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Abstract Identifying COVID-19 patients at high risk of fatality is critically important for healthcare professionals, as
it supports informed decision-making and enhances the capacity to manage emerging crises within medical systems.
Nevertheless, COVID-19 datasets are frequently highly imbalanced, with substantially fewer fatality cases presenting a
challenge to the development of effective machine learning algorithms. This study aims to develop a high-performing
machine learning approach to predict COVID-19 mortality using a Mexican epidemiological dataset. To tackle the class
imbalance issue, numerous sampling techniques are applied, including SMOTE, SMOTE-ENN, ADASYN, SMOTE-Tomek,
and Random Under-Sampling (RUS). Predictive models are created using several machine learning algorithms: Logistic
Regression, Decision Tree, Gaussian Naı̈ve Bayes, K-Nearest Neighbors, and Random Forest. Besides, we performed
feature selection analysis using Shap technique to determine the main relevant attributes for predicting COVID-19 mortality.
The results illustrate that Random Forest model, trained on balanced data with SMOTE-ENN technique yielded the best
performance, with 89.44% accuracy, 87.88% Recall, and 88.74% ROC AUC score. Furthermore, feature selection analysis
shows that Type of Patient, Age, Pneumonia, Intubation, having contact with COVID-19 infected patients are the key
important attributes for predicting COVID-19 risk of fatality among hospitalized individuals.
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1. Introduction

COVID-19 pandemic has recently evolved as global health crisis, and all nations throughout the entire globe are
endeavoring to accurately contain it [1]. This disease generates different symptoms, such as headaches, coughs,
fever, sore throats, as well as respiratory issues, which may sometimes cause death [2] [3]. Additionally, certain risk
factors raise the ferocity of the virus. Older age is the most reported risk factor, alongside men’s gender, which is
a demographic characteristic affecting COVID-19 severity. Furthermore, prominent preexisting medical disorders
such as hypertension, diabetes, and coronary heart disease are frequently linked to higher risk of mortality [4].
However, these risk factors may differ from a country to another. Indeed, prior study investigated the inequalities
in case fatality rates within 93 nations, taking into consideration comorbidities, demographic risk factors such as
older age, as well as social risk factors like overpopulation and poverty. Surprisingly, countries having greater social
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overpopulation and smaller socioeconomic progress had lower fatality rates [5]. Additionally, another research
dealed with COVID-19 propagation across lower middle-income countries in the eastern Mediterranean region,
finding that Tunisia, Egypt, Sudan, and Djibouti presented the highest case fatality rates when compared to their
neighbors. This difference might be explained by Tunisia’s comparatively older population when compared to other
countries in the region, the simultaneous diseases in Egypt, as well as the failure of medical system in Sudan and
Djibouti [6].

The prompt propagation of SARS-CoV-2 has left little time to investigate features influencing the spread of the
virus, predictors of its intensity, and viable therapies. At the peak of the crisis, regions having a high number of
COVID-19 infections faced the scarcity of resource and were obliged to prioritize life-saving cares like dialysis
machines and ventilators [7] [8]. Moreover, with the scarcity of essential medical resources like hospital beds
and ventilators, doctors are confronted with tough decisions on how to allocate these supplies among patients,
frequently raising ethical concerns [9] [10] [11]. In response, machine learning techniques have been increasingly
applied in the medical field, particularly for disease diagnosis and prognosis[12][13][14][15]. By leveraging
advanced artificial intelligence approaches, medical systems may analyse vast datasets for predicting COVID-
19 intensity. This information can assist doctors to effectively assign resources, carry out focused measures for
individuals at high risk of mortality, as well as offering customized cares for patients in danger.

Nevertheless, imbalanced datasets is a challenging issue for predicting COVID-19 mortality. As the number of
severe infections is disproportionately greater than mild or moderate cases. This imbalance may hinder the model’s
capacity to accurately predict patients at high-risk of mortality, since it may tend to be biased towards the majority
class. Addressing this matter is essential for improving the accuracy of predictions and ensuring that life-saving
resources and interventions reach the patients who need them most. In fact, class imbalance is a frequent challenge
in several real-world scenarios, impacting the accuracy and the quality of machine learning methods [16][52][18].
Imbalanced data corresponds to classification challenges where the sample sizes of different classes are unequal.
A common example of class imbalance arises in medical diagnosis, where most individuals are healthy, making
the accurate prediction of rare diseases paramount [19]. Furthermore, biological datasets are often imbalanced due
to various challenges in creating, handling, and obtaining new observations, particularly clinical data, which relies
heavily on individuals’ willingness to disclose their information or participate in clinical experiments. Analyzing
these imbalanced datasets can be challenging, often requiring the use of advanced machine learning techniques
to attain satisfactory outcomes, particularly in cases involving low-prevalence illnesses or medical disorders [20].
In particular, the issue of COVID-19 imbalanced datasets presents significant challenges. COVID-19 datasets are
frequently highly imbalanced, which can reduce predictive performance. To improve prediction outcomes with
these types of datasets, statisticians commonly apply sampling techniques, feature selection, as well as cost-
sensitive learning. Nevertheless, there is no recommendations for determining the adequate method and prediction
algorithm based on specific dataset characteristics [21]. The majority of COVID-19 cases result in recovery or mild
symptoms, while only a small fraction lead to severe outcomes, including death. This imbalance hinders the ability
of machine learning algorithms to thoroughly predict mortality, as they tend to be biased toward the more frequent
non-fatal cases. As a result, models may not adequately figure out individuals at high risk of mortality, leading
to underprediction of critical cases. The scarcity of data on fatal outcomes further complicates model training. To
tackle this matter, sampling techniques are often required to improve the predictive performance for mortality and
ensure better identification of at-risk patients.

In this study, we introduce a data-driven machine learning algorithm to predict mortality risk in hospitalized
COVID-19 patients. This technique may assist healthcare systems in managing resource distribution, favor
care for patients at high risk of fatality, and reduce delays in offering adequate medical attention, particularly
when the infrastructure is overburdened with people. Consequently, it supports AI-driven crisis management,
by enhancing resilience within medical systems. However, the development of an effective machine learning
algorithm is particularly difficult due to the significant imbalance in COVID-19 datasets, which is characterized
by a significantly lower fatalities than non-fatal cases. This issue is compounded by the limited number of studies
that specifically address this data imbalance. Therefore, our investigation focuses on building a high-performing
machine learning model, which predicts COVID-19 mortality employing various balancing data techniques to
boost model performance and improve the accuracy of mortality predictions for hospitalized cases.
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The remainder of this study is arranged as follows: section 2 displays the related work; section 3 shows the
background of the present work; section 4 exhibits the data and methods; section 5 illustrates the results; section 6
deals with the discussion; section 7 concludes this research.

2. Related work

The shortage of health care equipment with respect to the rising number of COVID-19 infections has made the
prediction of COVID-19 fatality critical. Accurate predictions help strengthen healthcare resilience, manage the
distribution of healthcare supplies, and deliver a customized care to hospitalized cases. However, COVID-19
datasets are often highly imbalanced, leading to biased model performance. In fact, Some studies predicted the
risk of COVID-19 severity without focusing directly on data balancing strategies. For instance, Iwendi et al. [22]
built multiple machine learning models to predict COVID-19 fatality using datasets from Brazil and Mexico. In
the Mexican dataset, logistic regression achieved the best outcome, with an accuracy of 92.272 %, a precision
of 62.169 %, an F1-score of 53.215 %, and a recall of 46.516%. Nevertheless, in the Brazilian dataset, The
best outcome was achieved by decision trees with an accuracy of 69.158 %, a precision of 74.276 %, a recall
of 38.502 %, and an F1-score of 50.715%. Wollenstein-Betech et al. [23] employed Support Vector Machine,
Logistic Regression, Random Forest, and XGBoost to predict COVID-19 severity in two different situations: prior
to and after visiting a hospital. The first situation examines cases where only the fundamental characteristics of an
infected person have been identified. The prediction obtained 73% accuracy and 69% AUC. The second situation
covers additional information regarding hospitalization like ICU, pneumonia, and ventilator use. This improves the
model’s accuracy to 76%, and AUC to 74%. Furthermore, Bolourani et al. [24] developed machine learning models
predicting respiratory issues among COVID-19 patients during 48 hours of hospitalization. They appraised three
classifiers: XGBoost, Logistic Regression, and XGBoost+SMOTEENN. Thereby, XGBoost model surpassed the
other techniques with a mean accuracy of 91.9%, and an AUC of 77%.

Additionally, few investigations have tackled the problem of imbalanced datasets for predicting COVID-19
mortality. For example, Moulaei et al. [25] compared seven machine learning methods, namely, Naı̈ve Bayes,
k-nearest neighbors, logistic regression, random forest, multi-layer perceptron, J48 decision tree, and eXtreme
gradient boosting (XGBoost), for predicting COVID-19 mortality employing patients information at admission
gathered from the medical record of Ayatollah Taleghani Hospital in Abadan, Iran. The synthetic minority over-
sampling technique (SMOTE) was applied to handle the class imbalance. The outcome of this study revealed
that RF outperformed the other models with 95.03% accuracy, 90.70% sensitivity, 94.23% precision, 95.10%
specificity, 99.02% Receiver Operating Characteristic (ROC). Moreover, subudhi et al. [26] developed 18 machine
learning models to predict COVID-19-related ICU admission and mortality outcomes. They used an imbalanced
healthcare dataset from the integrated health care system, Mass General Brigham, in New England, USA. To
handle the class imbalance, they apply Random Under Sampling Technique. The results showed that ensemble-
based approaches surpass the other kinds of classifiers in predicting ICU admission and mortality. Specifically,
all ensemble models achieved F1-scores above 0.8 for ICU prediction and exceeded 0.83 for mortality prediction.
Furthermore, Chadaga et al. [27] have built ensemble learning techniques, namely adaboost, catboost, extreme
gradient boosting, light GBM, gradient boost, and Random Forest to predict COVID-19 fatality in hospitalized
patients from Mexico. They performed SMOTE Technique for balancing data. The outcome revealed that Extreme
Gradient Boosting attained the best performance with 96% accuracy, 95% precision, 95% recall, 95% F1-score,
96% ROC AUC, 99% AP.

On the other hand, more researches have addressed the problem of imbalanced datasets for identifying COVID-
19 infections. For example, Wu et al. [28] presented a novel hybrid dynamic ensemble selection (DES) algorithm
to detect COVID-19 in imbalanced dataset, using whole blood counts. They employed synthetic minority over-
sampling technique with edited nearest neighbor (SMOTE-ENN) for balancing data and removing the noise.
Afterward, DES outcome was improved using a novel hybrid multiple clustering and bagging classifier generation
(HMCBCG). Thereby, the HMCBCG + k-nearest oracles eliminate algorithm yielded the best results with 99.81%
accuracy, 99.78% G-mean, 99.86% F1-score, and 99.81% AUC. Additionally, AlJame et al. [29] suggested
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an ensemble learning approach called ERLX, for early COVID-19 screening using regular blood testing. This
approach comprises two levels of classification techniques. The first level encompasses extra trees, random forest,
and logistic regression. The outputs of these models are fed into extreme gradient boosting algorithm in the
second level. This proposed model employed isolation forest for removing aberrant data, KNNImputer model
for imputing missing data, and synthetic minority oversampling technique (SMOTE) for balancing the dataset.
Moreover, SHapley Additive exPlanations (SHAP) model was implemented for feature selection. The ensemble
model achieved the best results with an overall accuracy of 99.88%, a specificity of 99.99%, a sensitivity of
98.72%, and an AUC of 99.38%. Furthermore, Mohammedqasem et al. [30] created a deep learning model able to
deal with imbalanced dataset to improve the detection of COVID-19 cases. They applied the Synthetic Minority
Oversampling Technique (SMOTE) to balance the data and used the Recursive Feature Elimination technique to
figure out the most prominent features. Thus, the classifier attained the best outcomes with a maximum accuracy of
98% and a precision of 97%. Besides, dorn et al. [20] investigated several widely used machine learning techniques,
including Logistic Regression (LR), Decision Trees (DT), Random Forest (RF), Support Vector Machines (SVM),
K-Nearest Neighbors (KNN), Multi-Layer Perceptron (MLP), eXtreme Gradient Boosting (XGBoost), and Naı̈ve
Bayes (NB) applied to complete blood count (CBC) data. They also examined the most famous sampling techniques
to handle the class imbalance, namely Random Over Sampling (ROS), Random Under Sampling (RUS), Synthetic
Minority Over Sampling TEchnique (SMOTE), Adaptive Synthetic Sampling (ADASYN), as well as Synthetic
Minority Over Sampling TEchnique Tomek links (SMOTETomek). The findings demonstrate that SVM, LR, and
RF attained the best outcome, even if the performance of each model will rely on the studied datasets and metrics.
When it comes to the sampling methods, they may reduce the bias about the majority class and enhance the
classification results. However, no specific approach can be considered as the best choice. Additionally, soares et al.
[31] created an approach named ER-CoV through combining three machines learning algorithms: Support Vector
Machine, SMOTEBoost, and ensembling methods, to detect COVID-19 negative cases from suspected patients in
the Emergency Room. The study used an imbalanced dataset of 599 hospitalized patients in Brazil.encompassing
basic blood test results as key predictors. The findings attained 85.98% specificity, 70.25% sensitivity, 94.92%
Negative Predictive Value, 44.96% Positive Predictive Value, and 86.78% ROC AUC (Table 1).

3. Background

3.1. Sampling techniques

3.1.1. Oversampling techniques :
Oversampling techniques are applied to generate additional samples in the minority group to balance data

[32]. These methods can be divided into synthetic and random oversampling. Random oversampling duplicates
existing minority observations to expand the minority group, while synthetic oversampling generates new synthetic
instances for minority group observations. These additional instances offer important data to the minority group
and avoid incorrect classification [33]

• Synthetic minority over-sampling technique (SMOTE)

SMOTE is a successful oversampling strategy that creates synthetic samples for the minority class. It has
demonstrated considerable success across several applications [34]. This approach was introduced to improve
the size of minority groups by creating synthetic observations within feature space. For balancing the dataset,
SMOTE begins by randomly selecting an observation Ma from the minority group. Then, it chooses the k
nearest neighbors of Ma within this minority group. Next, it selects a second observation Mb from this set of
neighbors. Ma and Mb are joined to create a section within the feature space. The novel synthetic instance
is created as a convex blend in the middle of Ma and Mb. This process continues till achieving the balance
between the majority and the minority groups. Due to SMOTE’s effectiveness, various extensions of this
method have been developed [20] .
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Table 1. Related work

Ref Title Database Method Result
[22] COVID-19 health

analysis and prediction
using machine learning
algorithms for Mexico
and Brazil patients

- 1,129,258 COVID-19
positive patients from
Mexico (The dataset used
in our study)
- 541,746 COVID-19
positive cases from Brazil

- Logistic Regres-
sion
- Decision Tree
- Boosted Random
Forest

- Logistic Regression
• Mexico dataset:

Accuracy = 92.272%
F1-score = 53.215%
Recall = 46.516%
Precision = 62.169%

• Brazil dataset:
Accuracy = 69.158%
F1-score = 50.715%
Recall = 38.502%
Precision = 74.276%

[23] Personalized
predictive models for
symptomatic COVID-
19 patients using
basic preconditions:
hospitalizations,
mortality, and the
need for an ICU or
ventilator

- 91,000 infected individu-
als from Mexico

- Support Vector
Machine
- Random Forest
- Logistic
Regression
- XGBoost

- XGBoost
• Accuracy = 0.8945
• F1-score = 0.6237
• Recall = 0.5921
• Precision = 0.6589

[24] Development and
Validation of a Machine
learning prediction
model of respiratory
failure within 48 hours
of patient admission for
COVID19

- Data from COVID-19
patients during first 48
hours of hospitalization

- XGBoost:
- Logistic Regres-
sion
- XGBoost + SMO-
TEENN

- XGBoost:
• accuracy = 91.9%
• AUC = 77%

[25] Comparing machine
learning algorithms for
predicting COVID-19
mortality

- Patient admission data
from Ayatollah Taleghani
Hospital, Iran

- Naı̈ve Bayes
- KNN
- Logistic Regres-
sion
- RF
- MLP
- J48 Decision tree
- XGBoost

- SMOTE-RF
• Accuracy = 95.03%
• sensitivity = 90.70%
• precision = 94.23%
• specificity = 95.10%
• ROC = 99.02%

[26] Comparing machine
learning algorithms
for predicting ICU
admission and mortality
in COVID-19

- Dataset from the inte-
grated health care system,
Mass General Brigham, in
New England, USA

- 18 ML models - All ensemble mod-
els with Random Under
Sampling technique:
• F1-score ≥ 0.8 for
ICU
• F1-score ≥ 0.83 for
mortality

[27] COVID-19 mortality
prediction among
patients using
epidemiological
parameters: an
ensemble machine
learning approach

- Hospitalized patient data
from Mexico

- AdaBoost
- CatBoost
- XGBoost
- LightGBM
- Gradient Boost
- RF

- XGBoost:
• Accuracy = 96%
• Precision = 95%
• Recall = 95%
• F1 = 95%
• ROC AUC = 96%
• AP = 99%
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[28] A novel combined
dynamic ensemble
selection model for
imbalanced data to
detect COVID-19 from
complete blood count

- Whole blood count dataset - Hybrid DES +
SMOTE-ENN +
HMCBCG

- HMCBCG + k-nearest
oracles eliminate algo-
rithm:
• Accuracy = 99.81%
• F1-score = 99.86%
• G-mean = 99.78%
• AUC = 99.81%

[29] Ensemble learning
model for diagnosing
COVID-19 from routine
blood tests

• Regular blood test data • Extra Trees
• RF
• LR
• XGBoost

- Ensemble model: •
Accuracy = 99.88%
• Sensitivity = 98.72%
• Specificity = 99.99%
• AUC = 99.38%

[30] Real-time data of
COVID-19 detection
with IoT sensor tracking
using artificial neural
network

Dataset of 5,644 COVID-
19 patients from Brazil

- SMOTE + Deep
learning

- SMOTE + Deep learn-
ing:
• Accuracy = 98%
• Precision = 97%

[20] Comparison of machine
learning techniques
to handle imbalanced
COVID-19 CBC
datasets

- CBC data from COVID-
19 patients

- LR, DT, RF,
SVM, KNN, MLP,
XGBoost, NB
- ROS, RUS,
SMOTE, ADASYN,
SMOTETomek

- SVM, LR, RF

[31] A novel specific
artificial intelligence-
based method to
identify COVID-19
cases using simple
blood exams

- 599 hospitalized patients
in Brazil

- SVM
- SMOTEBoost
- Ensembling meth-
ods

- Specificity = 85.98%
- Sensitivity = 70.25%
- NPV = 94.92%
- PPV = 44.96%
- ROC AUC = 86.78%

• SMOTE Edited Nearest Neighbors (SMOTE-ENN)

SMOTE Edited Nearest Neighbors (SMOTE-ENN) is a version of the original SMOTE combined with ENN
[35]. It is a two-step method that combines the advantages of oversampling and data cleaning to better
handle imbalanced datasets by generating new samples for the minority class in the first step [36]. SMOTE-
ENN improves classifier performance on unbalanced data by combining SMOTE with the Edited Nearest
Neighbors (ENN) algorithm [37]. SMOTE creates synthetic instances for the minority class, whereas ENN
deletes noisy or unclear examples from both the minority and majority classes [38]. ENN works by examining
the class labels of the closest neighbors of an instance by using k=3. As long as an instance contains neighbors
from both the majority and minority classes, it is deemed to became near to the decision boundary [39]
(Figure 1).

• SMOTETomek

SMOTETomek is also an extension of the original SMOTE. It is a hybrid strategy that tries to clean up
overlapping data points for each of the classes spread in sample space [41]. It is an undersampling technique
that removes noise from the majority class, which shares comparable features and overlaps [42]. SMOTE is
coupled with Tomek link to produce enhanced sampling results [43]. Tomek link connects two data points
based on a combination of two variables: Two conditions must be met: they must be nearest neighbors and
have distinct class labels [44]. A Tomek link is formed when a couple of samples, Ei and Ej , are labeled

Stat., Optim. Inf. Comput. Vol. 14, August 2025



SOKAINA EL KHAMLICHI, LOUBNA TAIDI 683

Figure 1. The process of SMOTE-ENN as proposed in [40]

with different classes and there is no sample Ek so that d(Ei, Ek) ¡ d(Ei, Ej) or d(Ej , Ek) ¡ d(Ei, Ej), d
represents the distance function [45].

• Adaptive Synthetic Sampling (ADASYN)

ADASYN is an oversampling approach that effectively improves learning by focusing on data distribution
[46]. A density estimation measure is employed to define the number of synthetic observations demanded
for every minority group sample. This approach helps to balance the majority and minority groups and
generates synthetic observations where the data points are hard to study. The process of generating synthetic
data involves several steps: first, determine the number of novel data points required to produce a balanced
dataset. Next, the density evaluation is achieved using the k-nearest neighbors for every observation in the
minority group Eq. 1 and then normalization Eq. 2. The number of required instances for each sample is
subsequently computed Eq. 3, and the new synthetic sample is generated accordingly.[20]

ri =
∆i

K
, i = 1, . . . ,ms (1)

r̂i =
ri∑ms

i=1 ri
(2)

gi = r̂i ×G (3)
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3.1.2. Under-sampling approaches :
Among the most common techniques for handling with class imbalance is the undersampling method, which

involves choosing the majority class from samples using a prototype [47]. The process of undersampling involves
the removal of samples from the majority class [48]. In the undersampling strategy, the functioning region in the
dataset is the majority class, where instances from the majority class are eliminated randomly or using certain
technique to balance the classes, and then typical classification techniques are employed to categorize the data
[49]. For lower ratios of class imbalance, the undersampling methods work well [50].

• Random Under Samling approach (RUS)

RUS is a resampling technique used to address the issue of class imbalance [51]. It is one of the simplest
methods, where observations from the majority group are randomly removed to achieve a more balanced
class distribution. Thus, RUS helps reduce model bias and can lead to improved overall performance during
the learning process [52].

The random undersampling algorithm operates as follows [53]:

1. Initiate by selecting a random batch of data from the majority group.

2. Remove observations from the majority group to balance the dataset.

3. Repeat steps 1 and 2 till the majority and the minority groups are balanced.

4. Train the algorithm on a balanced dataset and evaluate its performance.

3.2. Machine Learning approaches

3.2.1. K-Nearest Neighbors algorithm (KNN) :
The Nearest Neighbors approach is based on the idea that observations within a dataset are close to each other

in terms of similar characteristics [54]. Wherever unclassified instance is encountered, it will be labeled following
its nearest neighbors. The extended version of this approach, called k-Nearest Neighbors (kNN), introduces the
parameter k, which specifies the quantity of neighbors to examine. The classification process is simple: the
unclassified data is assigned the label that is most prevalent from its neighbors. The method uses a distance measure
to identify the k nearest neighbors. In this study, we employed the Euclidean Distance (Eq. 4):

D(x, y) =

√√√√ n∑
i=1

|xi − yi|2 (4)

3.2.2. Decision Tree (DT) :
DT is a straightforward and effective non-parametric data analysis technique. It is also a controlled learning

algorithm employed for regression and classification tasks. It aims to develop an algorithm predicting the dependent
variable value by learning fundamental decision information derived from the data attributes.

3.2.3. Logistic Regression (LR) :
LR is an analytical technique belonging to the Generalized Linear Models family. Despite its name, it is

employed for classification rather than regression. Log-linear classifier, logit regression, as well as maximum-
entropy classification (MaxEnt) are used to denote logistic regression. In this approach, a logistic function is
employed to represent a dichotomous variable, which is dependant on any sort of explanatory features.

The equation used in logistic regression is similar to the one used for linear regression, as shown below:

y =
e(b0+b1×x)

1 + e(b0+b1×x)
(5)

Where,
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• b0 is the bias,

• b1 refers to the coefficient of the input value (x),

• y is the value of the output,

• x refers to the value of the input.

3.2.4. Gradient Naı̈ve Bayes (GNB) :
Naı̈ve Bayes is an elementary supervised learning algorithm founded on the probabilistic technique. It is a

classification approach, which employs Bayes theorem. It supposes that each pair of attributes is independent
of one another. This assumption simplifies the calculations. Thus, it is named naive. It is referred to as class
conditional independence as well. The Gaussian Naı̈ve Bayes is applied in the event of continuous data with
normal distribution.

3.2.5. Random Forest (RF) :
RF is a collection of learning approach used for regression and ranking problems. It utilizes several non-pruned

decision trees for regression and classification assignments. In a random forest classifier, every decision tree is built
using an amount of the data’s variables. Once numerous trees are constructed, every tree votes the new data point’s
class [55]. Since random forest builds every tree using a bootstrap sampling, the minority group could be excluded
in these samples. This can lead to trees that perform poorly and exhibit bias toward the majority group [56].

3.3. Tuning hyperparameters with Random Search

A hyperparameter is a key variable in machine learning, that if not set, the default value is utilized [57]. For this
reason, tuning hyper-parameters is typically considered an optimization task [58]. Therefore, choosing the right
hyper-parameters for a machine learning algorithm needs expertise, intuition, and trial [59]. A random search is
used to find candidates for the hyper-parameters, and an experiment is subsequently carried out on the chosen
candidates [60]. This approach tries multiple specified combinations, evaluates hyperparameters, and selects the
best results [61].

3.4. Feature selection

Feature selection is a critical step in the classification of high-dimensional data [62]. It involves identifying a
subset of relevant features that either preserve or improve the performance of predictive models [63]. Feature
selection algorithms aim to identify the most informative combination of features that promote the development of
models that are not only more accurate and efficient but also easier to interpret [64]. By isolating the features that
contribute meaningfully to predicting the target variable, feature selection helps reduce noise and enhance model
generalization. Despite its importance, this step is often underestimated or overlooked in practice [65].

3.4.1. SHAP :
SHapley Additive exPlanations (SHAP) is a method used to determine how individual features contribute to

the prediction of a dependent variable. The key idea is that the importance of a feature depends not only on
its own contribution but also on its interactions with all other features in the dataset [66]. Consequently, SHAP
provides valuable insights for clinical practice by identifying which factors should be prioritized [67]. Moreover,
SHAP’s applicability beyond commonly used machine learning classifiers offers a comprehensive framework for
improving both the interpretability and performance of machine learning models [68]. Rooted in game theory,
SHAP is designed to explain machine learning model outputs in a transparent and consistent manner [69]. The
explanation for a given instance x is as follows [70]:

Where the explanatory model is represented by (Eq. 6):

g(z′) = ϕ0 +

M∑
j=1

ϕjz
′
j (6)
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3.5. Evaluation metrics

Evaluation metrics are quantitative indicators employed to estimate the action and efficacy of a statistical or
machine learning model [71]. These metrics provide valuable information on the performance of the model and
simplify the comparison of various models or algorithms [72]. Several evaluation metrics used to estimate model
performance. The most commonly used for binary classification are accuracy, precision, recall, F1-score, area
Under ROC Curve, and average Precision [73].

3.5.1. Accuracy :
Accuracy is a metric that indicates how frequently a machine learning model accurately predicts an outcome.

Thus, is described as the portion of precisely predicted instances to the totality of instances in the dataset [74]. A
high accuracy rate demonstrates that the majority of labels correctly reflect reality. This can dramatically improve
machine learning model performance by lowering prediction errors [75]. For a binary classificator, accuracy is
generally defined as follows [76]:

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

TP refers for True Positive, TN for True Negative, FP for False Positive, and FN for False Negative.

3.5.2. Precision :
Precision is the portion of accurately divined positive instances among all instances projected as positive [77]. It

reveals which fraction of positive predictions were in fact reasonable by calculating the samples correctly predicted
as positive (TP) and divided by the total positive predictions, correct or incorrect (TP, FP) [78]. High precision
indicates a low rate of false positives [79]. It can be described as follows:

Precision =
TP

TP + FP
(8)

3.5.3. Recall :
Recall, frequently cited as sensitivity or the True Positive Rate (TPR), represents the portion of positive samples

that are accurately arranged [80]. It quantifies the portion of accurate class predictions in relation to the totality of
samples within the respective class [77]. Recall is determined by the ratio of correctly classified positive samples
to the total number of samples designated as belonging to the positive class as follows [81]. It is defined as follows:

Recall =
TP

TP + FN
(9)

3.5.4. F1-score :
F1 score is an appropriate statistic for measuring classifier performance since it respects both the accuracy and

predictive power of a Machine Learning model [82]. It is a synthetic one-dimensional indicator, and it is frequently
used to assess the performance of classifiers [83]. Moreover, F1-score balances precision and recall by considering
their harmonic mean of these two indices as follows [84] [85]:

F1-score = 2 ∗ precision ∗ recall
precision+ recall

(10)

3.5.5. Area Under ROC Curve (ROC AUC) :
The ROC curve is defined as a plot of the test True-Positive Rate versus the matching False-Positive rate [86]. It

depicts the associated False Positive Rate (FPR) and True Positive Rate (TPR) on the x-axis and y-axis, respectively,
for binary classification after taking into account all decision thresholds [87]. Therefore, ROC analysis has the
advantage of being threshold-agnostic, allowing for the estimation of a predictor’s performance without a specified
threshold. It also provides criteria for selecting the ideal threshold based on a cost function or objective [88].
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Otherwise, the AUC calculation is a diagnostic tool that considers both true-positive and false-positive Rate. It can
help identify predictors that are more accurate than others and those that are near to a 50-50 estimate or worse [89].

3.5.6. Average Precision (AP) :
Recall and precision are trade-offs, and both of them must be taken into account at the same time when comparing

and evaluating various prediction methods [90]. Average Precision (AP) is a fundamental parameter for measuring
the accuracy of an object detection algorithm [91]. It is a metric that integrates precision and recall in the context
of ranked retrieval results [92]. The average precision for a certain information demand is calculated by averaging
the precision ratings obtained from each relevant document. It can be calculated like so:

AP =
∑
n

(Rn −Rn−1)Pn (11)

Where Rn and Pn refer to the recall and the precision at the nth threshold

4. Data and Methods

4.1. Dataset description

The dataset utilized in this investigation was provided by Iwendi et al. [22]. It is a Mexican dataset that includes
1,129,258 records of COVID-19 hospitalized patients. This dataset Contains 1,023,066 recovered cases from
COVID-19 infection and 106,192 of deaths (Figure2).

Figure 2. The distribution of COVID-19 mortality

We picked out 19 features for this study, including 18 medical and demographic characteristics, as well as
the target feature: Death. The medical and demographic variables encompass Sex, Type of patient, Intubation,
Pneumonia, Pregnancy, Diabetes, EPOC, Asthma, Immunosuppression, Hypertension, Other complication,
Cardiovascular disease, Obesity, Renal failure, Smoking, ICU admissio, Age, and Other COVID contact. Initially,
the dataset encoded the ’Sex’ variable with 1 representing ’female’, 2 representing ’male’, the ’Type of patient’
variable used 1 for ’in transit’ and 2 for ’in hospital’. The rest of qualitative attributes were coded as 1 for ’positive’
and 2 for ’negative’. In the present research, we applied a different coding style. For variable ’Sex’, we attributed 0
to males and 1 to females, and the ’Type of patient’ variable was adjusted to 0 for ’in transit’ and 1 for ’in hospital’.
When it comes to the other qualitative features, 0 was used for ’negative’ and 1 for ’positive’ (Table 2).
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Table 2. dataset description

No. Feature Description Encoding Data Type
1 Sex Indicates the gender of infected

individual
0-male, 1-female Qualitative

2 Type of patient Type of the medical care the
patient received

0-transit, 1-hospital Qualitative

3 Intubated Indicates if the patient necessitates
intubation

0-no, 1-yes Qualitative

4 Pneumonia Indicates if the patient had pneu-
monia

0-no, 1-yes Qualitative

5 Pregnancy Denotes if the patient was pregnant 0-no, 1-yes Qualitative
6 Diabetes Identifies if the patient had dia-

betes
0-no, 1-yes Qualitative

7 EPOC Indicates if the patients had Excess
Post-exercise oxygen consumption

0-no, 1-yes Qualitative

8 Asthma Specifies if the patient had asthma 0-no, 1-yes Qualitative
9 Immunosuppression Indicates if the patient had

immunosuppression
0-no, 1-yes Qualitative

10 Hypertension Identifies if the patient had hyper-
tension

0-no, 1-yes Qualitative

11 Another complication Presence of other medical compli-
cations

0-no, 1-yes Qualitative

12 Cardiovascular Indicates if the patient had cardio-
vascular issues

0-no, 1-yes Qualitative

13 Obesity Specifies if the patient was obese 0-no, 1-yes Qualitative
14 Renal failure Indicates the presence of kidney

failure
0-no, 1-yes Qualitative

15 Smoking Indicates wether the patient is
smoking

0-no, 1-yes Qualitative

16 ICU Determines if the patient must
have intensive care

0-no, 1-yes Qualitative

17 Age Records the age of the patient NA Numeric
18 Other Case Indicates if the patient had contact

with another COVID-19 case
0-no, 1-yes Qualitative

19 Outcome (Death) Indicates if the patient survived or
died

0-survived, 1-dead Qualitative

4.2. Proposed approach

The effective prediction of COVID-19 mortality among hospitalized patients is of paramount importance for
enabling medical systems to optimize resource allocation, favor cases at high risk of death for careful consideration,
and avoid delays when offering necessary health services, especially when the infrastructure is overburdened with
individuals. Thereby, this reinforces the robustness of the healthcare sector and supports clinicians in addressing
this critical medical crisis. However, the imbalance in COVID-19 datasets hinders the development of an accurate
machine learning algorithm. Thus, this study aims to develop an effective machine learning model for predicting
the risk of fatality among COVID-19 patients by employing several approaches for balancing the data.

Initially, we started with data preprocessing. All variables are between 0 and 1, apart from the variable ’Age’.
We standardized the variable ’Age’ using Z-score normalization to avoid the impact of features with various
scales. Then, we split the data into training and testing sets, with 75% for the training and 25% for testing. We
used the training dataset to build various machine learning models including Gaussian Naive Bayes, Logistic
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Regression, K-Nearest Neighbors, Random Forest, and Decision Tree. These machine learning models have been
chosen because they are among the most extensively used algorithms for COVID-19 data and they represent a
diverse set of methodological approaches. Decision tree and logistic regression are recognized for their high
classification performance and model explainability in binary outcome prediction. Gaussian Naı̈ve Bayes can
estimate the probability of fatality based on relevant attributes, while K-Nearest Neighbors can be appropriate
for predicting severity by identifying similarities in patient characteristics. Furthermore, Random Forest caught
attention due to its ensemble nature, which is expected to handle class imbalance more effectively than individual
models. Additionally, resampling approaches including, SMOTE, SMOTE-ENN, SMOTETomek, ADASYN, and
RUS have been performed to handle the issue of class imbalance. On the other hand, feature selection analysis has
been performed using SHapley Additive exPlanations (Shap) technique to determine the most significant features
for predicting COVID-19 mortality among patients (Figure 3).

COVID-19 dataset Preprocessing data Dataset splitting

Training Data Testing Data

Feature selection

SHAP (Shapley Additive
exPlanations)

Sampling techniques:
SMOTE, SMOTE-ENN,

SMOTETomek, ADASYN,
RUS

Machine Learning Models:
LR, DT, GNB,

KNN, RF

Tuning Hyperparameters:
GridSearch

Best model: SMOTE-ENN-RF

Evaluation metrics

Model performance

Figure 3. Overview of the proposed solution

5. Results

We implemented five machine learning models: Decision Tree (DT), Gradient Naı̈ve Bayes (GNB), K-Nearest
Neighbors (KNN), Logistic Regression (LR), and Random Forest (RF). Since our dataset was highly imbalanced,
we applied five data-balancing techniques: SMOTE, SMOTEENN, SMOTETomek, ADASYN, and RUS to address
this issue.

Before applying these balancing techniques, the dataset exhibited significant imbalance, consisting of 767,195
recovered cases and 79,748 deaths. This imbalance is visually shown in Figure 4.
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Figure 4. The distribution of COVID-19 mortality in the training set before balancing data

Figure 5. The distribution of COVID-19 mortality in the training set before balancing data

5.1. Correlation analysis

In this investigation, correlation analysis was used to identify the relashionship between different attributes in the
dataset as well as the relashionship between the dependent variable (death) and the independent features. It has
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been noticed that the independent variables ‘Type of patient’, ’Age’ and ‘Other case’ reveal a moderate positive
correlation with the target variable ‘Death’. Whereas, the features ‘ICU’, ‘Intubated’ and ‘Pneumonia’ present a
moderate negative correlation with the dependent variable ‘Death’ (Figure 5).

5.2. Balancing data

5.2.1. Balancing data with ADASYN :
After applying the ADASYN technique, the dataset was balanced and contained 767,195 recovered cases and

763,687 deaths (Figure6).

Figure 6. The distribution of COVID-19 mortality after balancing data with ADASYN

Table 3. ADASYN Random search results

Algorithm Hyper parameter Value

GNB priors None
var smoothing 4.056727410148507e-09

DT

criterion entropy
max depth 19
max features None
min samples leaf 17
min samples split 18
splitter best

RF

bootstrap False
max depth None
max features sqrt
min samples leaf 1
min samples split 17
n estimators 111

LR
solver liblinear
penalty l2
C 21.544346900318867

KNN

n neighbors 15
p 1
weights distance
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To further enhance model performance, we employed the Random Search method to tune hyperparameters for
the machine learning models. The optimal hyperparameters are presented in Table 3.

Following Random Search optimization, we developed the machine learning models using the ADASYN
technique with tuned hyper parameters. The results indicate that Logistic Regression achieved the best performance
among all classifiers with 86.92% accuracy, 57.03% F1-score, 92.66% Recall, 41.19% precision, 38.85% average
precision, and 89.49% ROC AUC. The other models, Decision Tree (DT), Random Forest (RF), K-Nearest
Neighbors (KNN), and Gaussian Naı̈ve Bayes (GNB) followed in terms of performance, as summarized in Table
4.

Table 4. Comparison of machine learning models after tuning hyperparameters and balancing data with ADASYN

Model Train Score
(%)

Test accuracy
(%)

f1score
(%)

Recall
(%)

Precision
(%)

AP (%) roc auc
(%)

GNB 84.88 85.75 53.97 89.18 38.69 35.52 87.29
DT 90.61 86.79 56.30 90.84 40.79 37.91 88.61
RF 92.80 87.82 56.56 84.61 42.48 37.38 86.38
LR 86.78 86.92 57.03 92.66 41.19 38.85 89.49
KNN 80.05 91.68 56.76 58.30 55.30 36.15 76.72

5.2.2. Balancing data with RUS Technique :
After the application of RUS method, we achieved a balanced dataset with 79,748 for both Recovered patients

and dead individuals (Figure 7)

Figure 7. The distribution of COVID-19 mortality after balancing data with RUS

We utilized the Random Search technique to optimize hyperparameters for the machine learning models. The
best-performing hyperparameters are detailed in Table 5

A comparative analysis of the machine learning models using the Random Under-Sampling (RUS) approach
with tuned hyper parameters, revealed a slight improvement in overall performance. Among all classifiers, Logistic
Regression (LR) achieved the highest performance with an accuracy of 87.83%, F1-score of 58.21%, recall of
90.53%, precision of 42.90%, average precision (AP) of 39.73%, and ROC-AUC of 89.04%. Following LR, K-
Nearest Neighbors (KNN), the Random Forest (RF), Decision Tree (DT), and Gaussian Naı̈ve Bayes (GNB) also
demonstrated enhanced results (Table 6).

5.2.3. Balancing data with SMOTE Technique :
After applying the SMOTE method to balance the data, we obtained an equal distribution of 767,195 cases for

both recovered and deceased patients (Figure 8).
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Table 5. RUS Random search results

Algorithm Hyper parameter Value

GNB priors None
var smoothing 1.4140637435040791e-08

DT

criterion gini
max depth 9
max features None
min samples leaf 15
min samples split 17
splitter best

RF

n estimators 192
min samples split 8
min samples leaf 5
max features sqrt
max depth 15
bootstrap True

LR

solver liblinear
penalty l2
C 37.649358067924716
random state 1

KNN
n neighbors 12
p 1
weights uniform

Table 6. Comparison of machine learning models after tuning hyperparameters with RUS balancing

Model Train Score
(%)

Test accuracy
(%)

f1score
(%)

Recall
(%)

Precision
(%)

AP (%) roc auc
(%)

GNB 87.30 85.73 53.92 89.12 38.65 35.47 87.25
DT 90.36 86.76 57.21 94.45 41.03 39.27 90.21
RF 90.58 86.75 57.27 94.80 41.03 39.38 90.35
LR 89.15 87.83 58.21 90.53 42.90 39.73 89.04
KNN 87.52 89.04 58.78 83.39 45.38 39.40 86.51

Using balanced data with SMOTE, we employed the Random Search method to determine the best
hyperparameters of the classifiers and enhance performance metrics. The identified optimal hyperparameters are
exhibited in Table 7.

After tuning hyper parameters using Random Search, the performance of ML classifiers employing balanced
data with SMOTE method has been generally enhanced. Logistic regression persist the most performing classifier
compared to the other models with 87.85% accuracy, 58.26% F1-score, 90.52% Recall, 42.95% precision, 39.77%
average precision, and and 89.05% ROC AUC. Followed by DT, RF, KNN, and GNB (Table 8).

5.2.4. Balancing data with SMOTETomek Technique :
After balancing data with SMOTETomek method, we obtained 763,567 for both recovered patients and deaths

(Figure 9).
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Figure 8. The distribution of COVID-19 mortality after balancing data with SMOTE

Table 7. SMOTE Random search results

Algorithm Hyper parameter Value

GNB priors None
var smoothing 1.2943857387580748e-08

DT

criterion entropy
max depth 18
max features None
min samples leaf 14
min samples split 17
splitter best

RF

n estimators 111
min samples split 17
min samples leaf 1
max features sqrt
max depth None
bootstrap False

LR

solver liblinear
penalty l1
C 45.34878508128591
random state 1

KNN
n neighbors 15
p 1
weights distance

Using SMOTE-Tomek balanced data, we utilized the Random Search method to identify the optimal
hyperparameters for the classifiers, aiming to improve performance metrics. The selected best hyperparameters
are presented in Table 9

After optimizing hyperparameters with Random Search, the performance of ML classifiers using SMOTE-
Tomek balanced data has generally improved. Logistic Regression remains the top-performing model, achieving
an accuracy of 87.90%, an F1-score of 58.36%, a recall of 90.49%, a precision of 43.06%, an average precision of
39.86%, and a ROC AUC of 89.06%. Followed by Decision Tree (DT), Random Forest (RF), K-Nearest Neighbors
(KNN), and Gaussian Naı̈ve Bayes (GNB) (Table 10).
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Table 8. Comparison of machine learning models after tuning hyperparameters and balancing data with SMOTE

Model Train
Score

Test
Accuracy

F1-Score Recall Precision AP ROC
AUC

GNB 87.28 85.82 54.07 89.09 38.81 35.60 87.29
DT 91.92 88.11 58.35 88.87 43.43 39.64 88.45
RF 93.68 88.70 57.81 82.66 44.44 38.36 85.99
LR 89.15 87.85 58.26 90.52 42.95 39.77 89.05
KNN 85.75 91.84 56.89 57.49 56.30 36.35 76.44

Figure 9. The distribution of COVID-19 mortality after balancing data with SMOTETomek

5.2.5. Balancing data with SMOTEENN Technique :
After balancing the training dataset with SMOTEENN, the dataset contained 685,529 recovered patients and

392,480 of deaths (Figure 10)

Figure 10. The distribution of COVID-19 mortality after balancing data with SMOTEENN

Using the balanced dataset obtained through SMOTE-ENN, we employed the Random Search technique to
determine the optimal hyperparameters for the classifiers with the goal of enhancing performance metrics. The
resulting best hyperparameter configurations are summarized in Table 11.

After hyperparameter optimization using Random Search, the performance of the machine learning classifiers on
the SMOTE-ENN balanced dataset showed a general improvement. Among the models, Random Forest achieved
the best results, with an accuracy of 89.44%, F1-score of 60.92%, recall of 87.88%, precision of 46.62%, average
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Table 9. SMOTE-Tomek Random search results

Algorithm Hyper parameter Value

GNB priors None
var smoothing 5.946741356463224e-09

DT

criterion gini
max depth 17
max features None
min samples leaf 16
min samples split 7
splitter best

RF

n estimators 111
min samples split 17
min samples leaf 1
max features sqrt
max depth None
bootstrap False

LR

solver liblinear
penalty l2
C 21.544346900318867
random state 1

KNN
n neighbors 15
p 1
weights distance

Table 10. Comparison of machine learning models after tuning hyperparameters and balancing data with SMOTETomek

Model Train
Score

Test
Accuracy

F1-Score Recall Precision AP ROC
AUC

GNB 87.46 85.80 54.04 89.11 38.78 35.57 87.28
DT 91.89 87.91 58.28 90.14 43.06 39.74 88.91
RF 93.80 88.70 58.17 83.38 44.53 38.85 86.52
LR 89.36 87.90 58.36 90.49 43.06 39.86 89.06
KNN 85.68 91.75 57.30 59.08 55.61 36.69 77.10

precision of 42.10%, and ROC AUC of 88.94%. It was followed in performance by Logistic Regression (LR),
Decision Tree (DT), K-Nearest Neighbors (KNN), and Gaussian Naı̈ve Bayes (GNB), as detailed in Table 12.

5.3. Feature selection using SHAP Technique

To assess the influence of individual variables on outcome prediction in machine learning models, we conducted a
SHAP analysis. The results indicate that Type of Patient, Age, Pneumonia, Other Case, and Intubated are strongly
associated with higher risk of mortality. Consequently, these variables emerge as the most critical features for
predicting COVID-19 mortality in hospitalized patients (Figure 11).
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Table 11. SMOTE-ENN Random search results

Algorithm Hyper parameter Value

GNB priors None
var smoothing 1.3347189009806692e-08

DT

criterion gini
max depth 19
max features None
min samples leaf 16
min samples split 17
splitter best

RF

n estimators 130
min samples split 4
min samples leaf 1
max features log2
max depth 14
bootstrap True

LR

solver liblinear
penalty l2
C 79.24828983539186
random state 1

KNN
n neighbors 15
p 1
weights distance

Table 12. Comparison of machine learning models after tuning hyperparameters and balancing data with SMOTE-ENN

Model Train
Score

Test
Accuracy

F1-Score Recall Precision AP ROC
AUC

GNB 91.75 85.63 53.78 89.23 38.49 35.35 87.25
DT 98.10 90.85 59.73 72.41 50.83 39.39 82.58
SMOTE ENN RF 96.61 89.44 60.92 87.88 46.62 42.10 88.74
LR 94.39 88.24 58.85 89.79 43.77 40.26 88.94
KNN 99.86 89.48 56.02 71.55 46.03 35.60 81.44

6. Discussion

The findings of this study illustrate the strong predictive capabilities of Random Forest algorithm trained on
balanced data using SMOTEENN resampling technique (SMOTE-ENN-RF). This model outperformed the other
models with 89.44% accuracy, 60.92% F1-score, 87.88% Recall, 46.62% precision, 42.10% AP, and 88.74%
ROC AUC.

A comparative analysis with previous studies, which deal with the prediction of COVID-19 mortality in
imbalanced data sets, reveals that our proposed SMOTE-ENN-RF model consistently outperforms several existing
approaches. Compared to the logistic regression model presented in[23], our approach shows superior performance
in all metrics reported. Similarly, while the XGBoost model from [24] achieved a slightly higher accuracy, our
model substantially outperforms it in terms of recall, ROC AUC, and AP, critical metrics in identifying high-risk
patients who are more likely to die from the disease. As for the work presented in [22], which exhibits logistic
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Figure 11. SHAP

regression as the best algorithm using the same dataset as us, our model achieves markedly higher recall and F1-
score, although it is slightly outperformed in terms of accuracy and precision. This suggests that our model offers a
more balanced and practical trade-off between precision and recall that is an essential attribute when dealing with
real-world imbalanced datasets.

It should be noted that while our model delivers competitive performance, it is still outperformed by some
ensemble-based models found in [26], as well as by the SMOTE-RF and SMOTE-XGBoost models presented in
[25] and [27] respectively. These results underscore the continued relevance of ensemble methods and advanced
boosting techniques when tuned appropriately for the data distribution.

Additionally, when comparing our results to studies focused on COVID-19 detection rather than mortality
prediction, such as those found in [31], [29], and [28], the SMOTE-ENN-RF model still holds its ground. It
outperforms the ER-CoV model in [31] in terms of recall and ROC AUC, which highlights its strength in correctly
identifying positive cases. However, it is surpassed by the best-performing models in [28] and [29], which may
benefit from more complex architectures or larger datasets (Table 13).

Accordingly, our findings illustrate the effectiveness of combining Random Forest with SMOTE-ENN to address
data imbalance in COVID-19 mortality prediction. The results not only outperform several key benchmarks from
the literature but also offer a balanced and practical approach suitable for real-world deployment. This underscores
the value of resampling techniques in enhancing machine learning performance for medical prognosis, ultimately
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Table 13. Results comparison

Category Ref. Model Accuracy
(%)

Precision
(%)

Recall
(%)

F1-
score(%)

ROC AUC
(%)

AP
(%)

Covid-19
mortality
prediction

[23] LR: After visiting a
medical facility

76 - - - 74 -

[24] XGBoost 91.9 52.1 5.1 - 77 26
[22] Logistic Regression 92.272 62.169 46.516 53.215 - -

[26] Ensemble based
models: ICU
Prediction

- - - ≥ 0.8 - -

Ensemble based
models: mortality
Prediction

- - - ≥ 0.83 - -

[25] SMOTE-RF 95.03 94.23 90.70 - 99.02 -
[27] SMOTE-XGBoost 96 95 95 95 96 99
Our
study

SMOTE-ENN-RF 89.44 46.62 87.88 60.92 88.74 42.10

Covid-19
detection

[31] ER-CoV - 44.96 70.25 - 86.78 -
[29] Ensemble

model(ERLX)
99.88 - 98.72 - 99.38 -

[28] HMCBCG + k-
nearest oracles
eliminate

99.81 - - 99.86 99.81 -

supporting healthcare professionals in making timely and informed decisions for patients at higher risk of COVID-
19-related mortality. Moreover, the findings of this study hold promising implications for clinical practice. By
accurately identifying patients at elevated risk of mortality, the proposed machine learning approach can aid
in early diagnosis, guide risk stratification protocols, and contribute to personalized treatment planning. These
applications can enhance clinical decision-making and support more efficient resource allocation during health
crises. However, real-world implementation requires addressing key challenges, such as limited data availability,
integration with existing healthcare systems, and the need for external validation to ensure robustness across diverse
clinical settings.

Our investigation is not without limitations. First, it is important to note that our dataset exclusively represents
the population of one country. Therefore, for comprehensive validation, data from diverse geographical locations
and healthcare systems are essential to assure the generalizability of our findings. Second, this investigation does
not account for the features of unstructured datasets. While the majority of input features employed in predicting
COVID-19 mortality are numerical, The current approach may face few challenges when integrating unstructured
data. Third, certain potential risk factors influencing COVID-19 severity, such as viral load and body mass index,
were not considered in this study. The inclusion of such factors in future research would contribute to a more
comprehensive understanding of predictive variables. Finally, our models are based on available epidemiological
and clinical data, which may not fully capture the impact of emerging variants or long-term complications.
Continuous updates and adaptation to evolving pandemic conditions are necessary for maintaining predictive
accuracy.

7. Conclusion

The present work investigates the use of Artificial Intelligence approaches to predict COVID-19 mortality within
hospitalized patients. Given the prevalence of imbalanced datasets in COVID-19 research, the creation of effective
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predictive models remains a significant challenge. To address this challenge, this analysis explores various
balancing data techniques to improve classification performance and develop an effective model. The outcome of
this study demonstrates that Random Forest algorithm developed with balanced data using SMOTEENN approach
(SMOTE-ENN-RF) attained the highest performance with 89.44% accuracy, 60.92% F1-score, 87.88% Recall,
46.62% precision, 42.10% AP, and 88.74% ROC AUC. Besides, the present work identifies the variables: Type of
Patient, Age, Pneumonia, Intubation, having contact with other COVID-19 patient as the most important features
for predicting COVID-19 mortality.

As perspective, additional resampling methods such as cost-sensitive learning strategies could be explored to
adress the issue of imbalanced dataset. Furthermore, deep learning approaches can be applied to predict efficiently
COVID-19 fatality. Additionally, integrating multi-modal data sources, including genomic data, electronic health
records, and real-time wearable sensor data could enhance the prediction of COVID-19 severity. Finally, delving
into proteomic analysis methods may offer accurate insights into predicting COVID-19 severity.
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18. V. López, A. Fernández, S. Garcı́a, V. Palade, and F. Herrera, An insight into classification with imbalanced data: Empirical results
and current trends on using data intrinsic characteristics, Information Sciences, vol. 250, pp. 113–141, 2013.

19. Y. Zhao, Z. S.-Y. Wong, and K. L. Tsui, A framework of rebalancing imbalanced healthcare data for rare events’ classification: a
case of look-alike sound-alike mix-up incident detection, Journal of Healthcare Engineering, vol. 2018, no. 1, p. 6275435, 2018.

20. M. Dorn, B. I. Grisci, P. H. Narloch, B. C. Feltes, E. Avila, A. Kahmann, and C. S. Alho, Comparison of machine learning techniques
to handle imbalanced COVID-19 CBC datasets, PeerJ Computer Science, vol. 7, p. e670, 2021.

Stat., Optim. Inf. Comput. Vol. 14, August 2025



SOKAINA EL KHAMLICHI, LOUBNA TAIDI 701

21. J. Kim and O. Kwon, A model for rapid selection and COVID-19 prediction with dynamic and imbalanced data, Sustainability, vol.
13, no. 6, p. 3099, 2021.

22. C. Iwendi, C. G. Y. Huescas, C. Chakraborty, and S. Mohan, COVID-19 health analysis and prediction using machine learning
algorithms for Mexico and Brazil patients, Journal of Experimental & Theoretical Artificial Intelligence, vol. 36, no. 3, pp. 315–335,
2024.

23. S. Wollenstein-Betech, C. G. Cassandras, and I. Ch. Paschalidis, Personalized predictive models for symptomatic COVID-19 patients
using basic preconditions: hospitalizations, mortality, and the need for an ICU or ventilator, International Journal of Medical
Informatics, vol. 142, pp. 104258, 2020.

24. S. Bolourani, M. Brenner, P. Wang, T. McGinn, J. Hirsch, D. Barnaby, and T. Zanos, Development and Validation of a Machine
learning prediction model of respiratory failure within 48 hours of patient admission for COVID-19, Journal of Medical Internet
Research, 2021.

25. K. Moulaei, M. Shanbehzadeh, Z. Mohammadi-Taghiabad, and H. Kazemi-Arpanahi, Comparing machine learning algorithms for
predicting COVID-19 mortality, BMC Medical Informatics and Decision Making, vol. 22, no. 1, p. 2, 2022.

26. S. Subudhi, A. Verma, A. B. Patel, C. C. Hardin, M. J. Khandekar, H. Lee, D. McEvoy, T. Stylianopoulos, L. L. Munn, S. Dutta, et
al., Comparing machine learning algorithms for predicting ICU admission and mortality in COVID-19, NPJ Digital Medicine, vol.
4, no. 1, p. 87, 2021.

27. K. Chadaga, S. Prabhu, S. Umakanth, N. Sampathila, and R. Chadaga, COVID-19 mortality prediction among patients using
epidemiological parameters: an ensemble machine learning approach, Engineered Science, vol. 16, no. 10, pp. 221–233, 2021.

28. J. Wu, J. Shen, M. Xu, and M. Shao, A novel combined dynamic ensemble selection model for imbalanced data to detect COVID-19
from complete blood count, Computer Methods and Programs in Biomedicine, vol. 211, pp. 106444, 2021.

29. M. AlJame, I. Ahmad, A. Imtiaz, and A. Mohammed, Ensemble learning model for diagnosing COVID-19 from routine blood tests,
Informatics in Medicine Unlocked, vol. 21, pp. 100449, 2020.

30. H. Mohammedqasim and O. Ata, Real-time data of COVID-19 detection with IoT sensor tracking using artificial neural network,
Computers and Electrical Engineering, vol. 100, pp. 107971, 2022.

31. F. Soares, A. Villavicencio, F. S. Fogliatto, M. H. P. Rigatto, M. J. Anzanello, M. A. P. Idiart, and M. Stevenson, A novel specific
artificial intelligence-based method to identify COVID-19 cases using simple blood exams, MedRxiv, pp. 2020–04, 2020.

32. N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, SMOTE: Synthetic minority over-sampling technique, Journal of
Artificial Intelligence Research, vol. 16, pp. 321–357, 2002.

33. M. S. Shelke, P. R. Deshmukh, and V. K. Shandilya, A review on imbalanced data handling using undersampling and oversampling
technique, International Journal of Recent Trends in Engineering and Research, vol. 3, no. 4, pp. 444–449, 2017.

34. B. Das, N. C. Krishnan, and D. J. Cook, RACOG and wRACOG: Two probabilistic oversampling techniques, IEEE Transactions on
Knowledge and Data Engineering, vol. 27, no. 1, pp. 222–234, 2014.

35. E. Parkinson de Castro, An examination of the SMOTE and other SMOTE-based techniques that use synthetic data to oversample
the minority class in the context of credit-card fraud classification, Technological University Dublin, 2020.

36. G. Husain, D. Nasef, R. Jose, J. Mayer, M. Bekbolatova, T. Devine, and M. Toma, SMOTE vs. SMOTEENN: A Study on the
Performance of Resampling Algorithms for Addressing Class Imbalance in Regression Models, Algorithms, vol. 18, no. 1, p. 37,
2025.

37. R. Bounab, K. Zarour, B. Guelib, and N. Khlifa, Enhancing Medicare Fraud Detection Through Machine Learning: Addressing
Class Imbalance With SMOTE-ENN, IEEE Access, 2024.

38. K. Swain, T. K. Tak, K. Upreti, P. R. Kshirsagar, S. Bala, R. C. P. Krishnan, S. R. Nayak, and M. N. Mohanty, Enhancing Stroke
Prediction Using LightGBM With SMOTE-ENN and Fine-Tuning: A Comprehensive Analysis, Cureus, vol. 16, no. 12, 2024.

39. A. X. Wang, S. S. Chukova, and B. P. Nguyen, Synthetic minority oversampling using edited displacement-based k-nearest neighbors,
Applied Soft Computing, vol. 148, p. 110895, 2023.

40. Y. Shang, T. Liu, Y. Wei, J. Li, L. Shao, M. Liu, Y. Zhang, Z. Zhao, H. Xu, Z. Peng et al., Scoring systems for predicting mortality
for severe patients with COVID-19, EClinicalMedicine, vol. 24, Elsevier, 2020.

41. S. Satpathy, SMOTE for Imbalanced Classification with Python, Anal. Vidhya, 2020.
42. H. Hairani, A. Anggrawan, and D. Priyanto, Improvement performance of the random forest method on unbalanced diabetes data

classification using Smote-Tomek Link, JOIV: International Journal on Informatics Visualization, vol. 7, no. 1, pp. 258–264, 2023.
43. R. Manoharan, M. S. Stalin, G. B. Loganathan, and others, Ensemble Model for Educational Data Mining Based on Synthetic

Minority Oversampling Technique, 2023.
44. I. Tomek, Two modifications of CNN, 1976.
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58. F. Hutter, H. H. Hoos, and T. Stützle, Automatic algorithm configuration based on local search, in Proceedings of the AAAI
Conference, vol. 7, pp. 1152-1157, 2007.

59. R. G. Mantovani, A. L. D. Rossi, J. Vanschoren, B. Bischl, and A. C. P. L. F. De Carvalho, Effectiveness of random search in SVM
hyper-parameter tuning, in Proceedings of the 2015 International Joint Conference on Neural Networks (IJCNN), pp. 1-8, IEEE,
2015.

60. S. Hanifi, A. Cammarono, and H. Zare-Behtash, Advanced hyperparameter optimization of deep learning models for wind power
prediction, Renewable Energy, vol. 221, p. 119700, Elsevier, 2024.

61. L. Zhang and C. Zhan, Machine learning in rock facies classification: An application of XGBoost, in Proceedings of the International
Geophysical Conference, Qingdao, China, 17-20 April 2017, pp. 1371-1374, Society of Exploration Geophysicists and Chinese
Petroleum Society, 2017.

62. P. Yang, W. Liu, B. B. Zhou, S. Chawla, and A. Y. Zomaya, Ensemble-based wrapper methods for feature selection and class
imbalance learning, in Advances in Knowledge Discovery and Data Mining: 17th Pacific-Asia Conference, PAKDD 2013, Gold
Coast, Australia, April 14-17, 2013, Proceedings, Part I 17, Springer, pp. 544–555, 2013.

63. K. Gao, T. M. Khoshgoftaar, and A. Napolitano, Combining Feature Subset Selection and Data Sampling for Coping with Highly
Imbalanced Software Data, in Proceedings of the International Conference on Software Engineering and Knowledge Engineering
(SEKE), pp. 439–444, 2015.

64. I. Guyon, S. Gunn, M. Nikravesh, and L. A. Zadeh, Feature extraction: foundations and applications, Springer, vol. 207, 2008.
65. H. Guo, W. Shi, and Y. Deng, Evaluating sensor reliability in classification problems based on evidence theory, IEEE Transactions

on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 36, no. 5, pp. 970–981, 2006.
66. D. GhoshRoy, P. A. Alvi, and K. C. Santosh, Unboxing industry-standard AI models for male fertility prediction with SHAP,

Healthcare, vol. 11, no. 7, p. 929, 2023.
67. M. Yap, R. L. Johnston, H. Foley, S. MacDonald, O. Kondrashova, K. A. Tran, K. Nones, L. T. Koufariotis, C. Bean, J. V. Pearson,

and others, Verifying explainability of a deep learning tissue classifier trained on RNA-seq data, Sci. Rep., vol. 11, pp. 1–12, 2021.
68. U. Ahmed, Z. Jiangbin, A. Almogren, M. Sadiq, A. U. Rehman, M. T. Sadiq, and J. Choi, Hybrid bagging and boosting with SHAP

based feature selection for enhanced predictive modeling in intrusion detection systems, Scientific Reports, vol. 14, no. 1, p. 30532,
2024.

69. M. Li, H. Sun, Y. Huang, and H. Chen, Shapley value: from cooperative game to explainable artificial intelligence, Autonomous
Intelligent Systems, vol. 4, no. 1, p. 2, 2024.

70. C. Molnar, Interpretable machine learning: A guide for making black box models explainable, Leanpub, 2020.
71. N. Tian, B. Shao, G. Bian, H. Zeng, X. Li, W. Zhao, Application of forecasting strategies and techniques to natural gas consumption:

A comprehensive review and comparative study, Engineering Applications of Artificial Intelligence, vol. 129, pp. 107644, 2024,
Elsevier.

72. T. Schlosser, M. Friedrich, T. Meyer, D. Kowerko, A consolidated overview of evaluation and performance metrics for machine
learning and computer vision, Tobias Schlosser, Michael Friedrich, Trixy Meyer, and Danny Kowerko–Junior Professorship of
Media Computing, Chemnitz University of Technology, vol. 9107, 2024.

73. O. Rainio, J. Teuho, R. Klén, Evaluation metrics and statistical tests for machine learning, Scientific Reports, vol. 14, no. 1, pp.
6086, 2024, Nature Publishing Group UK London.

74. V. Agarwal, R. Raman, A cognitive system for lip identification using convolution neural networks, in Cognitive Systems and Signal
Processing in Image Processing, pp. 83–99, Elsevier, 2022.

75. D. Gobov, O. Solovei, Approaches to Improving the Accuracy of Machine Learning Models in Requirements Elicitation Techniques
Selection, in International Conference on Computer Science, Engineering and Education Applications, pp. 574–584, Springer, 2023.

76. D. M. W. Powers, Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation, arXiv
preprint arXiv:2010.16061, 2020.
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84. M. Açıkkar and S. Tokgöz, Improving multi-class classification: scaled extensions of harmonic mean-based adaptive k-nearest
neighbors, Applied Intelligence, vol. 55, no. 2, pp. 1-25, Springer, 2025.

85. A. Lavie, K. Sagae, and S. Jayaraman, The significance of recall in automatic metrics for MT evaluation, Machine Translation:
From Real Users to Research: 6th Conference of the Association for Machine Translation in the Americas, AMTA 2004, Washington,
DC, USA, September 28-October 2, 2004. Proceedings 6, pp. 134-143, Springer, 2004.

86. N. J. Wald and J. P. Bestwick, Is the area under an ROC curve a valid measure of the performance of a screening or diagnostic test?,
Journal of Medical Screening, vol. 21, no. 1, pp. 51-56, SAGE Publications, 2014.

87. J. Li, Area under the ROC Curve has the most consistent evaluation for binary classification, PLoS One, vol. 19, no. 12, p. e0316019,
Public Library of Science, 2024.

88. J. Muschelli III, ROC and AUC with a binary predictor: a potentially misleading metric, Journal of Classification, vol. 37, no. 3,
pp. 696-708, Springer, 2020.

89. A. J. Bowers and X. Zhou, Receiver operating characteristic (ROC) area under the curve (AUC): A diagnostic measure for evaluating
the accuracy of predictors of education outcomes, Journal of Education for Students Placed at Risk (JESPAR), vol. 24, no. 1, pp.
20-46, Taylor & Francis, 2019.

90. M. Zhu, Recall, precision and average precision, Department of Statistics and Actuarial Science, University of Waterloo, vol. 2, no.
30, p. 6, 2004.

91. J. Tian, Q. Jin, Y. Wang, J. Yang, S. Zhang, and D. Sun, Performance analysis of deep learning-based object detection algorithms
on COCO benchmark: a comparative study, Journal of Engineering and Applied Science, vol. 71, no. 1, p. 76, Springer, 2024.

92. R. Padilla, S. L. Netto, and E. A. B. Da Silva, A survey on performance metrics for object-detection algorithms, in Proceedings of
the 2020 International Conference on Systems, Signals and Image Processing (IWSSIP), pp. 237-242, IEEE, 2020.

Stat., Optim. Inf. Comput. Vol. 14, August 2025


	1 Introduction
	2 Related work
	3 Background
	3.1 Sampling techniques
	3.1.1 Oversampling techniques
	3.1.2 Under-sampling approaches

	3.2 Machine Learning approaches
	3.2.1 K-Nearest Neighbors algorithm (KNN)
	3.2.2 Decision Tree (DT)
	3.2.3 Logistic Regression (LR)
	3.2.4 Gradient Naïve Bayes (GNB)
	3.2.5 Random Forest (RF)

	3.3 Tuning hyperparameters with Random Search
	3.4 Feature selection
	3.4.1 SHAP

	3.5 Evaluation metrics
	3.5.1 Accuracy
	3.5.2 Precision
	3.5.3 Recall
	3.5.4 F1-score
	3.5.5 Area Under ROC Curve (ROC_AUC)
	3.5.6 Average Precision (AP)


	4 Data and Methods
	4.1 Dataset description
	4.2 Proposed approach

	5 Results
	5.1 Correlation analysis
	5.2 Balancing data
	5.2.1 Balancing data with ADASYN
	5.2.2 Balancing data with RUS Technique
	5.2.3 Balancing data with SMOTE Technique
	5.2.4 Balancing data with SMOTETomek Technique
	5.2.5 Balancing data with SMOTEENN Technique

	5.3 Feature selection using SHAP Technique

	6 Discussion
	7 Conclusion

