users are allowed to switch modes of transport multiple times to reach their destination. The maximum
allowable number of mode changes is denoted by the variable Change ysq. .

6. If a user arrives at a stop before the scheduled departure time of the next mode of transport, they must wait.
This waiting time is explicitly represented in the model.

bl

4.2. Model Descriptions

Urban multimodal transportation involves a structured combination of various transport modes to facilitate efficient
travel. Below, we provide key definitions relevant to the formal public transport system, which form the foundation
of our proposed model.

* Stop: A designated point where buses are stationed to serve passengers.

* Mode: Different urban transportation options, including EXPRESS, NAVETTE, WIBUS, MONBUS, and
MONBATO.

* Segment: The route between two stops.

 Trip: The journey undertaken by a user on a specific mode of transport. A trip encompasses traversing several
stop segments.

* Itinerary: The aggregate of trips undertaken by a user, incorporating at least one mode of transport and up
to the maximum allowable modes, from the origin to the destination.

4.3. Model parameters

Symbol Description

N Set of stops.
K Set of modes of transport.
o,d Point of departure and point of arrival.

Change,;,, Maximum number of mode changes allowed.

tf’ j Time spent in the vehicle on the journey from stop ¢ to stop j using mode
vf ok Waiting time for mode change from k to £’ at stop i.

4.4. Optimization Variables

Ko 1 if our passenger uses mode k from stop ¢ to stop j (1)
- 0 ifnot
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yhl _ {1 if our passenger has changed from mode k to [ at stop ¢ )
“ )0 ifnot

4.5. Objective function
Our model aims to minimize the user’s total travel time, as expressed by equation (3)
S kil Kyl
)I)IPBECEIID 3PP MCARH ®
iEN jEN kEK iEN k€K IEK
The objective function comprises two components. The first component accounts for the time spent in each mode
of public transport, while the second component represents the time spent at stops awaiting a new mode of transport
to proceed with the journey.

4.6. Constraints

The mathematical model incorporates several constraints, outlined below:

4.6.1. Single Mode Transportation by Segment
D XF <1 VijeNxN )
keK

Constraint (4) ensures that a user can select a maximum of one mode of transport for a given route segment
between stops ¢ and ;.

4.6.2. Changing Modes

S OXE 4+ XF, <2 Vijhe NNN )]
keK keK

Constraint (5) models the scenario where a user arriving at stop j can continue the journey with the same mode of
transport or switch to another mode.

4.6.3. Flow Conservation Constraints (6), (7), and (8) represent flow conservation on the route:

Z Z Xk =1 (6)

JEN kEK
Sod xE =3 Xk VieN ™
i€EN keK i€N keK
SN XFy=1 VijeN«N (8)
JEN keEK
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Constraint (6) ensures that the user enters the network from the origin route (point of departure).
Constraint (7) maintains user continuity within urban transportation, considering potential mode changes at stops.
Constraint (8) guides the user towards the exit (destination), represented in the model by index d.

4.6.4. Capacity constraints

Z Z Z Yik’k/ < Changerar )

iEN kEeK kE'eK

The constraint represented by equation (9) is the capacity constraint, which limits the number of mode changes in
the model, denoted by Change,,,,.. -

4.6.5. Binding constraint

ZX;fjJFZXj’i;LgHY}’”“' Vje NV K € K«K;k#k (10
ieEN heN

The constraint represented by equation (10) is the one that establishes the dependency between the variables Y
and X. Specifically, it activates a waiting time at point j if the user has traversed through point ;.

5. Model Analysis

The proposed model stands out as a robust approach for optimizing multimodal urban transport systems,
particularly in the context of developing countries. It relies on a Mixed Integer Linear Programming (MILP)
formulation, offering a structured and rigorous method to address the challenges associated with multimodal
transport optimization. Below are the key aspects and strengths of the model:

5.1. MILP Formulation and Flow Constraints

At the core of the model lies its MILP formulation, which is particularly suited for managing the complexity
and combinatorial nature of multimodal transport optimization. By incorporating flow conservation constraints,
the model ensures consistent continuity within the transport network. These constraints not only simplify the
mathematical structure but also enhance computational efficiency by narrowing the search space to feasible and
logical paths.

* Flow Conservation: The model integrates flow conservation at the origin, intermediate stops, and
destination. This ensures that the user enters, traverses, and exits the network coherently, reflecting the real
dynamics of transport.

* Simplification Through Structure: The use of flow constraints simplifies the problem formulation, making
it both computationally manageable and conceptually intuitive. This simplification enables scalability while
maintaining flexibility to handle complex multimodal scenarios.

5.2. Applicability to Multimodal Transport Systems

One of the key strengths of the model is its general applicability to a wide range of multimodal transport networks.
While the case study focuses on Abidjan, Cote d’Ivoire, the formulation is inherently adaptable to diverse urban
contexts and transport systems. Its main features include:
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* Flexibility for Various Transport Modes: The model incorporates different types of transport modes,
including formal road and lagoon options. This flexibility ensures its relevance in varied urban geographies.

* Scalability for Larger Networks: By limiting the number of mode changes and optimizing transitions, the
model can handle medium to large-scale networks without significant loss of computational efficiency.

* Structured and Formal Design: The exclusive focus on formal transport modes enables the development of
a well-defined and reliable optimization framework. This focus aligns with the need for structured solutions
in developing cities.

5.3. Simplicity and Practical Relevance

The model achieves a balance between mathematical rigor and practical applicability. Its simple design, made
possible through clearly defined parameters, variables, and constraints, ensures ease of implementation. At the same
time, the integration of waiting times, mode transition limits, and operational constraints enhances its relevance to
real-world scenarios.

¢ User-Centric Objective: The focus on minimizing total travel time reflects a user-centric perspective,
aligned with the primary goal of improving transit efficiency and user experience.

* Operational Feasibility: The integration of realistic assumptions, such as mode change limits and predefined
stops, ensures that the model captures the operational characteristics of formal transport systems.

5.4. Potential for Extensions

Although the model is currently designed for formal transport systems, its modular design provides a solid
foundation for future improvements. For instance:

¢ Integration of Informal Modes: Future versions could extend the model to include informal transport
options, increasing its scope and applicability to mixed systems.

* Advanced Optimization Techniques: The use of techniques such as cut generation or bound tightening
could further improve computational performance, enabling the model to handle even larger networks.

In summary, the proposed MILP-based model provides a versatile, scalable, and computationally efficient
framework for optimizing multimodal transport systems. By leveraging flow constraints, the model simplifies the
problem while maintaining flexibility and applicability across diverse contexts. This simplicity, combined with its
rigorous mathematical foundation, makes it a valuable tool for urban transport planning, particularly in developing
cities aiming to enhance the efficiency of their formal transport systems.

6. Experimental mode and relative data

6.1. Experimental mode

Our Mixed-Integer Linear Programming (MILP) model, aimed at minimizing the user’s travel time from departure
to destination, has been successfully implemented and solved using version 20.0 of the LINGO optimization solver.
LINGO is a robust optimization modeling software renowned for its ability to construct and solve mathematical
optimization models efficiently. It offers a comprehensive set of features, including solvers for linear, nonlinear,
quadratic, integer, and stochastic optimization problems [13]. We selected LINGO due to its availability as a free
software compared to other paid solvers, making it accessible for our project. The model was executed on a machine
equipped with a Core(TM) 17-8650U CPU running at 2.11 GHz and 16 GB of RAM. The multimodal nature of the
model is evident through the integration of various road transport modes and a lagoon transport mode.

6.2. Relative data

This section of our research on public transportation in urban environments utilizes data from the Société des
Transports Abidjanais (SOTRA), a major player in urban transportation in Abidjan. This collaboration was made
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possible through a confidentiality agreement with the Information and Applications Research Team (ERIA),
granting us access to SOTRA’s data. This data, covering the period from January to August 2023, has been crucial
for a thorough analysis of the urban transportation sector, providing a concrete understanding of the operations
of an organization active in this field. This access has proven essential to our goal of studying multimodal
transportation in urban environments—an analysis that cannot be completed with publicly available data.

The data used to test our model reflects the real and operational functioning of SOTRA. We identified five
different modes of transportation within the formal sector, each with its own set of stops distributed throughout the
city. Each bus line is associated with a specific number of stops, which varies from line to line. It is also important
to note that the distances between two stops are not uniform. Additionally, the maximum speed allowed in the
urban environment is limited to 60 km/h.

We obtained legal authorization to use SOTRA’s data to test our model. This authorization allowed us to analyze
the data and extract essential characteristics necessary to calibrate our data generator.

We designed a Python-based instance generator to obtain the following real-world parameters:

Time,,ode: Time spent by a user on a mode of transportation during their journey. Time,ait: Time spent by
the user at the stop waiting for the bus. Number,,ode: Number of varieties of transportation modes available.
Number.hange: Number of possible changes a user can make within the transportation network. Numberstop:
Number of stops a user can utilize for their journey.

To calibrate our generator, we used value intervals, as well as averages and standard deviations from data
provided by SOTRA. Parameter values are generated randomly while respecting the following limits: - Time,,, ode:
[2; 15] minutes - Time,,aiting: [0; 30] minutes - Numberstops: [5; 24] stops - Number.hanges: [3; 10] changes
- Number,,odes: A fixed value of 5 transportation modes. - Standard deviations - Averages

Figure 1. Summary of instances

#Stops | #Total var. | #Bin. Var. | #Constraints #Arcs #Inst. (change max=5) | #Inst. (change max=10)
5 350 250 308 [60,90] 10 10
10 1250 750 1463 [269,405] 10 10
15 2625 1500 4218 [637,947] 10 10
20 4500 2500 9323 [1137,1709] 10 10
24 6360 3480 15603 [1663,2487] 10 10

Figure | provides a summary of data for different instances of a model. Here’s an analysis and comments on
each column:

 #Stops: Indicates the number of stops in each instance of the model.

 #Total var.: Represents the total number of variables in the model.

 #Bin. Var.: Indicates the number of binary variables in the model.

 #Constraints: Gives the total number of constraints in the model.

* #Arcs: Indicates the number of arcs in each instance, with a specified interval [min, max].

 #Inst. (change max=5): Represents the number of instances of the model with a maximum number of
changes equal to 5.

¢ #Inst. (change max=10): Indicates the number of instances of the model with a maximum number of changes
equal to 10.

The dataset provides information about the complexity and size of different instances of the model. Variations in
each column reflect different configurations of the instances, including the number of stops, the number of variables
and constraints, as well as the number of arcs in the model. The presence of instances for two different values of
the maximum number of changes allows for comparing the model’s performance in different contexts.
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6.3. Data validation

To validate our model, we employed a rigorous approach using a carefully selected test dataset where we could
determine the optimal values. We began by generating a random dataset using appropriate statistical methods,
ensuring that the distributions were representative of real-world conditions. Next, we performed preprocessing
steps, such as normalization and data cleaning, to ensure the quality and relevance of the information used. By
applying established performance metrics, we evaluated our model on this test set, allowing us to compare the
obtained results with predefined optimal values. This validation not only confirmed the robustness of our approach
but also laid the groundwork for future studies, including the exploration of real-world data, such as that from
Abidjan’s transportation network, for even more accurate and meaningful results.

7. Results Analysis

The results obtained from solving the proposed MILP model are analyzed in this section. We focus on the
relationship between processing time and key variables such as the number of stops, active arcs, maximum
mode changes, and forbidden arcs percentage. The analysis highlights trends and provides insights into model
performance under varying levels of complexity. As can be seen in the figure 2, the process time of the optimization
model exhibits a clear trend based on several key parameters: the number of stops, percentage of active arcs,
maximum mode changes, number of binary variables, and number of constraints.

Processing time curves

#nodes=5 #nodes=10 #nodes=15 fnodes=20 #nodes=24

e ChangeMar=_5 e ChangeMax=10 s« Lingaire (ChangeMax=_5)

Figure 2. Processing time curves

7.1. Effect of Model Complexity

The process time increases as the model complexity grows. Specifically, instances with a higher number of stops,
active arcs, and maximum mode changes tend to have longer computation times. This is because a more complex
model requires the solver to explore a larger search space, leading to increased computational overhead.

The number of binary variables and constraints also influences the process time, with larger counts resulting in
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longer computation times. This is due to the increased computational burden on the solver when handling a greater
number of variables and constraints.

7.2. Influence of Number of Stops and Maximum Mode Changes

Observing the results, it is evident that the average process time increases with the number of nodes for each value
of Change,,, .. This trend is more pronounced when C'hange,,,,.. is set to 10. It suggests that for a higher number
of allowed changes, the model requires more computational time to solve the problem as the complexity induced
by the number of nodes increases. However, for Change,,,.. = 5, while the average process time also increases
with the number of nodes, this increase appears to be slightly less significant compared to Change,,,, = 10.

In general, instances with a higher number of stops tend to have longer average process times, regardless of
the maximum mode changes. This suggests that the complexity of the optimization problem increases with more
stops, leading to longer computational times.

These findings highlight the importance of considering both the number of stops and the maximum mode
changes when optimizing multimodal transit problems. Additionally, they suggest that the optimal choice of
Change,,,, may vary depending on the specific characteristics of the problem instance.

7.3. Processing Time Analysis

The table summarizes the results for instances across different levels of complexity. The total number of stops,
active arcs, and allowable mode changes have a direct influence on the processing time.

Table 1. Summary of Processing Time Based on Instance Parameters

Instance Family | #Stops | #Modes | #Change max | %Forbidden_Arcs | #Arcs_Active | Process_Time (s)
1 5 5 5 10 90 0.88
2 5 5 10 15 85 0.61
3 10 5 5 69 381 0.82
4 10 5 10 45 405 1.12
5 15 5 5 103 947 0.99
6 15 10 10 158 892 1.73
7 20 5 5 191 1709 1.54
8 20 10 10 286 1614 2.65
9 24 5 5 273 2487 1.62
10 24 10 10 414 2346 3.55

The data reveals the following trends:

* Processing time increases with the number of stops (#Stops) and active arcs (#Arcs_Active). Larger instances
with higher arcs require more computational resources.
* Higher maximum allowable mode changes (#Change_max) increase the solution space, leading to longer

solving times.

* A higher percentage of forbidden arcs reduces the solution space but increases the constraint tightness, which
may lead to fluctuating processing times.

From Figure 3, it is evident that the processing time exhibits an approximately linear increase as the number
of stops and active arcs grows. This trend underscores the scalability of the proposed model for medium-sized

instances.
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Processing Time vs Stops and Active Arcs
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Figure 3. Processing Time as a Function of Stops and Active Arcs

8. Sensitivity Analysis

The sensitivity analysis explores how variations in key parameters #Change_max, #Modes, #Stops,
%Forbidden_Arcs, and #Arcs_Active affect the processing time of the MILP model. The objective is to identify
the most influential factors and evaluate the model’s robustness under different configurations.

8.1. Impact of Maximum Mode Changes (#Change_max)

Increasing #Change_max has a notable impact on processing time, as it expands the solution space. Figure 4
illustrates this effect across instances with 5, 10, 15, and 20 stops.

For smaller instances (5 stops), the increase in #Change_max does not significantly impact the processing time.
However, for larger instances (15-24 stops), a higher #Change _max induces substantial growth in solving time.

8.2. Impact of the Number of Modes (#Modes)

The number of modes influences the model’s complexity as it increases the number of feasible options at each stop.
Table 2 summarizes the results for selected instances.

Table 2. Impact of Modes on Processing Time

#Modes | #Stops | %Forbidden Arcs | Process Time (s)
5 10 69 0.82
10 10 69 1.12
5 15 103 0.99
10 15 103 1.73

Observation: Doubling the number of modes increases the processing time by approximately 30-50% for
medium-sized instances.
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Impact of Maximum Mode Changes on Processing Time
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Figure 4. Impact of #Change_max on Processing Time

8.3. Effect of Forbidden _Arcs

The percentage of forbidden arcs introduces constraints that reduce the number of feasible routes but add
computational challenges. Figure 5 shows how processing time varies with %Forbidden Arcs.

Effect of Forbidden Arcs on Processing Time

Processing Time (s)
= = = = = N
o N > o o o

o
o
:

o
o
.

10 20 30 40 50 60 70 80 90
Percentage of Forbidden Arcs

Figure 5. Effect of Forbidden Arcs on Processing Time
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Observation: Processing time increases slightly when the percentage of forbidden arcs exceeds 70%, as the
solver must navigate tighter constraints.

8.4. Impact of Active Arcs

The number of active arcs correlates with the complexity of the transportation network. As shown in Table 3, an
increase in active arcs consistently results in higher computational times.

Table 3. Effect of Active_Arcs on Processing Time

#Arcs Active | #Stops | Process Time (s)
90 5 0.88
381 10 0.82
947 15 0.99
1709 20 1.54
2487 24 1.62

9. Regression Analysis

The following multiple linear regression equation was derived to predict the processing time based on key
parameters of the multimodal transport model:

Processing Time = 0.4662 — 0.0033 - #Modes
+ 0.0285 - #Change_max
— 0.0001 - #Stops (11)
+ 0.0108 - %Forbidden Arcs
— 0.0007 - #Active Arcs.

9.1. Regression Summary

The regression model provides the following insights:
* R-squared: The model explains 96.8% of the variance in processing time, indicating a strong fit.
* Significant Variable:

— The percentage of forbidden arcs (%Forbidden Arcs) has a statistically significant positive effect
(p = 0.018).

¢ Non-Significant Variables:

— The number of modes (#Modes), maximum allowable mode changes (#Change_max), number of stops
(#Stops), and number of active arcs (#Active Arcs) show weak or no significant influence individually.
Their effects may overlap due to multicollinearity.

10. Comparison of Model Performance with Similar Studies
To evaluate the performance of our Mixed Integer Linear Programming (MILP) model applied to multimodal
urban transport, we compared its results with those of similar studies from the literature. This analysis focuses on

the following criteria: model type, optimization criterion, computation time, and case study complexity.
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Table 4. Comparison of performance across different studies

13

Reference Model Type Optimization Cri- | Average Computa- | Case Study Size
terion tion Time

Our Model MILP with flow con- | Total travel time 1.62 s (24 stops, | Up to 24 stops
straints 2487 active arcs)

Mnif and Bouamama | Multi-objective Cost and operational | 3.47 s Up to 15 stops

(2017) [8] MILP efficiency

Behiri et al. (2016) [9] MILP for urban rail | Minimized waiting | 2.3 s (10 stations, | 10 stations
transport time 150 arcs)

10.1. Comparative Analysis

Our model exhibits several strengths:

* Competitive computation time: With an average time of 1.62 seconds for complex case studies (24 stops
and 2487 active arcs), it outperforms similar models in the literature, particularly that of Mnif and Bouamama
[8].

* Multimodal adaptability: Unlike the work of Behiri et al. [9], which focuses exclusively on rail transport,
our model integrates multiple modes, providing a more versatile solution.

* Simplified modeling: The use of flow constraints to streamline the model makes it applicable to various
multimodal transport contexts.

However, some limitations remain:

* Extending optimization criteria: Unlike Mnif and Bouamama [8], our model does not yet include a multi-
objective formulation.

¢ Lack of real-time data integration: Compared to the data-driven approach of Gonzalez et al. [10], our
model relies on fixed assumptions without incorporating real-time data.

The comparison highlights that our model stands out for its simplicity, efficiency, and ability to handle complex
case studies. It represents a significant advancement for multimodal urban transport while offering opportunities
for improvement, such as integrating real-time data and extending the criteria to multi-objective optimization.

10.2. Interpretation of Results

* The percentage of forbidden arcs (%Forbidden Arcs) significantly increases the processing time. This is
consistent with the intuition that additional constraints in the network reduce feasible solutions and increase
computational effort.

* The other parameters, while not individually significant, collectively contribute to the processing time. Their
interactions and overlapping effects suggest further analysis may be required.

* The strong R? value indicates the regression model is robust and provides reliable predictions for processing
time based on the system parameters.

This regression analysis highlights the critical role of constraint-related variables like %Forbidden Arcs
in determining processing time and underscores the importance of optimizing these parameters for efficient
computation.

11. Conclusion
This study focused on optimizing multimodal routes within the urban transport environment of Abidjan, Cote
d’Ivoire, using a Mixed Integer Linear Programming (MILP) formulation. Our model incorporates key operational

constraints, such as flow conservation, while minimizing travel time. The LINGO solver was employed to solve
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the model efficiently, yielding satisfactory results across medium to large-scale instances.

The sensitivity analysis revealed that processing time is primarily influenced by the number of stops,
the maximum allowable mode changes (#Change_max), and the number of active arcs. A higher value of
#Change_max and #Modes increases computational complexity by expanding the solution space, while a higher
percentage of forbidden arcs tightens constraints, adding further complexity. Despite these challenges, the
proposed model demonstrated strong scalability and robustness.

Moving forward, we aim to improve the computational efficiency of our model by leveraging more advanced
solvers such as CPLEX to address larger problem instances. Additionally, we plan to integrate techniques like cut
generation and bound tightening to accelerate convergence towards optimal solutions. Future work will also extend
the current model to incorporate parameters from the informal transport sector, enhancing its overall applicability
and relevance for developing urban transport systems.

—
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11.
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